

 TR-IIS-05-016

Improving End-to-End Performance

of RED

Chin-Fu Ku, Ray-I Chang, Jan-Ming Ho, Sao-Jie Chen

September 2005 || Technical Report No. TR-IIS-05-016
http://www.iis.sinica.edu.tw/LIB/TechReport/tr2005/tr05.html

Improving End-to-End Performance of RED

Chin-Fu Ku, Ray-I Chang, Jan-Ming Ho, Sao-Jie Chen

Abstract

Congestion control mechanisms play a important role in today’s Internet,

since network environments are geting more and more complicated. Besides,

new applications request diverse services delivered by the network. Random

Early Detection (RED) provides an efficient and low-overhead mechanism to

effectively control congestion. Nevertheless, RED would slow down TCP

senders’ reaction to change of network condition, in particular the bottleneck

link with long propagation delay or RED with a smaller weighted factor. Thus,

we proposed a better way to drop/mark packets not just based on queue occu-

pancy. In this paper, an enhancement intending to improve the performance

in terms of delay, delay jitter and packet loss ratio is proposed. The basis idea

is to react quickly to major changes in network conditions so as to shorten

the time it takes for a sender to gather signals, e.g., round-trip time and lost

1

packets from networks. The simulation results show the enhancement could

effectively raise the performance in terms of delay, delay jitter and packet loss

ratio.

1 Introduction

The Internet has been a useful facility for our daily life. As the increasing of applica-

tions and users on the Internet, the availability and stability of the Internet has been

a major concern to most network operators and researchers. Congestion control is

one of the most important mechanism in keeping the Internet, a huge and hetero-

geneous internetworking, available and stable. Because congestion could highly

degrade the service to users, or even make the service unavailable. Many control

schemes are proposed, though the causes of congestion are diverse and dynamic.

Besides, new network protocols or applications, such as IP telephony or voice over

IP, may raise new challenges for congestion control.

A simple definition of congestion could be, ”the sum of demanded resource is

greater than available resource”. In a network, resources includes link bandwidth

and buffer in intermediate nodes, e.g., switches or routers. However, the causes of

congestion varies from situation to situation. In [1], Gevros et al. gives an overview

on issues of congestion control and related topics.

As network traffic is growing so fast, traditional network protocols are also fac-

ing stricter examining and validating. Nowadays, TCP has been the dominating

2

protocol among the Internet traffic. Although TCP got his own long history in

controlling network congestion, many improvements and enhancements still are in

progress. In [2], Floyd concisely described recent modification and enhancements

to TCP’s congestion control. Nevertheless, early attentions were put on easier de-

ployments and low complexity. Thus the end to end protocol, i. e. TCP itself, is the

focus to control congestion. In fact, they successfully maintain stability of the In-

ternet. But the network condition has become more and more complicated because

of the development of more and more advanced Internet technologies. Several al-

ternatives are studied in literatures.

Traditional network intermediate nodes, such as router, switches or bridges, use

First-In-First-Out(FIFO) queue to store packets and drop-tail (or called First-Come-

First-Serve) discipline to drop incoming packets when the queue is full. However,

drop-tail could make large packets loss whenever the queue is full, which might

cause TCP synchronization phenomenon. Therefore, some researchers put focus on

the design of queueing disciplines on intermediate nodes. Random Early Detection

(RED) [3] was proposed by Jacobson and Floyd in 1993 and then many enhance-

ments or variants were proposed.

As it’s name suggested, RED prevents buffer overflow by early detecting build-

ing up of queue. Once the average queue length exceeds a threshold, it sends signal

back to the sender by means of probabilistically dropping or marking, such as Ex-

plicit Congestion Notification (ECN) [4], packets. The sender then decreases the

sending rate after receiving the signal and thus relieves congestion condition. Fur-

3

thermore, when RED decides to drops (or marks) packets, it would randomly choose

one instead of the last one, thus, it could keep all flows from synchronization phe-

nomenon,

In [5, 6], May et al. studied RED’s performance based on their theoretical

analysis and questioned the deployment of RED. However, their analysis didn’t

take TCP’s control mechanism into account. However, TCP adjusts its sending

rate by taking packet drop or explicit notification, such as ECN, as its feedback.

Simply modeling input rate pattern as Poisson, Batch Poisson or on-off model does

not reflect the reality. RED has been suggested to be deployed in the Internet [7],

there are already some products implementing RED or it’s variants, e.g., Cisco’s

Weighted Random Early Detection (WRED).

RED uses exponential weighted moving average (EWMA) to maintain an av-

erage queue length (qavg) instead of maintaining instantaneous queue length. For

brevity, we also use ‘queue length’ to denote ‘average queue length’. EWMA acts

as a low-pass filter to gather long-term trend without influence of short-term fluctu-

ation. If the average queue length is lower than a minimum threshold (minth), RED

allows all incoming packets into the queue; if queue length rise over minth but still

below maximum threshold (maxth), RED uses average queue length to calculate the

drop probability and accordingly handles incoming packet with that drop probabil-

ity. If the queue length is higher than maxth, RED would drop any incoming packet

unless the parameter, gentle mode [8], has been set. If gentle mode is on, when

average queue length exceeds maximum threshold, another linear function will be

4

used to calculate drop probability

Most active queue management mechanisms adopt moving average to keep

queue length. On positive side, it could stabilize the system and provide better

indication of unbalance between input and output links. But it also delay the time to

detect major network condition changes, especially climbing of input rate. As [9]

shown, using smaller wq would make RED more stable, while smaller wq would

delay the convergence of new value. In addition, when bottleneck link with long

propagation delay, the sender would take long time to get the signal of congestion

from the network.

If the intermediate node calculate drop probability not just based on averaging

queue length, but also the rate of changing of averaging queue length. This should

speed up the reaction to network condition changing. In other words, we are inter-

esting in detecting input rate climbing, since that would make queue built up fast.

The change rate of queue length is a function of the difference between input out-

put rate. The output rate is determined by output link capacity, so the input rate

represents the change of queue length as long as the queue is not empty.

Among many enhancements to RED or variants of RED, Random Early Mark-

ing(REM) [10], Adaptive Random Early Detection(ARED) [11] and the new ARED [12]

proposed by Floyd et al. provide much better improvements and aim to improve de-

lay and packet loss ratio. The method proposed in this paper also aims to reduce

delay, delay jitter 1 and packet loss ratio. Since the new ARED are more robust than

1We adopt “the variance of delay” as the definition of delay jitter.

5

original ARED proposed by Feng et al., ARED would refer to the one proposed by

Floyd et al. in this paper.

This paper is organized as following, Sec 2 would give a brief introduction of

background information. Sec 3 describes the method proposed and the Sec 4 shows

the simulation results and discussion. At the end, conclusion and remarks would be

provided in Sec 5.

2 Background

TCP uses window-based control mechanism to prevent network from congestion.

Once a TCP sender recognizes the occurrence of congestion, it will shrink the con-

gestion window size so as to decrease the transmitting rate. The basis of control

over congestion window lies in the well-known principle, “Additive Increase, Mul-

tiplicative Decrease” (AIMD). In other words, a TCP sender would increase the

window size by one segment per round-trip time (RTT) if there is no signal re-

ceived, otherwise, it would shrink the window size to half of the current size.

TCP detects congestion mainly by the event of packet loss. Some enhancements

for TCP use other signal to detect packet loss. For example, fast retransmission

would treat receiving three duplicated acknowledgments (ACKs) as the signal of

packet loss so as to avoid waiting costly retransmission timeouts. However, these

enhancements is hardly applied in slow-start phase. In short, packet loss is an im-

portant signal for all TCP senders to react to avoid congestion in networks. And

6

RED relies solely on the reaction of TCP. However, since packet loss may result

in ‘timeout’ if TCP didn’t get enough window size to operate with fast retransmis-

sion/recovery. The proposal of Explicit Congestion Notification (ECN) provides a

proactive way to signal senders. If the sender, receiver as well as any intermediate

nodes along the path are ECN-enabled, the sender might be able to detect conges-

tion without any packet loss. Therefore, the combine of ECN and RED could obtain

better performance, especially in packet loss ratio.

In contrast with TCP congestion control mechanism, traditional intermediate

nodes were not involved much in congestion control. A FIFO queue are used to

store packets when unbalance of input and output rate of a link occurred. Simple

drop-tail discipline are used to manage the FIFO queue; accepting the incoming

packet and putting into the tail of queue when space is available, otherwise, drop-

ping the incoming packets until there is space. Drop-tail is simple but it could cause

so-called TCP synchronization phenomenon in which several TCP senders send

packets and backoff simultaneously, eventually degrading the performance. That’s

because of the bursty characteristics of TCP traffic, consecutive packets could be

dropped once the queue is full.

RED aims to eliminate these drawbacks mentioned above: preventing the queue

from full by early detect, preventing TCP senders from synchronous behavior by

randomly dropping/marking. For early detection, RED set two thresholds to decide

the level of congestion situation.

ARED uses dynamic maxp based on the position of average queue length so as

7

to try to maintain the average queue length in a predefined position. REM use a

different way, called price function, to calculate drop/mark probability. Both mech-

anisms works fine in most situation; their calculation probability only rely on aver-

age queue length, so we could expect the inefficiency to link with long propagation

delay.

3 Method Proposed

The basic idea behind the proposed method, Rate-Aware Random Early Detection

(RARED for short), is as follows: The aggregated input rate could be observed

in intermediate nodes, and it could provide more precise information than queue

occupancy. RARED detects the change of input rate, in particular, the climbing of

input rate, and then handle incoming packets with another drop probability.

As mentioned above, A TCP sender would increase congestion window size if it

doesn’t receive any signal from network. But the moving average procedure would

delay the change of queue length in RED. When RED finds queue occupancy is

raising to high level so as to trigger it to drop/mark packets with higher drop prob-

ability, most senders has transmitted packets over their deserved share. RARED

prevents this situation by observing the change of input rate. By earlier inform-

ing senders, intermediate nodes could decrease packet drop rate. In other words,

RARED informs senders strongly by dropping packets with higher drop probability

at the time of input rate climbing, it can avoid dropping a number of packets later.

8

Moreover, because RARED earlier informs senders at the time of input rate

changing, queue occupancy would be more stable; and therefore delay jitter would

be decreased. Keeping queue occupancy small also decrease end-to-end delay, since

queuing delay dominates the end-to-end delay in most environments.

We calculate drop probability with two formulas according to two different con-

ditions. We call one condition “input rate climbing” and the other “unchanged.”

RARED determines which condition is by comparing changing rate of average

queue length to a given threshold slopeth. Fig. 1 shows RARED algorithm, maxr
p is

the maximum drop probability used in “rate climbing” condition. As we evaluated,

maxr
p doesn’t affect the performance once it is greater than 0.8.

4 Simulation Results

We implemented the proposed scheme in the ns-2 network simulator [13] to evalu-

ate the improvement. The network topology is a simple dumbbell as Fig. 2 shown

and the queue size of bottleneck link is 30 packets. Two FTP sessions randomly

start in between 0 to 0.1 second and last to the end of simulation, i.e. 40 seconds. In

the middle of simulation another m FTP sessions would randomly start (in between

20 and 20.1 seconds) and last to the end, which is used to simulate the change of net-

work condition. The range of m is from 1 to 15. There are one FTP session run over

entire simulation to simulate reverse path traffic, which might cause ACK packets

loss as well as ACK compression. Besides, there are 20 Web sessions running from

9

begin to the end of simulation on 10 pairs of client and server.

TCP Reno is used for all simulation, the window size is 24 packets and with

ECN enabled. The mean packet size is 1000 for both TCP and all queue manage-

ment methods. The queue management methods evaluated includes RED, REM,

ARED and RARED and all with ECN turned on. Parameters used for RED is

maxth = 15, minth = 5, maxp = 0.1 , wq = 0.0019 and with gentle mode on [14].

For REM, φ = 1.001, γ = 0.001 and b∗ = 20. We use the default values in ns-

2 for ARED. The slope threshold (slopeth) and maxr
p for RARED are 20 and 0.8

respectively.

Every simulation result shown in the figure is the average value and 95% confi-

dence interval obtained by performing each simulation ten times.

From Fig. 3, 4 and 5, RARED outperforms other schemes. In other words, by

early informing the sender the changing of network condition could prevent the

sender from sending too many packets. The queue length could be more steady and

less packets would be dropped; therefore, delay, delay jitter and packet loss ratio

could be improved. Fig. 6 shows the throughput of all flows, RARED could keep

the same throughput as others.

5 Conclusion

We have shown the improvement of the proposed method with simulation under the

condition of long link delay. When the network with short link delay , the perfor-

10

mance of proposed method is the same as ARED, which we didn’t show on this

paper due to page limit. In addition to improving performance in terms of delay,

delay jitter and packet loss ratio, the method provides network administrators a way

to control the service delivered; i.e. tuning the slope threshold. A lower threshold

could effectively elevate the performance against to high variation of network con-

dition, but it comes with the price of less link utilization and high possibility of

fluctuation.

In the future work, a mechanism to tune slope threshold automatically, based on

the characteristics of link and the dynamics of network condition, would be inves-

tigated. We will also seek the possibility of solving the problem of non-responsible

traffic by this methods.

6 Acknowledgment

This work was supported by the National Science Council Grant No. NSC-91-2213-

E-001-026.

References

[1] P. Gevros, J. Crowcroft, P. Kirstein, and S. Bhatti, “Congestion control mech-

anisms and the best effort service model,” IEEE Network, vol. 15, no. 3, pp.

16–26, May 2001.

11

[2] S. Floyd, “A report on recent developments in tcp congestion control,” IEEE

Communications Magazine, vol. 39, no. 4, pp. 84–90, Apr. 2001.

[3] S. Floyd and V. Jacobson, “Random early detection gateway for congestion

avoidance,” IEEE/ACM Transaction on Networking, vol. 1, no. 4, pp. 397–

413, Aug. 1993.

[4] K. K. Ramakrishnan and S. Floyd, “Proposal to add explicit congestion noti-

fication (ECN) to IP,” IETF Request for Comments, RFC 2481, Jan. 1999.

[5] M. May, J. Bolot, C. Diot, and B. Lyles, “Reasons not to deploy RED,” in

Seventh International Workshop on Quality of Service (IWQoS’99), Jun. 1999,

pp. 260–262.

[6] M. May, T. Bonald, and J. Bolot, “Analytic evaluation of RED performance,”

in Proceedings of the Conference on Computer Communications (IEEE IN-

FOCOM), vol. 3, Mar. 2000, pp. 1415–1424.

[7] B. Braden, D. Clark, and et al, “Recommendations on queue management

and congestion avoidance in the internet,” IETF Request for Comments, RFC

2039, Apr. 1998.

[8] S. Floyd, “Recommandation on using the “gentle ” variant of RED,” [Online]

Available http://www.icir.org/floyd/red/gentle.html, Mar. 2000.

[9] W. Wu, Y. Ren, and X. Shan, “Stability analysis on active queue management

algorithms in routers,” in Ninth International Symposium on Modeling, Analy-

12

sis and Simulation of Computer and Telecommunication Systems, Aug. 2001,

pp. 125–132.

[10] S. Athuraliya, V. H. Li, S. H. Low, and Q. Yin, “REM: Active queue manage-

ment,” IEEE Network, vol. 15, no. 3, pp. 48–53, May 2001.

[11] W. Feng, D. Kandlur, D. Saha, and K. Shin, “A self-configuring RED gate-

way,” in Proceedings of the Conference on Computer Communications (IEEE

IN FOCOM), vol. 3, Mar. 1999, pp. 1320–1328.

[12] S. Floyd, R. Gummadi, and S. Shenker, “Adaptive red: An algorithm for in-

creasing the robustness of red’s active queue management,” [Online] Available

http://www.icir.org/floyd/papers.html, Aug. 2001.

[13] “ns (network simulator),” [Online] Available http://www.isi.edu/nsnam/ns,

1995.

[14] S. Floyd, “RED: Discussion of setting parameters,” Nov. 1997. [Online].

Available: http://www.icir.org/floyd/REDparameters.txt

13

Initialization:

qi← 0

ti← current time()

for each packet arrival:

qi← qi+1

if (qi+1 exceeds minth) {

if (qi+1−qi > slopeth(currentt ime()− ti)) {

pd ← maxr
p

} else {

/* pa use the same formula as in RED */

pd ← pa

}

}

ti← current time()

Variables:

qi+1: average queue occupancy (current sample)

qi: average queue occupancy (previous sample)

ti: previous sampling time

current time(): function which return current time

maxr
p: maximum drop probability used in input rate climbing

pd : drop probability used to handle the incoming packet

Figure 1: RARED algorithm14

Rn

S1

S2

S3

R1

R2

R3Gs Gr
10Mbps 1.5 Mbps

15 ms

10Mbps

15 ms70 ms

Sn

Figure 2: Simulation Network Topology

 120

 140

 160

 180

 200

 220

 240

 260

 0 2 4 6 8 10 12 14 16

M
ea

n
D

el
ay

 (
m

s)

Number of TCP sesssion

End-to-End Delay

RED
ARED
REM

RARED

Figure 3: End-to-end mean delay

 0

 50000

 100000

 150000

 200000

 250000

 0 2 4 6 8 10 12 14 16

D
el

ay
 J

itt
er

 (
m

s^
2)

Number of TCP sesssion

Delay Jitter

RED
ARED
REM

RARED

Figure 4: Variance of end-to-end delay

15

 0

 1

 2

 3

 4

 5

 6

 0 2 4 6 8 10 12 14 16

P
ac

ke
t L

os
s

R
at

io
 (

%
)

Number of TCP sesssion

Packet Loss Ratio

RED
ARED
REM

RARED

Figure 5: Packet loss ratio

 0.8

 1

 1.2

 1.4

 1.6

 0 2 4 6 8 10 12 14 16

B
an

dw
id

th
 (

M
bp

s)

Number of TCP sesssion

Link Utilization

RED
ARED
REM

RARED

Figure 6: Link utilization

16

