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Abstract

We propose a block-based wavelet codec in which motion vector estimation and

motion residual encoding are performed within a wavelet domain. By interpolation

on dyadic wavelet transform, we show that motion vector estimation in the wavelet

domain can achieve sub-pixel precision. To improve PSNR performance at low bit

rates, we propose a bit-plane-based rate-distortion (R-D) optimization algorithm.

This algorithm allocates an optimal number of bit-planes to each macroblock. Our

codec is SNR scalable and our bit-stream syntax is fully compatible with that of

H.263. Experiments show that our block-based wavelet codec outperforms a frame-

based wavelet codec. Also, compared with H.263 baseline results, our wavelet codec

is competitive at low bit rates, and is superior at higher bit rates.

1 Introduction

Still image compression based on a wavelet transform achieves great results and is the

foundation of the JPEG 2000 image compression standard [18]. However, a wavelet video

codec, either coding based on a 3D wavelet transform [19] or wavelet coding of residual

frames [2, 20], is still in its infancy stage. Although encoding a video using wavelets more

easily achieves scalability and rate control for an embedded codec than traditional DCT-

based methods [1, 15], its video coding properties have not been fully explored. We aim

to explore these properties and evaluate the performance of a wavelet-based hybrid video

coding system. We are particularly interested in a wavelet coding structure, as shown

in Figure 1, in which both motion vector estimation and residual coding are performed

within a wavelet domain. This structure provides more flexibility than traditional methods
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in that we can exploit a perceptual-relevant contrast sensitivity function [22], obtain a

progressive motion vector estimation [12], and extract context information in the wavelet

domain for motion vector estimations. We use all wavelet codec to denote a video codec

in which motion vector estimation and residual encoding are performed within a wavelet

domain. This is to differentiate this codec from the wavelet codec that uses 3D wavelet

transform and the codec that uses wavelets only to encode residual frames.

Current video motion vector estimation module uses a block-based translation model

in which macroblocks in adjacent frames are related by translation. It is shown in [9, 12]

that a discrete wavelet transform (DWT) has hierarchical motion compensation, which

gives a larger range in which to perform motion compensation. However, DWT is not a

translation-invariant representation, and this hinders its large motion compensation range

advantage. Many other wavelet representations have a translation-invariant property at

the cost of a coefficient redundancy increase [7, 10, 21]. In [13], the relationship between

dyadic wavelet transform coefficients and translations of block discrete wavelet coefficients

is explored to develop an algorithm that quickly estimates motion vectors from block-based

DWT coefficients; however, its motion vectors are restricted only to integer precision. We

propose an interpolation on dyadic wavelet transform coefficients and show that this

interpolation is equivalent to performing the same interpolation on an image. We can

obtain sub-pixel accurate motion vectors by performing motion vector estimation in the

wavelet domain.

Sub-pixel motion vector estimation is an important property for improving the perfor-

mance of motion compensation of a hybrid video coding system. Another important prop-

erty for performance improvement is using R-D optimization to encode residual frames

[17]. Using R-D optimization on residual frames improves coding effectiveness, but it

introduces excessive complexity for video coding, especially in low-delay applications [8].

An R-D approach for video coding must be simple and efficient, even at the cost of cod-

ing effectiveness. We propose a simple sub-optimal rate-distortion (R-D) optimization

technique that can be easily implemented in any embedded block-based codec.

We propose a block-based all wavelet codec that has the following features. One of its

features is asymmetry in that the encoder uses a dyadic wavelet transform and the decoder

uses an inverse DWT. Another feature is a sub-pixel precision motion vector estimation

in the wavelet domain. Its R-D feature optimizes the number of bit-planes assigned to

each macroblock for block-based residual encoding. Another feature is an H.263 syntax

compatible bit-stream, in which only a few Macroblock and Block layer semantics differ
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from H.263 baseline.

We evaluate the performance of our codec in a wide range of bit rates, and com-

pare it with the results of a frame-based wavelet codec and that of H.263 baseline. The

dyadic wavelet transform and its implementation is given in Section 2. In Section 3, we

propose our all wavelet codec and its features. Implementation issues and performance

comparisons are given in Section 4. The conclusion is given in Section 5.

2 Algorithm Á Trous

In order to estimate motion vectors in a wavelet domain, we need to compute the block

DWT coefficients of any translation of a block within a search region. Directly computing

these block DWT coefficients is time-consuming. These coefficients can be obtained by

computing a dyadic wavelet transform and re-arranging its coefficients, thus reducing time

cost. A way to implement dyadic wavelet transform is through the algorithm á trous, an

undecimated filter bank [11, 16].

A two-dimensional orthogonal wavelet can be obtained by a tensor-product of two one-

dimensional orthogonal wavelets, {φ(x), ψ(x)} and {φ(y), ψ(y)}. The results are wavelets

Ψ1(x, y) = ψ(x)φ(y),Ψ2(x, y) = φ(x)ψ(y), and Ψ3(x, y) = ψ(x)ψ(x), and scaling function

Φ(x, y) = φ(x)φ(y). We use g2j (x, y) to represent 1

22j g( x
2j ,

y

2j ) for any function g(x, y). The

dyadic wavelet transform of image f(x, y) yields the multi-resolution image representation

f(x, y) =
∑

k=1,2,3

J
∑

j=1

Wk
2jf ∗ Ψk

2j (x, y) + A2Jf ∗ Φ2J (x, y),

where the dyadic wavelet coefficients are

Wk
2jf(x, y) =

∫ ∫

f(p, q)
1

22j
Ψk(

x− p

2j
,
y − q

2j
)dpdq, and

A2Jf(x, y) =

∫ ∫

f(p, q)
1

22J
Φ(
x− p

2J
,
y − q

2J
)dpdq.

The algorithm á trous yields a redundant wavelet representation of an image because

this algorithm does not decimate filter bank coefficients. The dyadic wavelet transform

is a translation invariant representation, which is essential for precise motion estimation.

That is,

f(x, y) → A2Jf(x, y) {Wk
2jf(x, y)|k = 1, 2, 3; j = 1, · · · , J} and

f(x+m, y + n) → A2Jf(x+m, y + n) {Wk
2jf(x+m, y + n)|k = 1, 2, 3; j = 1, · · · , J}.
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To obtain DWT coefficients of a block from dyadic wavelet transform coefficients, let

(x0, y0) be the top-left corner of a block of size 2J by 2J in a 2N by 2N image f . Then, the

DWT coefficient at (m,n) of scale 2i of the block is the dyadic wavelet coefficient of image

f at (x0 + 2im, y0 + 2in) of scale 2i. The proof of this statement is given in Appendix

1. Figure 3 shows an example of generating block-based DWT coefficients from dyadic

wavelet coefficients.

3 An All Wavelet Video Codec

As shown in Figure 2, the input video sequence of the encoder is first transformed into

a dyadic wavelet domain, then block-based motion compensation is performed on DWT

coefficients. This algorithm does not alter the traditional motion compensation algorithm

in an image domain, except to perform motion vector estimation on DWT coefficients.

After the incoming bit-stream is decoded, an inverse DWT is performed to obtain a

reconstructed frame at the decoder side.

3.1 Sub-Pixel Precision Wavelet Motion Vector Estimation

In recent video coding standards [3, 4, 5], interpolation for sub-pixel prediction is com-

monly used to increase motion estimation precision. In an image domain, sub-pixel predic-

tion is easily achieved by an interpolation operation. We show that the result of applying

this interpolation operation on an image is equivalent to applying the same interpola-

tion operation on the dyadic wavelet coefficients of the image at each subband. Figure

4 gives a simple schematic proof that uses noble identities (as shown in Figure 5) for a

one-dimensional signal. The proof can easily be extended to a two-dimensional image

because our wavelets are obtained by a tensor-product of two one-dimensional wavelets.

If we choose the positions of filter A at a multiple of L to be the dirac sequence

A(n) =







δ[n], n = Lm ∈ Z

any number, otherwise,

then the dyadic wavelet coefficients at position mL of the interpolated image of f are

the same as the dyadic wavelet coefficients at position m of input f . This property of

wavelet transform interpolation is given in Figure 6. Because the DWT of a block can be

obtained from the dyadic wavelet transform of an image, the sub-pixel DWT coefficients

of a block can be obtained from the sub-pixel dyadic wavelet coefficients.
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3.2 Block-based Embedded Residual Coding

Dividing a frame into several blocks and encoding each block individually prevents an

error in one block from propagating to other blocks. It also provides a flexible means

of grouping several blocks into a high-level group of block (GOB) structure for robust

transmission. To encode the blocks, we combine the SPIHT algorithm with a block-based

motion residual approach [14]. Because a motion residual frame usually has significant

components located at unrelated frequency subbands and spatial positions, SPIHT does

not perform as well on encoding motion residual frames as on normal images. However,

using SPIHT on wavelet bit-planes is simple and it performs better than using a run-

length code on a wavelet bit-plane. We can improve the performance of our block-based

SPIHT using a sub-optimal R-D approach.

3.2.1 Bit-plane-based R-D Optimization

We improve the coding efficiency of our block-based system using an R-D optimization

approach. Our approach assigns optimal bit-plane numbers to each macroblock, and is

simple and easily implemented. The block-based R-D function for a fixed bit rate is

written as the constrained optimization problem

min
{Ri}

N
∑

i=1

Di(Ri),

subject to
N

∑

i=1

Ri = R,

where N is the number of blocks and R is the given bit rate [6]. The optimal solution of

the above problem can be obtained by solving the following un-constrained Lagrangian

problem

 L(R1, R2, . . . , RN , λ) =
N

∑

i=1

Di(Ri) + λ(
N

∑

i=1

Ri −R).

By taking the derivative of the above formula with respect to Ri and λ, we have

∂  L

∂Ri

=
∂Di(Ri)

∂Ri

+ λ = 0 (1)

∂  L

∂λ
=

N
∑

i=1

Ri −R = 0. (2)
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The solutions R∗
i and λ∗ of Equations 1 and 2 are

λ∗ = −
∂D1(R

∗
1
)

∂R1

= −
∂D2(R

∗
2
)

∂R2

= · · · = −
∂DN(R∗

N)

∂RN

and

N
∑

i=1

R∗
i = R.

For a fixed rate block-based coder, optimality is achieved when all blocks are coded with

the same R-D slope, and total bits assigned to all blocks equal the given bit budget of

a residual frame. The computation and transmission costs of this optimal R-D search

can be too high for low-delay and low bit rate applications. Using results for the optimal

solution of a block-based R-D model, we propose a simple and fast block-based R-D

optimization algorithm to improve coding performance. Instead of allocating an optimal

number of bits to each block, our bit-plane-based R-D optimization procedure allocates

the optimal number of bit-planes to each block. We only record the slope and the number

of bits immediately after the SPIHT algorithm finishes encoding a bit-plane of a block.

We take the absolute values of R-D slopes and use λi,j and ri,j to respectively represent

the absolute R-D slope and the bits spent after encoding the j-th bit-plane of the i-th

block.

We sort the absolute R-D slope λi,j in a decreasing order. From the beginning of the

sorted list, we encode the bit-plane of the block that has the current absolute R-D slope

until the total number of bits to encode these bit-planes exceeds the bit budget. Figure

7 shows an example of three coding blocks whose R-D slopes of each bit-plane has been

calculated. The proposed algorithm is given in Appendix 2.

Although our R-D optimization process improves coding quality, it incurs some over-

head because we must tell the decoder the status of each block. We must provide the most

significant bit-plane (MSB) of each block to the decoder. We also need to tell the decoder

when to stop decoding the current block. We encode several consecutive bit-planes in

each block and use an end of block symbol to inform the decoder whether to decode the

next bit-plane of the current block or the MSB of the next block.

3.2.2 Syntax and Semantics

Video syntax is arranged into a hierarchical structure of layers, Picture, GOB, Macroblock,

and Block [5]. The syntax of our codec is compatible with H.263 in that the semantics of

our Picture layer, GOB layer, and INTER/INTRA are identical to those of H.263, and
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the semantics in our Macroblock and Block layers are only slightly different from H.263.

Figure 8 shows the simplified syntax of the H.263 baseline coder and our proposed coder;

the semantics differences are highlighted.

In the Macroblock layer, the semantics of our COD and MB type and those of the

H.263 baseline are the same. The COD, which is a single bit indicator, shows whether

the current macroblock is coded or not. If the current macroblock is not coded, then

the decoder treats the macroblock as an inter-predicted macroblock with a zero-valued

motion vector and with no coefficient data. Otherwise, the macroblock is coded with

motion vectors, followed by the coefficient data. The MB type informs the decoder of the

coding type (INTER or INTRA) of the current macroblock.

The Macroblock layer semantic difference occurs between H.263 CBPY and our MSB.

The H.263 syntax CBPY represents the Y-channel coded block pattern, for which at least

one non-INTRADC transform coefficient is transmitted. We replace this function with

our MSB, which informs a decoder the starting bit-plane to be decoded of each block.

In the Block layer, the run-length code of quantized DCT coefficients is replaced by our

bit-plane-based DWT coefficients.

4 Implementation and Performance Evaluation

The video sequences used in our experiments are Y-luminance signals of YUV color space.

We use MEPG 4 test sequences in our experiments. The size of each sequence is in QCIF

format, and the testing frame rate is ten frames per second. The first frame of a video

sequence is an intra-frame (I-frame) encoded by DCT and all other frames are inter-frames

(P-frames).

4.1 Implementation

Some implementation issues, such as rate control, filter selection, and motion vector

precision, are evaluated and discussed in this subsection. We use the same rate control

strategy as that in H.263 TMN 2.0. The difference between our rate control and TMN

2.0’s is that we use number of bit-planes instead of quantization step size to control the

actual number of bits allocated to a frame. We use the same formula in H.263 TMN 2.0

to calculate the number of bits assigned to each frame. Let R be the total bit budgets of

all frames, F be the frame number to be encoded, r be the number of bits used to encode

7



all previous frames, and f be the number of encoded frames. According to TMN 2.0,

the remaining bits are distributed uniformly to the remaining frames; hence, the current

frame will have bits equal to R−r
F−f

.

Figure 9 shows the PSNR performance of various wavelet filters for different video

sequences. The results indicate that the Haar filter gets better PSNR performance than

bi-orthogonal filters 9−7 and 5−3, so we perform three levels of dyadic wavelet transform

using the Haar filter as our wavelet in all experiments. Filter 9−7 has been used by many

research groups to encode the entire residual frame. This filter is not appropriate for a

block-based system using a 16 by 16 macroblock for estimating motion vectors because

its taps are too long for such a small block size.

Motion compensation is implemented based on macroblock segmentation. Both the

horizontal and vertical search range is ±15 Y-luminance pixels. Because the H.263 base-

line can reach half integer motion vector precision, our motion vectors are restricted to

half integer precision, and their component range is [−16, 15.5]. Our motion vectors are

entropy-encoded like those of H.263. The performance improvement of using a half integer

precision motion vector over that the integer precision motion vector in Haar wavelet coef-

ficients is shown in Figure 10. It also compares the performances of half integer precision

motion vector estimation in Haar wavelet coefficients and in an image domain. Because

the performance improvement of using a half integer precision is significant, we use it for

motion estimation in all experiments.

4.2 Performance Evaluation

Comparison studies in terms of Y-PSNR are performed between our method and both

H.263 baseline and the wavelet coding system proposed in [13]. H.263 baseline uses block

matching in spatial domain to perform motion estimation, the residual frame is encoded

first by DCT, then by quantization and run-length coding modules. The wavelet-based

method [13] uses a low-band-shift (LBS) method to perform motion estimation in the

wavelet domain, and encodes the residual frame by a frame-based SPIHT algorithm.

Both our method and the LBS method apply the same motion estimation scheme in the

wavelet domain. However, in the LBS method, motion vector estimation can only reach

integer precision. We use our interpolation scheme to improve the LBS method (and call

it sub-pixel LBS) so that it can reach half integer motion vector precision.

Experiments show that our block-based wavelet codec outperforms sub-pixel LBS at
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low bit rates for all video sequences. Figure 11 shows the average PSNR of various bit

rates for the two-second Sean and Foreman sequences. Both results show that our bit-

plane-based R-D coding system achieves the best performance over the entire bit rate

range, with about a 0.3 − 0.8 dB gain over sub-pixel LBS.

However, the performance of our codec without R-D optimization on Foreman is worse

than sub-pixel LBS. This is because a block-based system allows us to use a single bit (or

COD) to represent a low residual error block. Thus, a considerable number of bits is saved

when encoding these low residual error blocks. For a sequence with a complex motion

structure such as Foreman, poor motion prediction results in significant residual errors in

almost every block, and the the advantages of COD disappear. The Sean sequence has

less apparent movements, and benefits from the block-based coding structure. This is

supported in Figure 11(a) where the coding gain of using a block-based system on Sean

exceeds sub-pixel LBS.

Many wavelet video studies experiment on relatively high bit rates, and they do not

compare the Y-PSNR performance of their codecs with that of H.263. Because of the

popularity of H.263, we examine and compare the performance of our codec with that of

the H.263 baseline over a wide range of bit rates. Figure 12 shows the performance of

coding six video sequences at various bit rates by our bit-plane-based R-D optimization

algorithm, sub-pixel LBS, and H.263 baseline. Our coding scheme attains a better Y-

PSNR than H.263 baseline at a higher bit rate. At lower bit rates, most results show that

our PSNR is comparable to the PSNR of H.263 baseline. For sequences with relatively

little motion, such as Akiyo and Sean, our method obtains an average 0.2 to 0.6 dB gain

over the H.263 baseline at bit rates between 24 and 100 kbits/sec. For moderate-movement

sequences, such as Container and News, and for sequences with a lot of movement, such

as Foreman and Stefan, the performance difference between our coding scheme and H.263

baseline varies between −0.2 dB and 0.4 dB at very low bit rates. For all test sequences,

the performance of the H.263 baseline at low bit rates is better than sub-pixel LBS. At a

bit rate higher than 200 kbits/sec, both wavelet-based codecs have a coding gain of about

1 to 2 dB over H.263 baseline.

5 Conclusions

We propose an all wavelet codec that estimates sub-pixel motion vector in wavelet domain,

uses bit-plane-based R-D optimization algorithm for residual encoding, and uses a syntax
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compatible with H.263. The popular H.263 decoder needs only modify a few semantics to

decode our bit-streams. The performance of our codec is competitive with H.263 baseline

at low bit rates, and is superior at higher bit rates. The performance of our block-based

codec is better than the frame-based codec LBS at low bit rates, and these codecs have

comparable performance at higher bit rates. The performance of our codec can be further

improved if a wavelet-adapted rate control is applied.
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Appendix 1

The discrete wavelet transform (DWT) coefficients of a block can be obtained from dyadic

wavelet transform coefficients. Although this property is used in [13], we re-state it in the

following theorem.

Theorem 1 Let (x0, y0) be the top left corner of block b whose size is 2J by 2J in a 2N

by 2N image f (N > J). The DWT coefficient of b at (m,n) at scale 2i and orientation

k = 0, 1, 2, 3 is the dyadic wavelet coefficient of image f at position (x0 + 2im, y0 + 2in) of

the same scale and orientation. We use k = 0 to denote the result of applying the scaling

function and k = 1, 2, 3 on different wavelets. That is,

(DWT )k
2ib(x0 +m, y0 + n) = Wk

2if(x0 + 2im, y0 + 2in)

for 0 ≤ m,n < 2J−i for i = 1, · · · , J . We use (DWT ) to stand for DWT, and Wk for

dyadic wavelet transform with orientation k. By our notation, W0

2if(x, y) = A2if(x, y).

Proof

Let f ′ be the translation of the image f such that f ′(0, 0) = f(x0, y0). Figure 13 shows

a block diagram proof of the theorem in which the identities of the first subgraph, the

second subgraph, and the bottom subgraph are obtained from applying nobel identities

to Figure 5. The output of the DWT at scale 2i and orientation k = 1, 2, 3 at branch Di,k

is

(DWT )k
2ib(m,n) = Wk

2if
′(2im, 2in), (3)

and the output at branch Ai is

(DWT )0

2ib(m,n) = W0

2if
′(2im, 2in). (4)

The DWT coefficients at (m,n) of block b and the dyadic wavelet coefficients of f ′ at

(2im, 2in) of the same orientation and the same scale are equivalent. The dyadic wavelet

transform is translation invariant; thus, we have for all k,

Wk
2if

′(2im, 2in) = Wk
2if(x0 + 2im, y0 + 2in). (5)

From Equations (3), (4), and (5), we obtain

(DWT )k
2ib(m,n) = Wk

2if(x0 + 2im, y0 + 2in).

According to this theorem, the DWT coefficients of any block of an image can be obtained

from the dyadic wavelet coefficients of the image.
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Appendix 2

Bit-plane-based R-D Encoder

cal−BP−number: maximum number of bit-planes that can be encoded for each

block.

CBP−num(i): the current number of encoded bit-planes at the ith block. Initial

value is zero for each block.

BP (i): ith block’s highest bit-plane.

• Step1

for(i = 1, i ≤ block−number, i+ +)

for(j = 1, j ≤ cal−BP−number, j + +)

rate(j, i) = bit rate needed to encode ith block’s jth

bit plane.

λ(j, i) = calculate ith block’s jth bit-plane’s R-D

slope.

end

end

while(bit−encoded < bit−budget)

(j, i) = check max(λ)’s block number i and bit-plane

number j.

bit−encoded = bit−encoded + rate(j, i).

CBP−num(i) = CBP−num(i) + 1.

λ(j, i) = 0.

end

• Step2

for(i = 1, i ≤ block−number, i+ +)

if(CBP−num(i))

bit(i, BP (i)) = encode ith block with CBP−num(i)

bit-planes by block-based SPIHT.

end

end
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Figure 9: PSNR performance of various wavelet filters at appropriate bit rates are shown

in the left column, and performance at low bit rates are shown in the right column. (a)

Akiyo, (b) News, (c) Foreman. We use three levels of dyadic wavelet transform.
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Figure 10: PSNR performance of motion vectors estimated from half integer precision of

Haar wavelet coefficients, half integer precision of image domain, and integer precision of

Haar wavelet coefficients. We use the bilinear interpolation for half integer motion vector

estimations. (a) Akiyo, (b) Foreman.
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Figure 11: Left: The average PSNR of various bit rates encoded by sub-pixel LBS, our
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21



29


31


33


35


37


39


41


43


45


47


0
 50
 100
 150
 200
 250
 300


KBits/s


PS
N

R



H.263 baseline


Sub-pixel LBS


Bit-plane-based R-D optimization


29


30

31


32


33

34


35


20
 30
 40
 50
 60
 70


34


36


38


40


42


44


46


48


50


0
 50
 100
 150
 200
 250
 300


KBits/s


PS
N

R



H.263 baseline


Sub-pixel LBS


Bit-plane-based R-D optimization


34


35

36


37


38

39


40


20
 30
 40
 50
 60
 70


(a) (b)

31


33


35


37


39


41


43


45


0
 50
 100
 150
 200
 250
 300


KBits/s


PS
N

R



H.263 baseline


Sub-pixel LBS


Bit-plane-based R-D optimization


31


32

33


34


35

36


37


20
 30
 40
 50
 60
 70


29


31


33


35


37


39


41


43


45


47


0
 50
 100
 150
 200
 250
 300


KBits/s


PS
N

R



H.263 baseline


Sub-pixel LBS


Bit-plane-based R-D optimization


29


30

31


32


33

34


35


20
 30
 40
 50
 60
 70


(c) (d)

21


23


25


27


29


31


33


35


37


39


41


0
 100
 200
 300
 400
 500
 600


KBits/s


PS
N

R



H.263 baseline


Sub-pixel LBS


Bit-plane-based R-D optimization


21

22


23

24


25

26


27


40
 50
 60
 70
 80
 90
 100


27


29


31


33


35


37


39


41


0
 50
 100
 150
 200
 250
 300


KBits/s


PS
N

R



H.263 baseline


Sub-pixel LBS


Bit-plane-based R-D optimization


27


28

29


30


31

32


33


20
 30
 40
 50
 60
 70


(e) (f)

Figure 12: The average PSNR of various bit rates encoded by H.263 baseline, sub-pixel

LBS, and our bit-plane-based R-D optimization algorithm. An insert of average PSNR at

low bit rates is included in each subfigure. (a) Akiyo, (b) Sean, (c) Container, (d) News,

(e) Foreman, (f) Stefan.
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Figure 13: The schematic diagram proof of Theorem 1. Ai and Di,k are respectively the

outputs at scale 2i and orientation k = 1, 2, 3. The three block disgrams are equivalent.

The bottom disgram is the filter bank structure of the algorithm á trous.
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