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Abstract

The major disadvantage of existing watermarking methods is their limited resistance to extensive geometric

attacks. In addition, we have found that the weakness of multiple watermark embedding methods that were initially

designed to resist geometric attacks is their inability to withstand the watermark-estimation attacks (WEAs), leading

to reduce resistance to geometric attacks. In view of these facts, this paper proposes a robust image watermarking

scheme that can withstand geometric distortions and WEAs simultaneously. Our scheme is mainly composed of

two components: (i) mesh generation and embedding to resist geometric distortions; and (ii) construction of media

hash-based content-dependent watermark (CDW) to resist WEAs. Furthermore, we propose a false positive-oriented

watermark detection mechanism, which can be used to determine the existence of a watermark so as to achieve a

trade-off between correct detection and false detection. Extensive experimental results obtained using the standard

benchmark and WEAs, and comparisons with relevant watermarking methods confirm the excellent performance of

our method in improving robustness. To our knowledge, such a thorough evaluation has not been reported in the

literature before.
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I. INTRODUCTION

Digital watermarking has been recognized as a helpful technology for copyright protection, traitor tracing, and

authentication. No matter which kinds of applications are considered, robustness is a critical issue affecting the

practicability of the watermarking system. For example, we have found that content providers care very much

about whether their works can be protected in a robust way prior to distribution. In data hiding, robustness refers

to the capability of resistance to attacks that are used to destroy or remove hidden watermarks. In [26], attacks

were divided into four categories: (1) removal attacks; (2) geometric attacks; (3) cryptographic attacks; and (4)

protocol attacks. Among them, geometric attacks introduce synchronization errors in order to disable watermark

detection without having to remove hidden information or degrade the quality of the watermarked contents. More

importantly, geometric distortions are easy to realize without much effort. Therefore, motivated by the needs of

content providers and the lack of sufficient robustness, this study focused on the challenging issue of resisting

(extensive) geometric attacks. In this paper, signal processing related attacks, including removal attacks, geometric

attacks, and the copy attack (a kind of protocol attacks), are major concerns while security related attacks, including

cryptographic attacks and the ambiguity attack (a kind of protocol attacks) are left untouched since they represent

another important topic in digital watermarking.

The existing watermarking methods that are resistant to geometric attacks can be divided into three categories.

The first category includes those which embed a watermark into the geometric invariant domain. In [10], [16],

watermarking was conducted in the magnitude part of the Fourier-Mellin domain to exploit its affine invariance.

However, the Fourier-Mellin domain is inherently vulnerable to cropping and other local geometric distortions

(e.g., changes of the aspect ratio). In addition, resistance to removal attacks is limited because most of the FMT

information is contained in the phase instead of the magnitude part of the Fourier transformed domain. On the

other hand, the concept of moment normalization, which is conventionally used in computer vision and pattern

recognition, was employed [1], [13] to achieve geometric invariance. In [1], a watermark was claimed to exist if

the perturbation of the moment invariants was within a small tolerance. The major disadvantages include: (i) an

inability to preserve fidelity, i.e., the watermarked image will create contrast variations; and (ii) an inability to

tolerate any change of the aspect ratio or cropping. Similarly, our recent efforts [13] improved the transparency of

moment-based watermarking but still failed to resist attacks related to cropping because the lost contents lead to

changes of moments.

The methods belonging to the second category uses a template [17], [18] or insert a periodic watermark pattern

[9], [25] for the purpose of re-synchronization. This kind of prior information is also known as the pilot signal
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[15]. In [17], [18], templates were embedded in the DFT domain to generate the shape of local peaks, which can

be easily retrieved in the detection process to recover geometric parameters. On the other hand, the local peaks

can also be easily extracted by pirates in order to remove templates [7]. In [9], Kutter was first to propose a

watermarking scheme that can provide resistance to global geometrical distortions. The key step in this method

is the embedding of a self-reference watermark, which is prepared in advance as a specific structural pattern, for

the purpose of calibration. Kutter’s reference watermark is composed of nine peaks that are extracted by means

of an autocorrelation function and used to estimate the effects of geometrical attacks. Because the geometrical

transformations are inverted, the hidden watermark can be recovered. The main drawbacks are that the other eight

non-central peaks are inherently less robust to attacks, and the global watermark structure can be totally destroyed by

means of local geometric distortions. A more powerful approach [25] extends Kutter’s scheme through block-based

periodical placement of self-reference watermarks so that the Fourier magnitude spectrum of periodical watermarks

is composed of regular peaks distributed all over the image. This particular feature, i.e., a lattice of peaks, provides

the capability of recovering global/local geometrical distortions. Again, because the positioned periodical block-

based pilot signals inherently reveal peaks in the transformed domain, hints remain that a watermark estimation

attack (e.g., the collusion attack) can be used to efficiently destroy them [11].

The third category includes methods which employ “feature-based watermarking.” Feature points detected in

the original image are used to form local regions for embedding. At the detection end, the feature points are

expected to be robustly detected. Among the existing feature point extraction methods, the Harris detector [4] is

widely used in various applications. However, we have found that the Harris detector is still not robust enough to

be used in digital watermarking [2]. This is because the Harris detector is rotation and scaling-sensitive. In [23],

Mexican-Hat wavelet filtering was used for feature point extraction. Mexican-Hat wavelet filtering was implemented

in the frequency domain using FFT. Although 1-D FFT is widely used to implement 2-D FFT in order to improve

computational efficiency, this implementation may lead to another severe problem; i.e., the input coefficient of 1-D

FFT is quite different from the rotated version such that different 1-D FFT filters will lead to different filtering

results. This is mainly due to the fact that the asynchronization effect is propagated and coupled with the result

of Mexican-Hat wavelet filtering. In [22], the scale-space theory was applied for feature point extraction. Feature

points were determined through automatic scale selection and local extreme detection. For a chosen feature point, a

circular disk is formed and used for embedding in the Fourier domain. However, there are two major drawbacks in

[22]: (i) the embedding unit is a circular disk, which inherently limits the achievable robustness against geometric

attacks that preserve the aspect ratio (this was also noted by the authors); (ii) since embedding is conducted in the
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magnitude component of the Fourier domain, as noted in the above discussions of the first category of methods,

resistance to removal attacks is limited (this will be seen later in the comparison of experimental results).

After surveying the existing watermarking methods that provide a certain degree of robustness against geometric

distortions, we have observed that: (i) the methods in the first category are restricted to be affine invariant; (ii) the

pilot signals that are employed in the methods in the second category for the recovery of geometric parameters are

easily removed; and (iii) robust extraction of feature points plays a key role in the methods in the third category.

In particular, we find that Voloshynovskiy et al.’s scheme [25] was thoroughly verified by means of the standard

benchmark, Stirmark [19], [20], and possesses strong robustness. Thus, we can treat Voloshynovskiy et al.’s scheme

as a state-of-the-art, robust watermarking technology. However, as described previously, this method is vulnerable to

collusion, so initially embedded watermarks can be removed and the ability to resist extensive geometric attacks can

be lost. Furthermore, we are aware of a recent paper [15] in which Manuel et al. exhaustively analyzed pilot-based

synchronization algorithms and confirmed that pilot signals are easy to destroy. As a consequence, we do not adopt

the paradigm of pilot-based watermarking even though it exhibits promising robustness against geometric attacks.

Since the purpose of this paper is to propose an image watermarking scheme that can resist extensive geometric

attacks and the watermark estimation attacks [11] simultaneously, we adopt feature-based watermarking based on

the prerequisite that the robustness of feature point extraction can be enhanced. This selection is believed to be

more helpful for satisfying our goal since our mesh-based image hashing scheme [8] has been confirmed to be

quite resistant to two versions of Stirmark. Moreover, in our companion paper [11], we proposed a block-based

content-dependent watermarking scheme that combines our content-dependent watermark with the approach in [25]

to tolerate the watermark estimation attacks. However, the preset periodical regularity of a watermark pattern is

destroyed, thus, resistance to geometric distortions is lost because the content-dependent watermarks resulting from

all the image blocks are dissimilar. In order to further address this issue, we investigate mesh-based instead of

block-based watermarking in this paper.

In this paper, we propose to use the Gaussian kernel as the pre-processing filter to stabilize the feature points.

The Gaussian kernel is a circular and symmetric filter in that all the neighboring information of a pixel can be

equally used to filtering, leading to geometric-invariant filtering. In order to resist watermark-estimation attacks,

image hashing [8] is further extracted and combined with hidden watermarks to generate the media hash-based

Content-Dependent Watermark (CDW) [11]. CDW is able to resist the watermark estimation attacks because even

though pirates can estimate watermarks from meshes, they still cannot be successfully colluded to generate an

even more correct watermark that is to be removed. We also study how mesh-based watermarking can be achieved
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without causing perceptual quality degradation. In addition to robustness, due to the unique characteristic of multiple

mesh-based watermark embedding, we propose a false positive-oriented watermark detection mechanism to indicate

the presence/absence of a watermark. We investigate how to determine the existence of a watermark in a mesh

and in an image, respectively. In order to demonstrate the performance of our method in improving robustness, the

standard benchmark, Stirmark, and watermark estimation attacks (including the collusion and copy attacks) were

used to perform a thorough evaluation.

The remainder of this paper is organized as follows. In Sec. II, we describe two important issues, including robust

feature extraction and media hash-based content-dependent watermark, that are fundamental to our method. In Sec.

III, the proposed media hash-based content-dependent watermarking is described. We describe in detail how a trade-

off between transparency and robustness can be achieved. In Sec. IV, based on the characteristics of feature-based

watermarking methods, a false positive-oriented watermark detection mechanism is described to achieve a trade-off

between correct detection and false detection. Extensive experimental results together with robustness comparisons

with other feature-based methods are given in Sec. V to verify the performance of our scheme. Finally, conclusions

are drawn in Sec. VI.

II. ROBUST FEATURE EXTRACTION AND MEDIA HASH-BASED CONTENT-DEPENDENT

WATERMARK

Two issues concerning the proposed watermarking method, robust feature extraction and media hash-based

content-dependent watermark, will be discussed in this section. They play key roles in achieving the desired goal.

A. Robust Feature Extraction

Since our watermarking method is mesh-based, feature point extraction needs to be robust enough to approxi-

mately tolerate common filtering, compression, and geometric attacks for robust mesh generation. In our method,

Gaussian kernel filtering, local maximum determination, and scale determination are integrated for feature point

extraction.

1) Gaussian Kernel Filtering: Gaussian kernel filtering is a special case of scale-space filtering. In scale-space

filtering, an image is filtered by several filters of different sizes to generate multiple frequency responses. In

some applications, the filter size can be adaptive to different affine transformation environments. But in digital

watermarking, we only select a fixed filter size to generate one level scale-space for watermark embedding. This

benefits our watermark detection scheme in that only a small set of filters is required to achieve blind detection (as

will be described in Sec. III-B). Let I(x, y) be a cover image, and let the Gaussian kernel be defined as
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g(σ) =
1

2πσ2
exp(− x2+y2

2σ2 ), (1)

where σ is the standard deviation. The convolution of the Gaussian kernel and the cover image is defined as

L(x, y, σ) = g(σ) ∗ I(x, y). (2)

Because the Gaussian kernel is circular in shape, the resultant filtering response is rotation insensitive, which is

beneficial for obtaining geometric-invariant feature points.

2) Local maximum determination: The local maximum determination process is operated in the Gaussian kernel

filtered signal for feature point extraction. First, a maximum filter of size 3 × 3 is applied to L(x, y, σ) and is

expressed as

MF (x, y) = max
(xt,yt)∈(N8(L(x,y,σ))∪L(x,y,σ))

{L(xt, yt, σ)} , (3)

where N8(L(x, y, σ)) denotes the 8-neighborhood of L(x, y, σ). Next, the set of feature points is determined as

P = {(x, y)|MF (x, y) = L(x, y, σ)} , (4)

which means that a feature point at (x, y) satisfies that the filtering responses, MF (x, y) and L(x, y, σ), are equal.

In addition, the set of feature points, P , is used to form a set of meshes by means of the Delaunay tessellation. In

this paper, each mesh is a basic unit used for watermark embedding and extraction.

3) How Can We Choose σ?: When the Gaussian kernel is used as the feature point detector, it is important to

determine how many σ’s have to be used. If a larger σ is used, lower frequency (corresponding to larger scale)

information tends to be revealed. On the other hand, high frequency (smaller scale) information can be detected

when a smaller σ is used. Therefore, which σ should be used is an important issue. The selection of σ’s is also

related to the ability to deal with geometric attacks because if the σ’s do not properly match the characteristics of

geometrically attacked images, then the feature points will not be correctly detected.

These problems can be dealt with by observing the number of feature points across different σ’s (ranging from

2 to 5) for different image sizes (up to 512×512), as shown in Table I. Since at least 3 points are required to form

a mesh, we need to choose σ’s that can produce at least 3 feature points. Let σ s be the largest value that cannot

generate at least 3 feature points. In addition, the number of feature points cannot be so large as to yield small

meshes such that a watermark cannot be completely embedded. According to Table I, the value of σ d that can be
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effective for watermark embedding is set to σs − 3 (≥ 1), which is defined as a detection scale. For example, for

a 512 × 512 image, σd = 6 − 3 = 3 is adopted.

TABLE I

NUMBER OF DETECTED FEATURE POINTS AT DIFFERENT SCALES (σ’S) AND THE DETERMINED σs’S FOR THE IMAGE LENA OF

DIFFERENT SIZES.

image size σ = 2 σ = 3 σ = 4 σ = 5 σ = 6 σs

128 × 128 20 6 2 - - 4

256 × 256 55 18 6 2 - 5

512 × 512 224 55 19 6 2 6

B. Content-Dependent Watermark

Some researchers [2], [22], [23], [25] have proposed inserting multiple redundant watermarks into an image in

the hope that this will suffice to maintain resistance to geometric distortions as long as at least one watermark

exists. The common framework is that certain types of image units, such as blocks [25], meshes [2], or disks

[22], [23], are extracted as carriers for embedding. With this unique characteristic, we propose to treat each image

unit in an image like a frame in a video; in this way, collusion attacks can be equally applied to those image

watermarking methods that employ a multiple redundant watermark embedding strategy. Therefore, we argue that

once the hidden watermarks are successfully estimated by means of a collusion attack, the ability to resist geometric

distortions become weaker such that the false negative problem occurs. Of particular interest is the possible quality

improvement of attacked media data that can be achieved by means of collusion attack. In addition, copy attack

can also efficiently defeat a watermarking system by creating ambiguity problems. Since the common operation

involving in both collusion and copy attacks is watermark estimation, they are called watermark-estimation attacks

(WEAs) [11].

To withstand watermark-estimation attack, the key is to make the embedded watermarks different so that the

hidden watermark cannot be approximately estimated by means of collusion. To this end, we propose to embed

a media hash-based content-dependent watermark (CDW), which is composed of a watermark and a media hash.

Our analyses [11] show that CDW is able to resist both copy and collusion attacks. Here, the block-based content-

dependent watermark [11] is introduced. Each block of size LB×LB is divided into sub-blocks of size Lsub×Lsub,

and a block-pair relation is created by means of a secret key (the key is the same as that used to generate the

watermark). For a pair of Lsub × Lsub blocks, a hash bit, defined as the magnitude relationship between two AC
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coefficients, is represented as

MH(b) =

⎧⎪⎪⎨
⎪⎪⎩

1, if |fk(p1)| − |fl(p2)| ≥ 0;

0, otherwise,

where MH(·) is a hash bit in a hash sequence MH , and fk(p1) and fl(p2) are two AC coefficients at positions

p1 and p2 in Lsub × Lsub blocks k and l, respectively. Given a pair consisting of hash MH i and watermark W , a

media hash-based content-dependent watermark can be generated as

CDW = S(W,MH), (5)

where S(·) is a shuffling function, which is basically application-dependent and will be used to control the

combination of W and MH . Since media hashing is not the main theme of this paper, please refer [8] for more

details about robustness verification of our image hashing scheme. The signal CDW is the watermark that we want

to embed into a local region.

III. PROPOSED WATERMARKING METHOD

Basically, the proposed method is similar to the framework of mesh-based watermarking [2] proposed by Bas et

al.. However, there are many differences between these two methods. First, we have investigated some important

issues (described in Section 2) to improve the robustness. Second, we find from [2] that the watermark signal is

warped from the normalized domain to the spatial domain for embedding, while the extraction process is operated in

the normalized domain. This asymmetric embedding and extraction paradigm cannot efficiently achieve robustness.

However, in our proposed scheme, the watermark embedding and extraction processes are both performed in the

normalized domain. In addition, the modified coefficients in the normalized domain are warped to the spatial domain

to accomplish embedding. Therefore, a trade-off between transparency and robustness can be better achieved. Third,

we also propose a false positive-oriented watermark detection mechanism so that the trade-off between correct

detection and false detection can be more successfully guaranteed (see Sec. IV). In the following, the proposed

watermark embedding and extraction processes will be described.

A. Watermark Embedding

The watermark embedding process is outlined in Fig. 1. In this paper, the hidden watermark W is generated

with a secret key and is a bipolar sequence of length LW , i.e., W = {Wj}j=1,2,...,LW
with each Wj ∈ {−1,+1}.
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Original image

Mesh
generation

CDW
generation

Mesh-based
CDW

embedding

Stego image

Fig. 1. Block diagram of the embedding process.

1) Mesh Generation: The first step in mesh generation is to filter a cover image using Gaussian filtering, as

described in Sec. 2, so that a set of feature points P can be obtained. Next, the Delaunay tessellation is performed

using P to generate a set of meshes, M = {Mi}i=1,2,···,LM
, where LM denotes the number of meshes extracted

from a cover image. Each Mi is a basic unit used for watermark embedding and extraction.

2) Content-Depentent Watermark Generation: The content-dependent watermark generation process, including (i)

mesh normalization, (ii) media hash extraction, and (iii) hash-based content-dependent watermark, will be described

in the following.

a) Mesh Normalization: Before embedding is performed, each triangle mesh has to be normalized to obtain

a canonical form. Here, a mesh normalization process is performed to affine transform each extracted mesh M i to

obtain a right-angled isosceles triangle, which is called a normalized mesh, NM i. The goals are not only to extract

a fixed-length hash, but also to reduce the effect of image content shifting caused by the imperfect extraction of

feature points. If the watermark signals are embedded in the spatial domain, the shifting problem, even with slice

loss or pixel loss, may cause the watermark extraction process to fail. Therefore, the size of a normalized mesh

needs to be properly determined. Our empirical research has shown that if a larger region is warped into a small

region, which means that the warping process is a multiple-to-one pixel mapping, then one pixel in NM i represents

several pixels in Mi. Under this circumstance, fewer pixels in NMi will be affected by slice missing or shifting,

which implies that a small normalized mesh of small size is beneficial for achieving robustness. In this study, the

size of a normalized mesh is empirically found to be 48 × 48 for achieving a trade-off between transparency and

robustness (this choice will become clear in the next two paragraphs). Let NM = {NM i}i=1,2,···,LM
denote the

set of normalized meshes.

b) Mesh-based Hash Extraction: A mesh-based media hash, MH i, is extracted from each normalized mesh

NMi, as described in Sec. II-B. Since this paper investigates a mesh-based watermarking scheme, each normalized

mesh prior to hash extraction needs to be transformed into a block. Here, each normalized mesh is flipped and then
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the flipped mesh is padded with the original version to form a block. If we set LB = 48 and Lsub = 6, then the

length of a hash sequence is 64.

c) Media Hash-based Content-dependent Watermark: In this paper, the watermark length (LW ) is set to be

128 bits. Although the length of the media hash (MHi) is 64 bits, by repeating it two times, a media hash of

128 bits can be generated. Then, each media hash MH i and watermark W are combined (Eq. (5)) to generate the

content-dependent watermarks, i.e., CDW = {CDWi}i=1,2···LM
. Although only one watermark W is embedded

for a cover image, the principle behind CDW leads to different signals embedded in different meshes.

3) Arrangement of Watermark Bits for Embedding: Since the length of a content-dependent watermark is 128

and the size of a normalized mesh is (48 × 48)/2 = 1152, we propose to repeatedly embed the watermark to

enhance robustness, as shown in Fig. 2. It is not hard to see that the time of repetition is
⌊

1152
128

⌋
= 9. Let

R9CDW = {R9CDWi}i=1,2···LM
, where each element of CDWi is repeated 9 times to form R9CDWi. This

repeated embedding is very important for achieving better robustness, in particular when the mesh is (slightly)

perturbed because its constituent feature points are not exactly the same as the ones detected in the embedding

process. In other words, the feature extraction error and other numerical errors such as interpolation errors and

rounding errors will affect the watermark detection performance. In order to deal efficiently with these problems,

the repeated embedding of a watermark bit is performed [5], [11], [12], [21]. Recall that in [22] the authors

proposed to deal with this problem through locally searching (75 times) for the possibly correct feature point in

the neighborhood of the detected point.

In summary, it can be observed that the watermark’s length, the hash’s length, and the normalized mesh’s size

are all designed in a sophisticated way to satisfy the embedding purpose so that robustness can be better achieved.

...
...

1w

2w

3w

L
w

W
L

w
W

...

1w

3w

2w

Fig. 2. (left) The repeated watermark bits (each bit is repeated 9 times) are arranged and embedded in a normalized mesh (right).

4) Mesh-based Embedding: In order to maintain transparency after performing watermarking, we adopt the Noise

Visibility Function (NVF) [24], which is an image-dependent visual model. Content adaptive watermark embedding

is designed to insert watermarks into the cover image I(, ) to form a stego image I w(, ) as follows:
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Iw(x, y) = I(x, y) + (1 − NV F (x, y)) · wj · S + NV F (x, y) · wj · S1, (6)

where S and S1 denote the watermark strength, and wj is an element of a bipolar watermark signal. In [24], the

authors proposed to set S1 to 3 for most real world and computer generated images. As for S, it can be adjusted to

keep the PSNR higher than a certain value. In our method, S1 = 3 is adopted, and S is adjusted to keep the PSNRs

all at about 38 dB. Therefore, in our watermarking scheme, the watermark embedding process can be designed as

NMw
i (x, y) = NMi(x, y) + (1 − NV F (x, y)) · r9cdwij · S + NV F (x, y) · r9cdwij · S1, (7)

where r9cdwij denotes the jth watermark element of R9CDWi, which is embedded in NMi. Once the watermarked

normalized mesh NMw
i is obtained, the inverse normalization process is used to yield a watermarked mesh.

Although “direct inverse normalization” is intuitive, transparency may be degraded because blocking effects are

caused by the one-to-multiple pixel mapping. To deal with this problem, the difference between NM i and NMw
i ,

i.e., the second term on the right-hand side of Eq. (7), which is caused by watermarking in the normalized domain,

is inversely normalized to yield the difference M diff
i in the spatial domain. Hence, the watermarked mesh in the

spatial domain can be obtained as

Mw
i = Mi + Mdiff

i . (8)

Based on Eq. (8), the original high-frequency components of M i can be preserved to maintain transparency. Finally,

by integrating all watermarked meshes, we can obtain the stego image.

In order to illustrate the advantage of our embedding method (Eq. (8)) over inverse normalization (Eq. (7)), an

example is shown in Fig. 3 for visual comparison. Fig. 3(a) shows a stego Lena image that is generated through

inverse normalization of watermarked meshes. Many interpolation errors and blocky effects can be observed. On

the other hand, if the embedded signal in the normalized domain is transformed back to the spatial domain and

then added to the original image, then as Fig. 3(b) shows, the visual quality is not perceptually degraded.

B. Watermark Extraction

The process of determining the existence of a watermark is depicted in Fig. 4. Basically, the watermark extraction

process is the inverse process of watermark embedding.



12

(a) (b)

Fig. 3. Transparency comparison for watermarked Lena images based on (a) direct inverse normalization of watermarked meshes

(Eq. (7)), PSNR=28.99 dB; (b) inverse normalization of the embedded signal (Eq. (8)) plus the original image, PSNR=39.87 dB.

suspect image

Scale
matching
process

(Sec. III. B. 1)

CDW
extraction

(Sec. III. B. 2)

Calculation of
false positive
probability
(Sec. IV)

imagefp Thp  

A watermark
is claimed to exist

No watermark
can be detected

Yes

No

<

Fig. 4. Block diagram of the process of determining the existence of a watermark.

1) Scale Matching Process: In the watermark extraction end, the first step is to determine σ’s that will be used

for filtering (Eq. (2)). Initially, σd as determined in the embedding end can be used; however, due to possible

modifications of the stego image, a single value, σd, cannot be guaranteed to match the characteristics of the

encountered attacked images. In order to tolerate varied attacks, in addition to σd, other σ’s may be needed. Some

scenarios that will change the size of an image are described in the following to prove the need for several σ’s.

If the size of a stego image is changed due to cropping (e.g., rotation+cropping), then σ d will fail to capture

the characteristics of the cropped images because it cannot distinguish between scaling and cropping that lead

to changes of the images’ sizes. On the other hand, for a huge image, the watermark embedding and extraction
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processes should be operated in a tiling manner. The tile size selected in our proposed scheme is 512× 512, which

always sets σd to a fixed value 3, as described in Sec. II-A.3. If the huge image is scaled down or up, then σ d will

be useless for capturing this change. Therefore, a scale matching process is proposed here to help us determine

proper σ’s for filtering.

First of all, we have to know the possible range of change of an image’s size. Let us take the standard benchmark,

Stirmark [19], [20], as an example. For all non-geometric attacks, scaling, and other attacks that cause slight changes

of an image’s size, σd as determined in the embedded process can be used. For those attacks that have cropping

effects (in Stirmark, rotation of 45◦ and cropping of more than 50% cause severer cropping effects), the size of an

image could be quartered. Under these circumstances, σd + 1 instead of σd needs to be used. Here, let σd + 1 be

written as σd+1.

On the other hand, in the case of a huge image, it is not known whether the contents contained within a tile have

been attacked or not. When we consider the modifications caused by scaling with factors ranging from 50% ∼ 200%

(as provided in Stirmark), it is not hard to see that σd−1 = σd − 1, σd, and σd+1 are necessary to adapt to various

tile sizes.

In summary, three filtering parameters, σd−1, σd, and σd+1, are required for filtering to extract the desired feature

points under the constraint that Stirmark is considered for possible attacks. Of course, more filtering parameters

can be used at the cost of more time spent to deal with attacks that cause severer effects. Here, let M d−1, M , and

Md+1, respectively, denote the sets of meshes extracted using σd−1, σd, and σd+1.

2) Media Hash-based Content-Dependent Watermark Extraction: The proposed content-dependent watermark

extraction process is depicted in Fig. 5. The normalization process is used to, respectively, transform the three sets

of meshes, M , Md+1, and Md−1, into corresponding sets of normalized meshes, NM , NMd+1, and NMd−1, from

which three sets of media hashes, MHd, MHd+1, and MHd−1, can be extracted.

In this paper, Wiener filtering is used to blindly extract the hidden signal. Wiener filtering is considered to be

an efficient method [6], [11], [25] because the watermark is usually a high-frequency signal. Let R9CDW e
d i,

R9CDW e
d+1i

, and R9CDW e
d−1i

be, respectively, extracted from NMdi, NMd+1i, and NMd−1i. Since the

watermark bits are redundantly embedded, a bit is finally determined based on a majority selection rule. In this

paper, each bit is repeatedly embedded into a mesh 9 times. For an embedded bit, if most of its corresponding

extracted bits are 1(−1), then the extracted bit is finally determined to be 1(−1). Let CDW e
d i, CDW e

d+1i
, and

CDW e
d−1i

be the extracted watermarks after the majority determination process is completely.

Next, three sets of extracted media hashes, MHd, MHd+1, and MHd−1, corresponding to σd, σd+1, and σd−1,
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respectively, are separated from their corresponding watermarks, CDW e
d i, CDW e

d+1i
, and CDW e

d−1i
, as follows:

W e
d = {W e

d i}i=1,2···LM
,W e

d i = (CDW e
d i/MHdi), (9)

W e
d+1 =

{
W e

d+1i

}
i=1,2···LM

,W e
d+1i = (CDW e

d+1i/MHd+1i), (10)

W e
d−1 =

{
W e

d−1i

}
i=1,2···LM

,W e
d−1i

= (CDW e
d−1i

/MHd−1i). (11)

Thus, we obtain the extracted watermark signals W e
d , W e

d+1, and W e
d−1.
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Fig. 5. Block diagram of the CDW extraction process.

IV. FALSE POSITIVE-ORIENTED DETERMINATION OF THE EXISTENCE OF A WATERMARK

In order to indicate the presence/absence of a watermark in an image, the first step is to determine whether

a watermark exists in a mesh. For each NMdi (or NMd+1i, NMd−1i), the bit-error rate (BER) between W

and W e
d i (or W and W e

d+1i
, W and W e

d−1i
) is calculated. If the BER is smaller than a threshold Thmesh, it is

said that a watermark exists in a mesh. The threshold Thmesh needs to be determined by considering the false

positive factor because to claim the robustness of a watermarking system is meaningful only when the false positive

probability is taken into consideration in measuring robustness. In this study, the bit detection process is treated as
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an independent random Bernoulli trail with probability pb, which is the probability that the bit b (−1 or 1) will

occur, and is considered to always be 0.5 here. Theoretically, the probability of truly detecting a watermark in a

mesh when BER≤ Thmesh holds can be represented as

pMs =
LW∑

j=(LW−LW ×Thmesh)

(LW

j )pb
j(1 − pb)LW −j. (12)

Eq. (12) also specifies the probability that a watermark can be found in a mesh that has not, in fact, been

watermarked. As a result, determining the threshold Thmesh is important.

In order to reasonably determine Thmesh, pM s in Eq. (12) should be consistent with practical results. To this end,

the BERs obtained from extensive “sequence-pair” comparisons were collected. A sequence-pair is composed of the

watermark known by the owner and a signal that is extracted from one of the meshes in a random image. First of

all, every un-watermarked image chosen from the Corel image database was applied as the input to our watermark

detection process, as described in Sec. III-B. For each image, a set of BERs could be obtained after sequence-

pair comparisons were performed. After testing all 20, 000 images in the Corel image database, we obtained the

BER distribution and its cumulative distribution shown in Fig. 6. Based on this information, if Thmesh is chosen

to be 0.375, then pM s in Eq. (12) is calculated to be 0.003, which is very close to the cumulative distribution

function (cdf ), cdf(BER ≤ 0.375) = 0.0027, of the BER distribution measured using the Corel image database.

Consequently, it can be concluded that Thmesh = 0.375 is a reasonable choice.
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Fig. 6. Sequence-pair comparisons (one is the watermark and the other one is one of the signals extracted from the Corel image

database: (a) distribution of the BERs; (b) cumulative distribution of (a).

On the other hand, there are three vertexes in each M i. However, some geometric attacks may change the

relationship between the three vertexes, which is crucial for mesh normalization. In order to deal with this problem,
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we do not merely detect a watermark from one possible normalized mesh; instead, 6(= 3!) possible normalized

meshes are all fed into the watermark extraction process. Thus, the probability of detecting a watermark in a mesh,

pM , can be derived as

pM = (pM s)
1 × (1 − pM s)

5 ≈ pMs, (13)

which is still numerically close to pM s as derived in Eq. (12). On the other hand, the probability of failing to detect

a watermark is derived as pun−watermarked = 1 − (pM s)
1 × (1 − pM s)5.

So far, we have discussed how one can determine the existence of a watermark in a mesh. Now, we will proceed

to explain how one can determine the existence of a watermark in an image by incorporating the mesh-based

detection results. Recall that LM is the number of meshes in an image (no matter whether it is attacked or not).

Let DM be the number of meshes found to have been watermarked, as described in the above paragraphs. The

probability of determining that a suspect image was watermarked before is derived as

pfp =
LM∑

i=DM

(LM

i )pM
i(1 − pM )LM−i, (14)

based on the constraint that DM out of a total LM of meshes are regarded to having been watermarked. In fact, Eq.

(14) also reveals the probability that a random image will be “wrongly” determined as having been watermarked.

Furthermore, this also implies that different attacks lead to different pfp’s; i.e., a more challenging attack will

generate a higher false positive probability.

In order to claim the presence of a watermark with strong confidence (without causing a non-negligible false

positive), pfp should be low. On the other hand, pfp should be large to achieve robustness. Here, a reasonable

threshold, Thimage, is required to satisfy the trade-off between robustness and false positive. Again, the Corel image

database was adopted here to derive Thimage. Every un-watermarked image chosen from the Corel image database

was applied as the input to our watermark detection process. For each image, one p fp was obtained based on Eq.

(14). By integrating all the pfp’s, the cumulative distribution function showed that cdf(pfp ≤ (3.50e − 004)) = 0

and cdf(pfp ≤ (4.00e − 004)) = (6.28e − 005). Thus as a guideline, it is helpful to set the threshold Thimage to

3.50e− 004 according to the information obtained from the Corel image database. It should be noted that although

meshes are adopted in this paper, similar results can be obtained using other types of image units, such as blocks

or disks.



17

It should be noted that since three σ’s are employed for watermark detection, three pfp’s are generated. The

smallest value will be chosen as the final pfp (corresponding to the largest DM ).

A. Comparison with other methods

In this section, some recent papers that have proposed feature-based watermarking methods will be discussed.

False positive probability analysis was also conducted in [22], [23], which proposed to embed watermarks into

disks that are extracted from an image. However, the existence of a watermark was not finally determined by taking

the derived false positive probability into consideration. On the contrary, these authors only indicate the number of

disks (out of the number of total disks) that can be found to contain the hidden watermark.

In [23], the false positive probability derived from each disk was defined in Eq.(5) of their paper as follows:

PFalse−alarm on one disk =
r1=n,r2=n∑

r1=T1,r2=T2,r1+r2≥T

(
1
2
)n · ( n!

r1!(n − r1)!
) · (1

2
)n · ( n!

r2!(n − r2)!
), (15)

where n = 16, T1 = 10, T2 = 10, and T = 24. When the parameters are substituted into Eq. (15),

PFalse−alarm on one disk = 0.0034 is obtained. On the other hand, the false positive probability derived from

an image is defined in Eq.(6) of [23] as

PFalse−alarm on one image =
N∑

i=m

(Ni ) · (PFalse−alarm on one disk)i · (1 − PFalse−alarm on one disk)N−i, (16)

where N is total number of disks in an image, and at least m disks are detected as “successful.”

In [22], the false positive probability for one image was defined in Eq.(23) of their paper as follows:

PFA−image =
N∑

i=µ

(Ni )(PFA−disk)i(1 − PFA−disk)N−i, (17)

where the watermark is detected from at least µ disks and N is the number of disks in an image that are available

for watermarking. In their method, N = 100.

In this study, robustness comparisons among our method, Seo and Yoo’s method [22], and Tang and Hang’s

method [23] were conducted by taking the derived false positive probabilities into consideration. The results will

be reported in the next section.
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V. EXPERIMENTAL RESULTS

In order to thoroughly verify the robustness of the proposed scheme, the standard benchmark, Stirmark 3.1 [19],

[20], and the watermark-estimation attacks (WEAs) [11] were adopted. In the literature, a more thorough verification

could only be found in [25]. Three standard images, Baboon, Lena, and Pepper, were used here as cover images,

and the size of each one was 512× 512. After mesh-based watermark embedding was performed, the PSNR values

between the cover image and its stego image for Baboon, Lena, and Pepper were 36.06dB, 38.44dB, and 38.32dB,

respectively. No perceptual differences could be observed. Although the PSNR of stego Baboon was smaller than

38dB, it was still hard to find any quality degradation because the Baboon image was rather noisy. As described

previously, two thresholds, Thmesh = 0.375 and Thimage = 3.50e − 004, were adopted in this study.

In order to demonstrate the superiority of our method, we compared it with other feature-based watermarking

methods [22], [23]. Since Bas et al.’s scheme [2] was not evaluated using Stirmark, it was not considered for

comparison here. In digital watermarking, it has been recognized that robustness is meaningful only if false positives

are taken into consideration. Although false positive analyses were conducted in [22], [23], the detection results

did not show the impact of this factor, so the reported results are not fully convincing. Therefore, in this study the

false positive probability was derived using Eq. (16) for the method in [23], and Eq. (17) for the method in [22].

To avoid tedious comparisons, the parameters that could produce better results in [22], [23] were adopted here. In

[23], n = 16, T1 = 10, T2 = 10, and T = 24 were used, leading to PFalse−alarm on one disk = 0.0034. The number

of disks, m, found to contain watermarks and the number of total disks, N , in Eq. (16) are denoted in the following

tables as DM and TM , respectively. In [22], the authors declared that when µ = 1 and PFA−image = 0.1918e−004

are used, PFA−disk = 0.1918e − 006 is obtained according to Eq. (17). The number of disks, µ, detected to

contain a watermark and the number of total disks, N , in Eq. (17) are denoted in the following tables as DM

and TM , respectively. N = 100 was adopted in [22]. “DM/TM ” in the following tables denotes “the number of

detected watermarked meshes(disks)/the number of total meshes(disks).” In this paper, experimental results will be

demonstrated with respect to resistance to removal (non-geometric) attacks, resistance to geometric attacks, and

resistance to watermark-estimation attack in the following subsections. Finally, the reasons that may lead to the

obtained results will be identified.

A. Resistance to Non-geometric Attacks

The watermark detection results with respect to non-geometric attacks are shown in Tables II, III, and IV for the

three standard images, respectively. In Table II, the method in [22] can only survive FMLR and Color reduce attacks,
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TABLE II

NON-GEOMETRIC ATTACKS FOR BABOON.

proposed method [22] [23]

attack DM/TM pfp DM pfp DM/TM pfp

Median filter 2x2 8/106 1.52e-009 - - 6/11 7.07e-013

Median filter 3x3 6/111 1.26e-006 - - 2/11 6.24e-004

Median filter 4x4 6/109 1.13e-006 1 1.91e-005 - -

Gaussian filter 3x3 8/108 1.77e-009 0 1.00e-000 8/11 2.94e-018

JPEG 90 5/111 2.39e-005 - - - -

JPEG 80 7/115 7.22e-008 - - 9/11 3.35e-021

JPEG 70 4/115 4.30e-004 1 1.91e-005 11/11 7.10e-028

JPEG 60 6/103 8.13e-007 1 1.91e-005 7/11 1.72e-015

JPEG 50 5/110 2.29e-005 1 1.91e-005 5/11 2.07e-010

JPEG 40 4/113 4.02e-004 1 1.91e-005 7/11 1.72e-015

JPEG 30 5/114 2.72e-005 0 1.00e-000 4/11 4.34e-008

JPEG 20 4/106 3.15e-004 - - - -

JPEG 10 1/124 3.11e-001 - - - -

FMLR 6/106 9.62e-007 4 5.30e-021 - -

Color reduce 8/109 1.90e-009 2 1.82e-010 4/11 4.34e-008

Sharpening 3x3 4/120 5.04e-004 0 1.00e-000 2/11 6.24e-004

while our method and that in [23] can tolerate JPEG compression up to a quality factor of 40%. Furthermore, only

our method can survive the Sharpening attack. As shown in Table III, our method can survive almost all attacks

except for JPEG10 and FMLR attacks, so it is more robust than the other two. A similar result can also be found in

Table IV. On a whole, our method when compared with those in [22], [23], can survive most of the non-geometric

attacks of Stirmark 3.1. We also note that it is challenging to extract robust feature points from complex images

such as Baboon. Thus, the overall performance with respect to Baboon is not as robust as that for other smoothing

images. This phenomenon was observed in [2], [22], [23] as well as in our study.

B. Resistance to Geometric Attacks

The results of comparisons of resistance to geometric distortions are shown in Tables V ∼ VII. Basically, it

can be observed that our method and that in [22] provide pfp that is sufficiently lower than that in [23] for line

removal, cropping attacks, and general linear transformations. Our method also consistently provides much lower

pfp’s for shearing and random bending attacks. For other attacks, our method was thoroughly evaluated and found
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TABLE III

NON-GEOMETRIC ATTACKS FOR LENA.

proposed method [22] [23]

attack DM/TM pfp DM pfp DM/TM pfp

Median filter 2x2 28/110 1.98e-045 - - 1/8 2.69e-002

Median filter 3x3 16/111 2.68e-022 - - 1/8 2.69e-002

Median filter 4x4 16/102 6.40e-023 5 1.95e-026 - -

Gaussian filter 3x3 23/103 4.00e-036 3 1.14e-015 5/8 2.53e-011

JPEG 90 32/106 1.97e-054 - - - -

JPEG 80 35/104 2.38e-061 - - 6/8 4.32e-014

JPEG 70 31/104 1.40e-052 3 1.14e-015 7/8 4.22e-017

JPEG 60 26/111 3.08e-041 3 1.14e-015 6/8 4.32e-014

JPEG 50 15/111 1.49e-020 1 1.91e-005 5/8 2.53e-011

JPEG 40 21/117 6.22e-031 1 1.91e-005 3/8 2.18e-006

JPEG 30 18/116 1.65e-025 0 1.00e-000 2/8 3.19e-004

JPEG 20 7/100 2.74e-008 - - - -

JPEG 10 1/114 2.90e-001 - - - -

FMLR 3/97 3.23e-003 1 1.91e-005 - -

Color reduce 29/104 2.59e-048 4 5.30e-021 7/8 4.22e-017

Sharpening 3x3 18/115 1.40e-025 1 1.91e-005 4/8 9.29e-009

to provide low pfp’s, while [22], [23] did not. This is particularly obvious for resistance to change of the aspect

ratio because the circular disk adopted in [22], [23] could not accommodate such an attack. Since our method

adopts a triangular mesh for watermarking, it is better able to adapt to varied attacks.

C. Resistance to Watermark-Estimation Attacks (WEAs)

The collusion attack and copy attack were used to verify the resistance achieved by our method to WEAs [11].

Table VIII and Table IX show the results of resisting collusion attack for CDW embedding and non-CDW embedding,

respectively. After a collusion attack was performed, the number of detected meshes as shown in Table IX was

smaller than that shown in Table VIII, which implies that our proposed scheme with CDW embedding efficiently

defends against the collusion attack. It should also be noted that mesh-based collusion does not increase the PSNRs

of colluded images as block-based collusion does [11]. This may be due to the fact that the interpolation errors

involving in mesh warping neutralize the expected PSNR improvement of collusion. Table X and Table XI show the

results of resisting copy attack for CDW embedding and non-CDW embedding, respectively. After a copy attack
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TABLE IV

NON-GEOMETRIC ATTACKS FOR PEPPER.

proposed method [22] [23]

attack DM/TM pfp DM pfp DM/TM pfp

Median filter 2x2 38/108 2.33e-067 - - 1/4 1.35e-002

Median filter 3x3 40/107 4.12e-072 - - 1/4 1.35e-002

Median filter 4x4 24/109 1.83e-037 4 5.30e-021 - -

Gaussian filter 3x3 36/108 7.07e-063 5 1.95e-026 1/4 1.35e-002

JPEG 90 39/111 4.63e-069 - - - -

JPEG 80 44/109 5.36e-081 - - 3/4 1.57e-007

JPEG 70 44/107 1.90e-081 6 5.93e-032 3/4 1.57e-007

JPEG 60 33/106 1.33e-056 6 5.93e-032 1/4 1.35e-002

JPEG 50 30/108 7.24e-050 4 5.30e-021 3/4 1.57e-007

JPEG 40 27/111 2.92e-043 4 5.30e-021 1/4 1.35e-002

JPEG 30 20/112 1.75e-029 4 5.30e-021 0/4 1.00e-000

JPEG 20 9/118 1.31e-010 - - - -

JPEG 10 2/115 4.72e-002 - - - -

FMLR 11/101 2.20e-014 0 1.00e-000 - -

Color reduce 54/109 2.44e-105 2 1.82e-010 1/4 1.35e-002

Sharpening 3x3 21/117 6.22e-031 5 1.95e-026 4/4 1.34e-010

was performed, the number of detected meshes as shown in Table XI was larger than that shown in Table X,

which implies our proposed scheme with CDW embedding efficiently defends against the copy attack. However,

the content-independent watermarking methods [2], [22], [23] cannot survive WEAs [11].

To summarize, extensive experiment results verify that our method indeed outperforms all the other feature-based

watermarking methods.

D. Discussions

In this section, we shall discuss the impact of each step in our method on the detection results and identify

which step mostly affects the overall performance. As described previously in Sec. III, in addition to media hashing,

feature point extraction and denoising-based blind detection are recognized as two main factors that may affect the

performance of our method. Since the robustness of our media hashing has been verified in [8], it is not discussed

here again. According to the experimental results shown in the above tables, it is important to know how many

meshes of a stego image, under the absence of attacks, can be detected to contain watermarks. Two experiments
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TABLE V

GEOMETRIC ATTACKS FOR BABOON.

proposed method [22] [23]

attack DM/TM pfp DM pfp DM/TM pfp

1 column, 1 row removed 5/111 2.39e-005 - - - -

5 column, 1 row removed 11/115 9.47e-014 - - 6/11 7.07e-013

1 column, 5 row removed 6/111 1.26e-006 - - - -

17 column, 5 row removed 3/106 4.14e-003 1 1.91e-005 3/11 6.37e-006

5 column, 17 row removed 8/100 9.55e-010 - - - -

Cropping 1% off 10/110 2.11e-012 - - - -

Cropping 2% off 4/112 3.89e-004 - - - -

Cropping 5% off 5/110 2.29e-005 - - 2/11 6.24e-004

Cropping 10% off 6/96 5.36e-007 - - 2/11 6.24e-004

Cropping 15% off 7/526 1.21e-003 4 5.30e-021 - -

Cropping 20% off 5/87 7.32e-006 - - - -

Cropping 25% off 5/411 8.52e-003 1 1.91e-005 - -

Cropping 50% off 13/648 1.38e-007 - - - -

Linear(1.007, 0.010, 0.010, 1.012) 6/115 1.55e-006 3 1.14e-015 4/11 4.34e-008

Linear(1.010, 0.013, 0.009, 1.011) 5/109 2.19e-005 1 1.91e-005 4/11 4.34e-008

Linear(1.013, 0.008, 0.011, 1.008) 6/111 1.26e-006 0 1.00e-000 5/11 2.07e-010

Aspect ratio change(0.80, 1.00) 7/84 8.09e-009 - - - -

Aspect ratio change(0.90, 1.00) 8/93 5.33e-010 - - - -

Aspect ratio change(1.00, 0.80) 1/90 2.37e-001 - - - -

Aspect ratio change(1.00, 0.90) 4/96 2.16e-004 - - - -

Aspect ratio change(1.00, 1.20) 7/121 1.02e-007 - - - -

Aspect ratio change(1.00 1.10) 9/115 1.04e-010 - - - -

Aspect ratio change(1.10, 1.00) 8/127 6.40e-009 - - - -

Aspect ratio change(1.20, 1.00) 6/131 3.31e-006 - - - -

Rotation 1.00 11/113 7.78e-014 - - 3/11 6.37e-006

Rotation 2.00 6/107 1.02e-006 - - 1/11 3.68e-002

Rotation 5.00 3/103 3.82e-003 - - 0/11 1.00e-000

Rotation 10.00 9/99 2.67e-011 - - - -

Rotation 15.00 4/84 1.29e-004 - - - -

Rotation 30.00 4/61 3.69e-005 - - - -

Rotation 45.00 8/359 1.64e-005 1 1.91e-005 - -

Rotation 90.00 5/111 2.39e-005 - - - -

Flipping 1/111 2.84e-001 - - - -
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TABLE V

-Continued.

proposed method [22] [23]

attack DM/TM pfp DM pfp DM/TM pfp

Rotation Scale 1.00 6/113 1.40e-006 - - 4/11 4.3451e-008

Rotation Scale 10.00 7/122 1.08e-007 - - - -

Rotation Scale 15.00 1/29 8.34e-002 - - - -

Rotation Scale 30.00 8/748 2.19e-003 - - - -

Rotation Scale 45.00 10/740 1.05e-004 - - - -

Rotation Scale 90.00 5/111 2.39e-005 - - - -

Scaling 50% 2/104 3.94e-002 0 1.00e-000 - -

Scaling 75% 6/323 4.89e-004 0 1.00e-000 - -

Scaling 90% 5/77 4.01e-006 2 1.82e-010 - -

Scaling 110% 5/132 5.48e-005 - - - -

Scaling 150% 4/328 1.78e-002 - - - -

Scaling 200% 7/119 9.13e-008 - - - -

Shearing x-0% y-1% 8/111 2.20e-009 - - - -

Shearing x-1% y-0% 9/110 6.96e-011 2 1.82e-010 - -

Shearing x-1% y-1% 5/114 2.72e-005 - - 4/11 4.34e-008

Shearing x-0% y-5% 10/109 1.92e-012 - - 3/11 6.37e-006

Shearing x-5% y-0% 6/106 9.62e-007 - - - -

Shearing x-5% y-5% 6/103 8.13e-007 0 1.00e-000 0/11 1.00e-000

Random Bending 6/116 1.63e-006 0 1.00e-000 - -

were performed based on the conditions that (i) the feature points and media hashes extracted from the original

image are directly applied to the stego image, which means that feature point extraction is perfect and we are only

interested in understanding the effect of Wiener filtering; and (ii) all the processes are the same as those described

in Sec. III, which means that by comparing the results obtained from conditions (i) and (ii) we can understand the

effect of feature point extraction (and media hashing). The results of these two experiments are depicted in Table

XII.

As we can see from Table XII that when condition (i) is considered, denoising-based blind detection slightly

affects the detection results. For example, the number, TM , of total meshes in Baboon is 103 and the number of

meshes, DM , detected to contain watermarks is 67. The similar results can also be found in Lena and Pepper.

However, when condition (ii) is considered, DM for each stego image, when compared with the results obtained in
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TABLE VI

GEOMETRIC ATTACKS FOR LENA.

proposed method [22] [23]

attack DM/TM pfp DM pfp DM/TM pfp

1 column, 1 row removed 34/100 7.99e-060 - - - -

5 column, 1 row removed 35/104 2.38e-061 - - 3/8 2.18e-006

1 column, 5 row removed 29/104 2.59e-048 - - - -

17 column, 5 row removed 24/110 2.33e-037 5 1.95e-026 0/8 1.00e-000

5 column, 17 row removed 10/100 8.00e-013 - - - -

Cropping 1% off 27/106 7.14e-044 - - - -

Cropping 2% off 22/103 3.78e-034 - - - -

Cropping 5% off 17/86 4.23e-026 - - 2/8 3.19e-004

Cropping 10% off 16/77 4.95e-025 - - 2/8 3.19e-004

Cropping 15% off 15/65 2.58e-024 6 5.93e-032 - -

Cropping 20% off 12/68 3.31e-018 - - - -

Cropping 25% off 12/53 1.27e-019 4 5.30e-021 - -

Cropping 50% off 5/21 4.75e-009 - - - -

Linear(1.007, 0.010, 0.010, 1.012) 32/104 9.60e-055 6 5.93e-032 5/8 2.53e-011

Linear(1.010, 0.013, 0.009, 1.011) 39/104 2.05e-070 7 1.52e-037 4/8 9.29e-009

Linear(1.013, 0.008, 0.011, 1.008) 28/100 9.28e-047 7 1.52e-037 4/8 9.29e-009

Aspect ratio change(0.80, 1.00) 6/87 2.99e-007 - - - -

Aspect ratio change(0.90, 1.00) 15/94 1.07e-021 - - - -

Aspect ratio change(1.00, 0.80) 3/97 3.23e-003 - - - -

Aspect ratio change(1.00, 0.90) 7/104 3.60e-008 - - - -

Aspect ratio change(1.00, 1.20) 18/121 3.69e-025 - - - -

Aspect ratio change(1.00 1.10) 31/104 1.40e-052 - - - -

Aspect ratio change(1.10, 1.00) 19/122 7.10e-027 - - - -

Aspect ratio change(1.20, 1.00) 13/132 3.69e-016 - - - -

Rotation 1.00 21/109 1.24e-031 - - 3/8 2.18e-006

Rotation 2.00 21/93 3.15e-033 - - 0/8 1.00e-000

Rotation 5.00 18/78 6.94e-029 - - 0/8 1.00e-000

Rotation 10.00 15/77 4.25e-023 - - - -

Rotation 15.00 12/73 8.25e-018 - - - -

Rotation 30.00 9/57 1.56e-013 - - - -

Rotation 45.00 6/38 1.85e-009 2 1.82e-010 - -

Rotation 90.00 23/108 1.34e-035 - - - -

Flipping 19/108 5.95e-028 - - - -
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TABLE VI

-Continued.

proposed method [22] [23]

attack DM/TM pfp DM pfp DM/TM pfp

Rotation Scale 1.00 24/105 6.72e-038 - - 0/8 1.00e-000

Rotation Scale 10.00 7/98 2.38e-008 - - - -

Rotation Scale 15.00 5/89 8.18e-006 - - - -

Rotation Scale 30.00 1/115 2.92e-001 - - - -

Rotation Scale 45.00 0/96 1.00e+000 - - - -

Rotation Scale 90.00 23/108 1.34e-035 - - - -

Scaling 50% 10/110 2.11e-012 2 1.82e-010 - -

Scaling 75% 3/58 7.36e-004 3 1.14e-015 - -

Scaling 90% 4/94 1.99e-004 4 5.30e-021 - -

Scaling 110% 19/120 5.08e-027 - - - -

Scaling 150% 3/57 7.00e-004 - - - -

Scaling 200% 32/102 4.61e-055 - - - -

Shearing x-0% y-1% 23/100 1.88e-036 - - - -

Shearing x-1% y-0% 33/102 2.94e-057 5 1.95e-026 - -

Shearing x-1% y-1% 23/100 1.88e-036 - - 4/8 9.29e-009

Shearing x-0% y-5% 15/92 7.57e-022 - - 2/8 3.19e-004

Shearing x-5% y-0% 20/94 3.81e-031 - - - -

Shearing x-5% y-5% 12/78 1.92e-017 1 1.91e-005 1/8 2.69e-002

Random Bending 17/110 3.83e-024 4 5.30e-021 - -

condition (i), is dramatically reduced. This obviously implies that the correctness of extracted points plays a major

role in the performance of our watermarking method. More specifically, it can be observed from Table XII that the

average displacements (in pixels) of feature points illustrate the obtained detection results. As a consequence, we

can conclude that the stability of feature point extraction mainly affects the overall performance of our watermarking

method. This conclusion is also consistent with the robustness verifications described in the above subsections that

resistance to attacked Baboon images is apparently inferior to resistance to other smoother images.

VI. CONCLUSIONS

Although multiple watermarks can be embedded into an image to provide resistance to geometric distortions, we

found in our companion study [11] that they are, unfortunately, vulnerable to watermark estimation attacks (including

collusion and copy attacks) such that the desired geometric invariance is lost. In view of this fact, a mesh-based
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TABLE VII

GEOMETRIC ATTACKS FOR PEPPER.

proposed method [22] [23]

attack DM/TM pfp DM pfp DM/TM pfp

1 column, 1 row removed 45/111 6.59e-083 - - - -

5 column, 1 row removed 42/108 1.56e-076 - - 3/4 1.57e-007

1 column, 5 row removed 39/105 3.25e-070 - - - -

17 column, 5 row removed 34/104 3.96e-059 5 1.95e-026 1/4 1.35e-002

5 column, 17 row removed 34/104 3.96e-059 - - - -

Cropping 1% off 34/110 3.81e-058 - - - -

Cropping 2% off 24/110 2.33e-037 - - - -

Cropping 5% off 17/94 2.19e-025 - - 2/4 6.91e-005

Cropping 10% off 17/88 6.47e-026 - - 2/4 6.91e-005

Cropping 15% off 14/74 1.84e-021 2 1.82e-010 - -

Cropping 20% off 14/59 5.61e-023 - - - -

Cropping 25% off 6/60 3.18e-008 2 1.82e-010 - -

Cropping 50% off 4/19 3.03e-007 - - - -

Linear(1.007, 0.010, 0.010, 1.012) 41/111 1.31e-073 5 1.95e-026 1/4 1.35e-002

Linear(1.010, 0.013, 0.009, 1.011) 46/108 5.65e-086 7 1.52e-037 1/4 1.35e-002

Linear(1.013, 0.008, 0.011, 1.008) 45/110 3.93e-083 5 1.95e-026 4/8 9.29e-009

Aspect ratio change(0.80, 1.00) 17/94 2.19e-025 - - - -

Aspect ratio change(0.90, 1.00) 31/97 1.10e-053 - - - -

Aspect ratio change(1.00, 0.80) 9/89 1.01e-011 - - - -

Aspect ratio change(1.00, 0.90) 27/100 1.18e-044 - - - -

Aspect ratio change(1.00, 1.20) 18/128 1.07e-024 - - - -

Aspect ratio change(1.00 1.10) 30/130 4.02e-047 - - - -

Aspect ratio change(1.10, 1.00) 38/110 5.43e-067 - - - -

Aspect ratio change(1.20, 1.00) 20/138 1.51e-027 - - - -

Rotation 1.00 33/106 1.33e-056 - - 2/4 6.91e-005

Rotation 2.00 20/101 1.85e-030 - - 1/4 1.35e-002

Rotation 5.00 13/90 2.11e-018 - - 0/4 1.00e-000

Rotation 10.00 12/74 9.82e-018 - - - -

Rotation 15.00 13/61 9.16e-021 - - - -

Rotation 30.00 12/55 2.07e-019 - - - -

Rotation 45.00 5/46 3.01e-007 1 1.91e-005 - -

Rotation 90.00 25/111 3.10e-039 - - - -

Flipping 25/109 1.87e-039 - - - -
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TABLE VII

-Continued.

proposed method [22] [23]

attack DM/TM pfp DM pfp DM/TM pfp

Rotation Scale 1.00 29/106 4.90e-048 - - 2/4 6.91e-005

Rotation Scale 10.00 7/102 3.15e-008 - - - -

Rotation Scale 15.00 4/84 1.29e-004 - - - -

Rotation Scale 30.00 4/85 1.35e-004 - - - -

Rotation Scale 45.00 3/91 2.69e-003 - - - -

Rotation Scale 90.00 25/111 3.10e-039 - - - -

Scaling 50% 13/101 1.02e-017 2 1.82e-010 - -

Scaling 75% 4/66 5.03e-005 6 5.93e-032 - -

Scaling 90% 22/94 4.03e-035 6 5.93e-032 - -

Scaling 110% 22/136 2.89e-031 - - - -

Scaling 150% 5/65 1.73e-006 - - - -

Scaling 200% 48/105 1.45e-091 - - - -

Shearing x-0% y-1% 43/110 1.94e-078 - - - -

Shearing x-1% y-0% 37/110 9.39e-065 4 5.30e-021 - -

Shearing x-1% y-1% 32/111 1.10e-053 - - 1/4 1.35e-002

Shearing x-0% y-5% 30/95 8.05e-052 - - 1/4 1.35e-002

Shearing x-5% y-0% 30/98 2.42e-051 - - - -

Shearing x-5% y-5% 16/94 1.58e-023 0 1.00e-000 0/4 1.00e-000

Random Bending 26/109 1.81e-041 3 1.14e-015 - -

TABLE VIII

COLLUSION ATTACK ON CDW EMBEDDING.

CDW stego image PSNR colluded image PSNR

image DM/TM pfp (dB) DM/TM pfp (dB)

Baboon 7/111 5.65e-008 36.06 5/107 2.00e-005 33.07

Lena 31/108 5.48e-052 38.44 17/97 3.89e-025 35.35

Pepper 57/109 5.95e-113 38.32 29/109 1.24e-047 35.21
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TABLE IX

COLLUSION ATTACK ON NON-CDW EMBEDDING

Non-CDW stego image PSNR colluded image PSNR

image DM/TM pfp (dB) DM/TM pfp (dB)

Baboon 20/103 2.84e-030 36.06 0/99 1.00e+000 34.64

Lena 56/105 1.13e-111 38.43 7/111 5.65e-008 38.17

Pepper 65/119 2.57e-130 38.31 12/109 1.27e-015 38.42

TABLE X

COPY ATTACK ON CDW EMBEDDING.

CDW stego image PSNR copy attacked image PSNR

image DM/TM pfp (dB) DM/TM pfp (dB)

Baboon 7/111 5.65e-008 36.06 3/105 4.03e-003 36.02

Lena 31/108 5.48e-052 38.44 1/103 2.66e-001 38.39

Pepper 57/109 5.95e-113 38.32 1/115 2.92e-001 38.27

TABLE XI

COPY ATTACK ON NON-CDW EMBEDDING

Non-CDW stego image PSNR copy attacked image PSNR

image DM/TM pfp (dB) DM/TM pfp (dB)

Baboon 20/103 2.84e-030 36.06 24/105 6.72e-038 36.02

Lena 56/105 1.13e-111 38.43 53/99 6.71e-106 38.38

Pepper 65/119 2.57e-130 38.31 59/105 1.75e-119 38.27

TABLE XII

IMPACT OF FEATURE POINT EXTRACTION AND DENOISING-BASED BLIND DETECTION ON THE PERFORMANCE OUR WATERMARKING

METHOD.

Condition (i) Condition (ii) Average displacement (in pixels)

image DM/TM pfp DM/TM pfp of feature points

Baboon 67/103 6.08e-142 7/113 6.40e-008 4.13

Lena 88/100 9.83e-208 32/106 1.97e-054 2.59

Pepper 95/107 5.07e-225 55/109 7.33e-108 1.60



29

content-dependent image watermarking method that can resist extensive geometric attacks and watermark estimation

attacks simultaneously has been proposed here. There are three major contributions of our method. First, robust mesh

extraction is adopted to enhance the feasibility of feature-based watermarking methods. Second, a media hash-based

content-dependent watermark that is composed of a watermark and a hash is used to resist watermarking-estimation

attack. Third, a false positive-oriented watermark detection mechanism is applied to determine the existence of a

watermark so as to achieve a trade-off between correct detection and false detection. The performance of our scheme

in enhancing robustness has been thoroughly verified using the standard benchmark, Stirmark, and watermark

estimation attacks.

However, the major weakness of our method is its high complexity since most of the time is spent on mesh

warping, which makes the method in its current state unsuitable for real-time applications. By keeping the achievable

robustness, reducing the complexity of our method deserves further researching. In addition, as described in Sec.

V-D, enhancing the stability of feature point extraction can further improve the overall performance of the proposed

method. Finally, the important issue of security against protocol attacks based on the proposed method was also

investigated. Due to limits of space, the results were reported elsewhere [14].
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