
 
 
 
 TR-IIS-05-015 

 
 
 

Design and Implementation of 
 

Domain-Based Proxy Prefetching 

 
 

  
 
 
 
 

 
 
 

Ray-I Chang, Jan-Ming Ho 
 
 
 
 
 

 
 

 

 

 

 

 

 

 

 

 

 
 
 

 
 

 
 

September 2005  ||  Technical Report No. TR-IIS-05-015 
http://www.iis.sinica.edu.tw/LIB/TechReport/tr2005/tr05.html  

 



1

Design and Implementation of Domain-Based Proxy Prefetching  

Ray-I Chang 

Department of Engineering Science 

National Taiwan University

Jan-Ming Ho 

Institute of Information Science 

Academia Sinica 

Abstract

Users are usually interested in some specific domains while surfing the Internet.  

Based on such domain-preferential browse-behavior, the Domain-Top (DT) proxy 

prefetching method is proposed.  DT uses the popular pages in the same popular 

domain to model users’ future demands.  If there is a request for any one of the pages 

in the popular domain, the popular pages in the same domain are considered as its 

future demands and will be prefetched.  The development of DT prefetching is based 

on a hypothesis that the browse-behavior is always domain-preferential.  However, 

clients may explore the Internet aimlessly and will aceess different domains in the 

near future.  Analyzing proxy logs without considering diverse browse-behavior may 

acquire wrong anticipation in prefetching.  This paper proposes the DTC (DT 

prefetching with Classification) method that tries to improve DT prefetching by 

removing unreliable logs.  DTC adopts the concept of entropy to discriminate the 

browse-behavior from "domain mode" and "exploratory mode".  Only access logs in 

domain mode are considered in calculating the popular domains.  Different from DT 

that considers a constant number of popular pages in prefetching, we ssign each 

domain a suitable number of popular pages.  Experiments on real traces show that 



2

the proposed DTC method can achieve higher hit ratio than that of the DT method.  

As DTC utilizes only the historical logs to offline decide the popular pages and the 

popular domains for prefetching, only few function modules on the present proxy 

need to be revised.  It imposes small burden and can be easily implemented in Squid 

-- the most famous open source proxy server. 

Keywords:  

proxy caching, web prefetching, open source software 

2005/9/14



3

1.  INTRODUCTION 

Due to the exponential growth of network traffic, users bear significant latency 

in surfing the Internet.  A lot of time is wasted to wait the requested web pages to 

come up on screen.  The way to improve the performance for accessing request 

pages become one of the hottest research topics in the Internet community.  In past 

years, researchers have dedicated considerable efforts to address this challenging 

problem [2], [16].  Among these techniques proposed, proxy caching is the 

best-known one.  Caching pages on local proxies can significantly decrease the 

number of requests sent to servers [14].  Therefore, both the Internet traffic and the 

access latency are reduced.  Define the hit ratio, a common performance 

measurement of cache, as the fraction of all data reads which are satisfied from the 

cache.  The hit ratio of a proxy is increasing as its cache size increases.  Since the 

cache size is limited in a proxy, the hit ratio obtained depends on the request 

repetitiveness of pages cached.  Traditional proxy caches the pages that are just 

demanded only.  As the trend of browse-behavior is not well thought-out, the 

caching scheme may not perform as well as desired [1].  To resolve this drawback, 

the technique of prefetching is investigated to predict the browse-behavior of clients 

and to pre-cache their request pages.  

Proxy prefetching deduces clients' future requests and gets those pages into the 

cache before an explicit request is made for them [12].  Usually, users' future 

demands were predicted by their historical access pattern.  An additional data 

structure (tree or link-list) is applied to model the access frequency of pages [11], [13].  

When a client request is sent, its future demands are predicted and prefetched by 

following this data structure.  Then, if these pages are requested in the near future, 

they will not need to be accessed from the remote server.  In conventional 

approaches (either the Top-10 approach [11] or the Path Profiles approach [13]), only 

the access frequencies of individual pages are considered.  However, in real cases, 

users are usually interested in some specific domains and will browse more pages on 

the same domains.  Therefore, users’ demands in the near future can be successfully 

predicted by the popular pages in the same popular domain.  To consider such 

domain-preferential attribute of browse-behavior, the Domain-Top (DT) method [14] 



4

is proposed to consider the domain a page belongs to, rather than the page itself.  By 

accumulating clients' access domains and pages, the DT method first identifies the 

popular domains that are requested most frequently.  Then, in each popular domain, 

it selects a constant number of popular pages that are demanded most frequently.  

The collections of domains and their pages are applied to make prediction.  If one of 

the popular pages is requested, the related popular pages in the same popular domain 

are prefetched.  Otherwise, the general caching mechanism is applied.   

In the DT method, given a constant size of cache, the request repetitiveness of 

domains and pages prefetched would affect its hit ratio.  By tracking the cache 

replacement policy, a domain or page that is good for prefetching should be requested 

repetitively within a certain period.  However, in the DT method, domains and pages 

of the entire access patterns (within the whole day, not a certain period) are 

accumulated directly.  Notably, the development of DT prefetching is based on the 

hypothesis that the clients considered are orderly and domain-preferential.  But some 

clients in real cases may explore the Internet aimlessly and there is no rule to guess 

which domains or even pages they will access in the near future.  To analyze these 

information for prefetching may acquire wrong anticipation.  As the DT method 

does not take the reliability of browse-behavior into consideration, it may not attain 

the effective results but wastes the extra bandwidth.  In this paper, we consider the 

classification of browse-behavior in DT prefetching to resolve this drawback.  

Moreover, our DTC (DT prefetching with Classification) method tries to provide 

suitable numbers of prefetching pages for different domains.  For example, a popular 

domain with many popular pages may require more pages in prefetching.  It is 

different from the DT method that uses a constant number of pages, always 8 pages, 

in prefetching. 

DTC adopts the concept of entropy to differentiate the reliability of 

browse-behavior.  Given a clickstream of browsing domains and pages, it uses a 

sliding window to calculate the entropy of access logs in a certain period of time.  

Then, based on its entropy, we discriminate this period of browse-behavior from 

"domain mode" and "exploratory mode".  When a clickstream belongs to the domain 

mode, the client prefers the specific domains and it usually has high reliability in 

prefetching.  However, when clients are in the exploratory mode, it is more difficult 



5

to guess what will be accessed next.  Therefore, the accuracy of prefetching is low 

and the price to be paid in terms of extra bandwidth is high.  Different from the DT 

method, our DTC method considers only access logs with domain-preferential 

attribute to acquire more precise browse-behavior.  It ignores unreliable logs in 

calculating the popular domains.  Additionally, this browse-behavior model is 

applied to assign suitable numbers of prefetching pages for domains with different 

degrees of popularity.  Experiments on real traces show that the proposed DTC 

method can help proxy to predict future requests efficiently.  As DTC utilizes the 

historical logs to offline calculate the top domains and pages, only few functions need 

to be revised on the present proxy server.  It imposes really small burden and can be 

easily added into Squid -- the most famous open source proxy server.   



6

2. RELATED WORKS 

The fast growth of Internet services introduces a huge amount of network traffic.  

It leads serious performance degradation in terms of user latency on the Internet.  

Several studies [1], [3], [7], [8], [10] have been conducted on the utilization of proxy 

servers to cache pages on local.  Since the cache space is limited, the space usage 

should be suspiciously managed to improve its hit ratio.  For example, when a new 

page arrives, the proxy server should decide which page(s) is purged to store the new 

one if the cache space is insufficient.  Nowadays, a proxy server usually follows the 

LRU (Least Recently Used) replacement policy [18] to remove the cached pages that 

are unlikely to be accessed in the near future.  If these cached pages are requested in 

the near future, they will not need to be accessed from the remote server.  Therefore, 

the network resource consumed as well as the access latency perceived can be 

reduced.  However, as traditional proxy servers cache only web pages that are just 

demanded, studies have showed that even an ideal cache with infinite space would 

achieve a hit ratio of 40%-50% only [8].   

One way to further increase the cache hit ratio is to anticipate clients’ future 

requests and prefetch them into a local cache.  The technique relies on the prediction 

table that is made from the historical access patterns of clients.  Then, proactively 

preloads web pages into the cache to facilitate near-future accesses [18].  In general, 

the prefetching scheme can be applied in various environments.  The most common 

case is between proxies and web servers.  Kroeger [8] has shown that a proxy with 

both caching and prefetching schemes could provide at best a 60% latency reduction. 

With the local proxy caching alone, it could reduce latency at best by 26% only. 

Based on the information applied in the prediction tables, conventional 

prefetching schemes can be classified into two kinds.  One is to consider the 

individual pages that accessed very frequently.  The other is to prefetch the 

interrelated pages that have high correlation.  A sequence of requests can be viewed 

as a path.  In the Path-Profiles (PP) approach [13], the profiles of clients’ access 

paths are applied to predict their future requests.  It bases on the complex probability 

to measure the correlation of web pages.  Then, a tree structure is applied to model 

this access relation for every client.  To predict the future path, a client’s current path 



7

is passed and is matched with the tree.  Based on a tree of the relationships of web 

pages, the PP approach can predict the future requests more accurately.  However, it 

needs a large storage space and more computation time to maintain the tree structure.  

In addition, it was designed to update the tree structure for each coming request.  It is 

so expensive and so difficult for implementing in a real proxy system.  The Top-10 

(TT) approach [11], which adopted popularity-based predictions, uses historical 

access patterns to measure the access frequency of every individual page.  It 

calculates a list of 10 most popular pages as the prediction table.  When a request is 

sent to a server, the proxy will prefetch the top-10 popular pages of server.  The TT 

approach is simple and easy-to-calculated.  However, it is too simple to have a 

significant improvement.  Moreover, current servers are not designed to calculate 

any list for popular pages. 

Notably, in real cases, users usually access the pages in a specific domain.  For 

example, when the period of Olympic Games, user may browse many pages in the 

same domain within a certain time and will request more pages in the future.  If the 

proxy prefetches these pages in advance, the prefetching schema can further reduce 

the user access latency.  To deal with this domain-preferential situation, Wong and 

Yeung [17] propose the Site-Based approach.  They collect the top-domain (called 

hot-site in [17]) list from a modified browser which repeatly checks the request of 

current user.  If the requested domain appears in the list, the browser will forward 

this request to the proxy.  Otherwise, it bypasses the proxy and retrieves the page 

from the corresponding remote Web server directly.  Only the requests of the 

top-domain can use the proxy.  Based on the similar concept, the Domain-Top (DT) 

method [14] has been proposed for prefetching.  Usually, clients are grouped to have 

similar characteristics in surfing webs and may take place in some specific domains.  

The DT algorithm classifies the domains by clients’ historical profiles and finds the 

domains that are requested frequently, called top-domains.  Then, proxy selects the 

constant numbers of top-pages (called top-documents in [14]) that are demanded most 

frequently in each top-domain.  Finally, top-domains and top-pages are collected to 

make a simple prediction table. 

A trace-driven simulation with logs gathered from a proxy server in KAIST 

between Feb. 1999 and Apr. 1999 (about 460000 requests) is applied to examine the 



8

DT method.  Comparing by the hit ratio obtained with Squid, the improvements of 

the DT method are ranged from 20% to 450% for different days.  However, it 

considers only 40 clients in the same department.  They may have the same 

navigation strategy.  After analyzing millions of access patterns, Cunha and Jaccoud 

[5] found two different kinds of navigation strategies of clients.  One is the 

‘surfering user’ who is more interested in exploring the cyberspace and always visits 

the fresh and new pages.  The other is the ‘conservative user’ who is more concerned 

with exploring pages in a certain domain.  The prefetching scheme is effective only 

if the navigation strategies of clients are correctly predicted.  In the DT method, the 

entire access patterns are directly accumulated to decide the popular domains and 

pages.  As the incredibility of clients’ browse-behavior is not handled, it may make 

wrong prefetching and waste extra network bandwidth and cache storage.  In this 

paper, we propose the DTC (DT prefetching with Classification) method, which 

considers the classification of browse-behavior in DT prefetching, to resolve these 

drawbacks.  Moreover, different from the constant number of top-pages applied in 

DT, we base on the popularity of different domains to dynamically determine the 

number of top-pages.  The algorithm is simplicity and imposes small burden on the 

proxy. 



9

3. PREFETCHING BY OUR DTC METHOD 

In a general web environment, the characteristic of clients’ access patterns are 

varying.  This variation must be considered in prefetching.  How to accurately 

distinguish the browse-behavior from input requests is a very important problem.  

Like DT, our DTC method calculates clients’ requests to decide popular domains and 

popular pages.  Figure 1 shows the architecture of the system.  The preprocessing 

module and the analyzing module cope with the situations mentioned above for 

deciding popular domains and popular pages.  They are off-line processes and only 

work while the proxy server is in leisure periods.  The third component, the on-line 

prefetching module, decides whether a page should be prefetched or not.   

When a client accesses web pages through a proxy server, the request 

information will be stored in the proxy log trace.  The log provides, for each HTTP 

request, the time of the request, the user’s IP address, the requested URL and Web 

server, and the referring URL.  It is a historical trace of browse-behavior and can be 

applied to predict client’s future requests.  Notably, there may have two categories of 

web pages, static pages and dynamic pages.  A dynamic page created by a web 

server when the page is requested (e.g., .cgi, .asp and .php scripts) is not suitable to be 

cached or prefetched.  Therefore, this kind of information must be filtered out before 

predicting client’s future requests.   

Preprocessing 

Module Users’ 

Clickstreams 

Proxy Server

Analyzing Module 

Request

response

User 

User Logs 

File 

Prefetching 

Module

Prediction Table

Figure 1. System Architecture. 



10

Observing the log data, we need to know which client requested which page on 

what time called clickstreams.  Table 1 presents a sample clickstream.  The 

alphabet “T” indicates the request time.  “W” means the request domain (website), 

and “P” is the request page.  The suffix number shows the sequence of request. 

The task of analyzing module is to make the Top-List.  The list is composed of 

constant numbers of Top-Domains and variable numbers of Top-Pages.  

Top-Domains list store the most popular n domains.  The number n is a constant 

number depend on situation of proxy.  There are variable numbers of popular pages 

in each domain rely on the degree of popularity of domain.  Accordingly, the first 

step is to calculate the ranking of domain.  Early research [14] calculates the 

popularity of domains using whole log trace.  However, as mentioned above, there 

are two kinds of browse-behavior on Internet.  One group navigate the web pages 

aimlessly, called exploratory mode.   The other, called domain mode, explores the 

pages in a certain domain.  Browse-behavior in exploratory mode is incredible and 

difficult to predict.  It violates the prefetching assumption that most browse-behavior 

has rules and could be forecasted.  Hence, the clients’ requests in exploratory mode 

should be removed to raise the accuracy of predictable table.  

We propose the concept of entropy to differentiate the reliability of 

browse-behavior.  In another word, the distribution of domains on each client’s 

clickstream must be considered.  We use the following entropy formula:  

nlog
1

log)(
n

i
iPiPXE

where n is the number of domains that the user browsed in a certain period, variable i

Table 1. Users’ Clickstreams. 

Users Clickstreams 

U1 {T1,W2,P3}{T2,W3,P1}{T5,W1,P1}{T11,W1,P3}

U2 {T3,W2,P2}{T4,W2,P3}

U3 {T8,W7,P3}{T9,W1,P3}{T13,W2,P1}



11 

indicates i
th

 domain and Pi shows the probability that client navigated the domain i.

The higher entropy means the higher scatter of domains.  We suggest a threshold 

Emax, if the entropy higher than the threshold these clickstreams in the certain period 

will be withdraw.  

When we calculate the entropy, the other important issue is how to proper 

identify the individual user.  It is inadequate to use IP address alone.  Our research 

combines the sliding windows with IP address to estimate the entropy of clickstreams 

in a certain period.  We divide every client’s clickstreams into several sessions 

depending on sliding windows.  To calculate the entropy of every session and 

eliminate sessions that their entropy higher than threshold.  Finally, we obtain the 

precise ranking of domains by its access times.  After the Top-Domains were created, 

we determine the popular pages (Top-Pages) in each domain.  In the process of 

making the Top-List, the number of domains and pages in each domain must be 

considered.  The previous research [14] used the constant number of pages in each 

domain.  However, the degree of popularity of each domain is different, the constant 

number lacks the flexibility and cannot reflect the real clients’ interests.  Therefore, 

the DTC method adopts the variable number depending on the popularity of domain.  

The number of pages in each domain is defined by:  

2

PG
SS

2

PG
DNN

size
DN

1x

xx

size
sizex

size

where DNsize is the number of Top-Domains.  PGsize is a constant number and Sx is 

the frequency that domain X was requested by client in a certain period.  Top-List is 

a two-dimension list as shown in Figure 2. 



12

Finally, we investigate two questions.  First, how often a new Top-List should 

be released.  The time interval should neither be too long nor too short.  We dissect 

several log files and find that for most log traces the best interval is one day.  And 

second question is when to rebuild the Top-List.  In measuring access numbers of 

requests by time line, we can find that in the morning, there are few requests to the 

server.  We use this period for making the predictable table.  We generate the 

Top-List when proxy is not busy.  After Top-List is completed, prefetching engine 

can determine what to prefetch.  Though additional burden imposes on the proxy, it 

is so trivial in this period. 

Prefetching module is an on-line process.  The function is very simple.  While 

client requests a page belongs to a Top-Domain, then the module prefetch all pages in 

same domain from remote server automatically in advance.  The premise of 

prefetching is most clients access one page in a certain domain, i.e. there is high 

possibility to request other pages in same domain.  And popularity domains and 

pages have the more high possibility to be request.  Hence, Top-List store the most 

popular domains and pages in each popular domain.  It can reduce the user latency 

while client requests other pages in the Top-List.  Figure 3 shows the prefetching 

flow. 

Domain1
P1 P2 P3 P4 P5 P6

DomainN
P1 P2 P3 P4

Domain2
P1 P2 P3 P4 P5 P6

P7 P8

P7

…

Figure 2. The structure of Top-List. 



13

Client request

In Cache?

Prefetching all 

Top-Pages in the 

Top-Domain from 

remote server if 

pages do not exist in 

cache 

Store in Cache 

Generally Remote 

Request 

 Top-Lists? 

Response page

Figure 3. The prefetching flow. 



14

4. EXPERIMENT RESULTS 

This section presents trace-drive simulations based on real dataset to examine the 

performance obtained.  Table 2 shows the detailed trace information.  The traces 

are gathered from a proxy server of the computer center of NCU (National Central 

University) (http://proxy.ncu.edu.tw, port 3128).  The time period is from May 10, 

2004, to May 29, 2004.  There are more than 27,502,000 requests and the total 

number of clients is about 36,100.  We can find the amount of requests and clients in 

weekend is fewer than weekdays.  And there are fewer information in the last week 

since it is the week of graduation examination in NCU. 

Table 2. Traces Information from May. 10, 2004 to May. 29, 2004 

Date 0510 

Mon. 

0511 

Tues. 

0512 

Wed. 

0513 

Thur. 

0514 

Fri.

0515 

Sat.

0516 

Sun.

0517 

Mon. 

0518 

Tues. 

0519 

Wed. 

Clients 2468 2406 2429 2317 2101 1259 1383 2210 2234 2260 

Requests 2181588 2099091 1740685 1959941 1625226 1182322 1020683 1885906 1862264 2034726

Date 0520 

Thur. 

0521 

Fri.

0522 

Sat.

0523 

Sun.

0524 

Mon. 

0525 

Tues. 

0526 

Wed. 

0527 

Thur. 

0528 

Fri.

0529 

Sat.

Clients 2291 2072 1179 1007 1531 1363 1505 1609 1579 946 

Requests 1940849 1159441 350383 721406 624886 875999 1203659 1291234 1116384 625507

Our comparison focuses on the DT method and our DTC method.  The 

performance measures are the hit ratio and the prefetching effect [5], [11], [14].  The 

hit ratio is the bnumber of requests that hit in cache as related to the total number of 

requests.

requestsofnumber total the

cacheinhit that requestsofnumberthe
ratioHit



15

The prefetching effect is the number of prefetching pages that hit in cache divided by 

the total number of requests that hit in cache. 

 Before evaluating the performance, some parameters must be determinated first.  

In this paper, we use several log files to analyze what values of these parameters 

would be more appropriate.  As mentioned above, the entropy threshold influences 

the hit ratio and the prefetching effect.  Observing the figure, a threshold higher than 

0.6 may not filter the surfering clients.  If the threshold is lower than 0.6, the 

creditable domains may be eliminated.  In this paper, we set the value of threshold as 

0.6 since it can obtain better hit ratio and prefetching effect.  Another parameters are 

the sliding window size and the overlay size.  From the obtained results, we set the 

window size as 8 and the overlay size as (1/4 * window size).  Moreover, we 

consider the number of Top-Domains and Pages in each domain.  Experiment shows 

when keeps 24 Top-Domains can obtain best performance.  In order to evaluate 

fairly, the number of Top-Domain is set 20.  The number of Top-Pages is 8 in the DT 

method.  Thus the total amount of Top-Pages no more than max number of 

Top-Domains multiplies by eight in our DTC method.  In this case, for example, is 

20 * 8, and the number of Top-Pages in each domain is four least.  In addition, we 

must take account of the time interval for the Top-List calculation.  It should be 

neither too large, nor too small.  Previous researches show the one day is a better 

period [5], [14].  Accordingly, we calculate the Top-List in the morning, the spare 

time of proxy server, every day. 

Figure 4 presents the comparison of hit ratio between DT and DTC.  The 

statistics in Figure 4 report that the hit ratio of DTC method exceed the hit ratio of DT 

method in most traces.  However, Figure shows that Date 15 get very high hit ratio 

and Date 16 the hit ratio of DTC method is lower than DT method.  Why did the 

phenomenon occur?  We explain as follows. 

cacheinare that requestsofnumber totalthe

cacheinprefetchedare that requestsofnumberthe
EffectgPrefetchin



16

The Date 15 is Saturday and Date 16 is Sunday.  The possible reason is 

“weekend symptom.”  Generally, there are fewer students in the school while 

weekend.  Hence, the number of requests is relative low and the browse-behavior 

differs from weekdays.  Using the trace of one day ago to predict the user-behavior 

may observe dissimilar circumstances.  However, why the second weekend (Date 22 

and Date 23) shows more normal than first weekend?  We think the cause is the 

week is examination week of graduation.  In examination period, student usually 

search similar domain.  Since the diversity of browse-behavior on Web, various 

policies should be development in the future. 

In addition to hit ratio, another performance metrics we use in our experiment is 

“Prefetching Effect.”  It represents the “predictable ability” of one prefetching 

algorithm.  The higher this ratio is, the lower the client latency and the server load.  

Figure 5 compares this metric for the DT method and our algorithm.  The result 

shows that the DTC policies outperform DT.  Because our model removes requests 

that clients browse the Web in exploratory mode, these requests are incredibility and 

difficult to predict the browse-behavior.  Therefore, discriminating the 

browse-behavior accurately is important in prefetching algorithm.  And we can find 

the reselble “weekend symptom” in this evaluation. 

Figure 4. Comparison of hit ratio between DT and DTC. 



17

Figure 5. Comparison of prefetching effect between DT and DTC. 



18

5. CONCLUSION 

In this paper, a new proxy method called DTC is proposed to improve the hit 

ratio and the prefetching effect.  Different from the conventional DT method, DTC 

can handle highly changeable characteristics of web requests.  Using the concept of 

entropy to discriminate browse-behavior, the incredible information is removed 

before making the prediction.  It gets a more precise rules in proxy prefetching 

before pages are actually requested by clients.  Comparing with DT, our DTC 

algorithm can achieve both high hit ratio and high prefetching effect. Additionally, the 

applied scheme is simple and easy-to-calculating.  It is a lightweight design and can 

be implemented in real systems easily.   



19

REFERENCES

[1] M. Abrams, C.R. Standridge, G. Abdulla, S. Williams, and E.A. Fox, "Caching 

Proxies: Limitations and Potentials," In Proc. of 4th International World Wide 

Web Conference, pp.119-133, 1995.  

[2] G. Barish and K. Obraczka, "World Wide Web Caching: Trends and Techniques," 

IEEE Communications Magazine, 2000.  

[3] J. C. Bolot and P. Hoschka, “Performance Engineering of the World Wide Web,” 

In Proceedings of the Fifth International WWW Conference, 1996, Paris, France.  

[4] L. Brunie, J. Pierson, and D. Coquil, "Semantic collaborative web caching," the 

Third International Conference on Web Information Systems Engineering 

(WISE), pp.30-39, 2002. 

[5] X. Chen and X. Zhang, “A Popularity-Based Prediction Model for Web 

Prefetching,” IEEE Computer Society, Vol. 36(3), 2003. 

[6] C. R. Cunha and C. F. B. Jaccoud, "Determining WWW user's next access and its 

application to prefetching," In Proceedings of Second IEEE Symposium on 

Computers and Communications (ISCC'97), 1997. 

[7] S. Glassman, “ A Caching Relay for the World Wide Web,” In Proceedings of the 

First International WWW Conference, 1994.  

[8] T. M. Kroeger, D. D. E. Long, and J. C. Mogul, “Exploring the bounds of web 

latency reduction from caching and prefetching,” in Proceedings of the USENIX 

Symposium on Internet Technology and Systems, pp. 13-22, 1997. 

[9] R. Malpani, J. Lorch and D. Berge, “Making World Wide Web Caching Servers 

Cooperate,” In Proceedings of the Fourth International WWW Conference, 1995.  

[10] E. P. Markatos, “Main Memory Caching of Web Documents,” In Proceedings of 

the Fifth International WWW Conference, 1996, Paris, France.  

[11] E. P. Markatos and C. E. Chronaki, "A Top-10 Approach to Prefetching on the 

Web," Proceedings of INET’98, pp.276-290, 1998. 



20

[12] Nanopoulos, D. Katsaros and Y. Manolopoulos, "A Data Mining Algorithm for 

Generalized Web Prefetching," IEEE Transactions on Knowledge and Data 

Engineering, Vol. 15, No. 5, 2003. 

[13] S. Schechter, M. Krishnan, and M. D. Smith, "Using Path Predict HTTP 

Request," Seventh International World Wide Web Conference, 1998. 

[14] S. W. Shin, B. H. Seong, and D. Park, "Improving World-Wide-Web 

Performance Using Domain-Top approach to Prefetching," the Fourth 

International Conference/Exhibition on High Performance Computing in the 

Asia-Pacific Region, Vol. 2, pp.738-746, 2000. 

[15] N. Swaminathan and S.V. Raghavan, "Intelligent Prefetch in WWW Using Client 

Behavior Characterization," International Symposium on Modeling, Analysis and 

Simulation of Computer and Telecommunication Systems, pp.13-19, 2000. 

[16] J. Wang, "A survey of web caching schemes for the Internet," Computer 

Communication Review, Vol. 29, No. 5, pp. 36-46, 1999.  

[17] K. Y. Wong and K. H. Yeung, "Site-Based Approach to Web Cache Design," 

IEEE Internet Computing, Vol. 5, pp.28-34, 2001.  

[18] J. Xu, J. Liu, B. Li, and X. Jia, “Caching and Prefetching for Web Content 

Distribution,” IEEE Computing in Science and Engineering, Special Issue on 

Web Engineering, Vol. 6(4), pp. 54-59, 2004. 


