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Collaborative Assignment Using BDI Multiagent
Negotiation

Kiam Tian Seow, Kwang Mong Sim and Yuan Chia Kwek

Abstract— In this report, we propose a distributed agent attracted decades of active research [3]. In a LAP
model that embodies belief-desire-intention (BDI) reason instance, a table or matrix of assignment values is
ing and negotiation for e_lddressing the linear agsignment given; cast in the important context of concurrent
problem (LAP) collaboratively. In resource allocation, LAP resource allocation. each value indicates the A-Q0S

is viewed as seeking a concurrent allocation of one differdn licati litv-of . f f
resource for every task to optimize a linear sum objective (application quality-of-service) of one resource for

function. The proposed model provides a basic agent-basedON€ task (e.g., see Table I, where the A-QoS of
foundation needed for efficient resource allocation in a resourcer, for task t, has a value of 14, and so

distributed environment. A distributed agent algorithm on)_ The objective of LAP is to maximize the sum

realizing the BDI negotiation model is developed and exam- tgtgl A-QoS of the concurrent allocatidnsf one
ined both analytically and experimentally. The significane different resource for every task

of the model and its algorithm is also discussed in relation . -
to existing multiagent svork_ For decades, solving LAP has traditionally been

done in a centralized fashion, producing many cen-
tralized algorithms [3] as highly efficient solutions.
However, with modern advancement in commu-
nication and networking technologies, creating an
ubiquitous (distributed) environment, it is becom-
|. INTRODUCTION ing practically more effective or feasible to deploy

Efficient resource allocation is a basic probleffultiple problem solvers cooperating for a wider
inherent in a variety of real world applications. Iryariety of application problems that were hitherto
this report, we studiinear assignmentan important Not possible. In exploiting this infrastructure, we are
subclass of this problem, but in the modern conteicreasingly seeing the need to have computational
of multiagent systems [1], [2], and the significar@ntities call agents [2, Ch.1] that go beyond being
role collaborative negotiatiorplays in a new dis- justalgorithmic Existing centralized LAP solutions
tributed agent-based approach to the problem. Were never intended for online deployment in such

Classical assignment problems deal with tH environment.
question of how to assigV distinct elements in  Motivated by the naturalness and ease by which
a set toN distinct elements in another on a onegnany a variety of applications can be characterized
to-one basis in the best possible way; underlyirg terms of distributed interacting agents that co-
the assignmentis a combinatorial structure, withoperate [4], we propose a multiagent perspective
an objective function modelling thbest way[3]. to LAP, leading to a new collaborative problem
Assignment problems are distinguished by their digolving approach. This distributed agent approach
ferent objective functions. Of fundamental intere$tvolves different task agents capable of interacting
is the linear (sum) assignment problem (LAP) whiceollaboratively with one another to select different

resources during problem solving. The objective
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of information and processing that characterizesba a measure of the A-QoS that a resource R

distributed resource allocation (or task assignmem@n offer to a task; € 7" upon allocation.

environment. Assume|T'| < |R|. Then formally, the objective
In addressing CLAP as a distributed agent probf the |T'| x |R| LAP is to find the particular (total)

lem, a task agent attempting to reach an op#@issignment mapping

mal assignment faces the basic issue of deciding

what action to perform. In so doing, each agent 1.7 —, R such that for;, ¢, € T,

needs to reason about its beliefs and preferences as £ j implies TI(t) £ TI(t,

well as its collaborating agents’, mediating through i#Jimp (t) (t)

negotiative interactions among the agents durimgd the total quality of service (total A-QoS)

(1)

problem solving. In assignment, an agent’s beliefs 7)1
refer to its local information obtained that lead the

. . S ot — d ti, H tl 2
agent to believe whether or not there are alternative tot ; [ (t:) @

resource selections that will help move closer to-

wards the joint goal, and its preferences refer {y maximized over all possible permutations of
the ordering of all its resource exchange optioris: E&ch permutation represents an assignment (or

with different agents, each leading to an incremen&{ocation) set. erred ection b
social gain towards achieving the joint goal. The !1(f) € 1t is referred to as a resource selection by

agent, possessing only partial A-QoS informatioffSKt € 7' (under an arbitrary permutation 6f).

would need to determine its preferences througﬂtuitively,ﬂ(l) specifies that no two different tasks
some form of reasoning that entails negotiatiof€/€Ct the same resource, and every task gelects

by exchanging A-QoS information believed to b8MY ON€ resource inkt. An assignment set (or
useful for determining its own preferences or thilMPIYy assignment) corresponds to one permutation

preferences of its collaborating agents. Conceptua?-gH (1); and can also be equivalently represented as
the mediation also requires a simple arbitratigrPnt@ining elements of the fonft, 11(¢)) € 7' x R.
agent, and a collaborative agent's preferences calNOt€ that if |T'| = |&], then every resource iR
naturally be viewed as the agendssires(generated 'S S€lected (by one different task 1.
motivations), of which itsntention(decisive stance)
represents perhaps the best (local) desire thatBit A Simple Example
commits to in an arbitrary round of negotiation. consjder the followings x 3 LAP example, with
The result is a novel Belief-Desire-Intention (BDI)
negotiation model for CLAP. The proposed model T = {to, 11,2} and R = {rg,r1,m2}.
extends existing LAP solutions froentralized al- +14 individual A-QoS values are tabulatedThR
gorithmic processingo distributed agent reasoning Table .

Following, the key contribution in this report is

a basic BDI negotiation model for CLAP, by which TABLE |

a distributed agent algorithm is developed (Sections A 3 x 3 LAP MATRIX
Il and Ill) that we examine both analytically and o T1 T2
experimentally (Sections IV and V). Discussions to {1‘5} 2 {f}
in relation to existing multiagent research efforts o 8 (7} 3

examine the significance of the work (Section VI).

For this example, the optimal solution consists of

1. THE LINEAR ASSIGNMENTPROBLEM (LAP) the assignment s€(fo, 7o), (t1,72), (12, )}, with

A. Problem Formulation maximal total A-QoS of 14 + 4 + 7 = 25.

Let T = {to,tr, -t} and R = Existing algorithms such as [5] can yield such
{ro,r1,---,7r_1} denote a set of tasks and reoptlrn_al solutions. These are, however, minimization
sources respectively; and algorithms, so to solve our A-QoS maximization

problem, they need to operate on7aR table of
dij = d[t;,r;], fort; € T,r; € R negatedA-QoS values.



LAP is fundamental in a variety of resourceesources - a task agent can exchange its current
allocation applications. For example, in a multipleesource selection for to achieve its end. Every task
sensor-multiple target tracking probler; repre- agent then beginsiegotiating by communicating
sents a set of tracks anf represents a set ofwith one another to acquire A-QoS data from any
sensors. In the example, the A-QoS vallje,r;] task agent whose current resource selection is in the
represents the effectiveness of the resoutce R agent’s belief set. In collaborating, any such agents
for task t; € T, and the goal is to find a setwill respond with the required A-QoS values, using
of allocations (i.e., a permutation dil (1)) that which the agent would deliberate to determine its

maximizes the total A-QoS (2). own desireset - the means of exchanging its cur-
rent resource selection for options (that survive the
C. CLAP: A Distributed LAP deliberation) with the respective agents (currently

In this section, we propose a new coIIaborativléOIdIng on to these options). As a final step in

. negotiation round, the agent will select the best
agent approach to LAP. This distributed approaj-\ cal) desire - the one that offers a net exchange

involves different task agents capable of interacti rﬁ(ii” that is the hiahest from the agent's perspective
collaboratively with one another to select differe o € highestr 9 PErsp
- as itsintention which it would then use as the

resources during problem solving. basis for a resource exchange proposal. All the
The basic approach is to decompose fheR , nge prop '
efﬁggnts resource exchange intentions (or the lack

table row-wise, such that each task agent repres o . .
(i.e., has the responsibility of selectigg a repsour&ereoﬂ would undergo arbitration to decide which

7 & It for) a task; € T and has A-QoS knowledgey ¢ B0 0 BOEeet M 10 e ound
of task t; € T only, namely, the individual A- 9 ’

QoS valuesd[t;, r] for all resources: € R. For begins. The negotiation process terminates when

the example of Section II-B, three task agents a?gnultaneously, all task agents have no (more) in-

needed; each agent represents a diffeteat? and ention to exchange resources.

only has A-QoS knowledge contained in therow o

of Table I. A task agent representing task 7 is B. BDI Concept Formalization

called at-agent; for convenience, where it is clear To formally ground the BDI concepts for CLAP,

in the context, we simply use the terrtaskt € 7' the following CLAP-specific data structures are

or agentt € T to refer to at-agent formally defined in such a way that they can be
The goal of LAP becomes the joint goal of thesmaturally interpreted as a task agent’s beliefs, desires

task agents, and we call the resulting problemaad intentions computed in an arbitrary round of

collaborative LAP (CLAP). In attempting to reaclcollaborative negotiation. In these definitions, the

an optimal assignment solution, the basic issuecarrent resource selections of all agents refer to

task agent faces is deciding what resource exchanigese made under an arbitrary permutatiodlqfl).

option to propose, as detailed in Section Ill. Definition 1 (Belief SeB;): Given that an agent
t; € T’s current resource selection 6 € R. Then
[11. BAsSIC BDI NEGOTIATION MODEL FOR its (current) belief seB; is given by
CLAP

A. An Overview If B; # 0, this means that agetit € T has at least
The proposed model divides the reasoning prone alternative resource selectiore B; that may
cess into negotiation rounds, and in each rouridad to increase in total A-QoS (2) (when made in
performs negotiative means-end reasoning, whenechange with an agent whose current selection is

theendis to increase the social value, i.e., the totale R).

allocated A-QoS (2), using thmeansof resource  Definition 2 (Desire Seb;): Given that an agent
exchange between two task agents. In each rounds T's current resource selectionis € R and its
each task agent locally accesses and directly abtdief set isB;, B; # (). An arbitrary agent; € T
only on its own row of A-QoS data, and determineshose current resource selectionrisc R is said
its belief set - the information or evidence thato accept agent; € T's beliefs B, if 7 € B;. To
indicates all the possible options - the alternatigenerate the desired exchange options or deBifes



agentt; € T broadcasts its belief8; and current "o no_ " - o T T2
selection’ € R, and an arbitrary agemf € 7who [fo | {14 S 8 | = |# |{14 S5 8
accepts the beliefs would respond with a pair of Al |2 {6} 4 t] 2 & {4
QoS valuesd[t;, 7] and d[t;,7], so that for each ] 8 7 {8 ta|] 8 {7} 3
of the |B;| responses received, the corresponding Table (a) Table (b)

resource exchange optidit;, /), (t;,r"), p] € D;
(i.e., is agent; € T's desire) ifp > 0, wherep is
defined by

Fig. 1. Example to illustratéMA®

p=—d[t;,r"] +d[t;,r’] — d[t;, ] + d[t;,r"] (4) 1)mAI%]orirEhrrr;]ic ?et?ilsl:(The gn?n%réctﬁDl r%aﬁonr- I
.If p >0, it means that t_here 'S & net exc_hange gd@gthee%r%itlr?atiog gggr?t i%ggn grbitrare “ound of
if agentt; € T' gives up its current selectiot € R collaborative negotiation can now be

and selects’ € R, and in exchange, agent € 7' follows:
gives up its current selectio € R and selects
r* € R. Thus, any desird ¢ D;, when carried out,
will definitely lead to an increase in total A-QoS
without violatingIT (1). Quite naturally, it provides
the motivation for agent; € 7" to want to exchange
its current resource selection.

Definition 3 (Intention/;): Given that an agent
t; € T's desire set isD;, D; # (. Then, agent
t; € T's intention /; is given by 3)

round of
escribed as

MA? : Collaborative (Task) Agent

1) If agent believes that there are alternative resource se-
lections which may lead to increase in total A-QoS, it
would, based on its (local) beliefs, generate the desired
exchange options or desires, from which the best option
will be chosen as its intention.

) Agent submits its intention (or the lack thereof) to the

arbitration agent.

Concurrent with Step 1 and Step 2, it responds to any re-

questing task agent whose beliefs it accepts, by sending

to the requesting agent the A-QoS values as required for
computing the requesting agent’s desire.

4) Agent changes its resource selection (and then acknowl-

edges it), proceeds to next round of negotiation or quit,
as decided by the arbitration agent.

[’i = [(ti,rj), (tj,ri),p] € Di, for which (5)
p=max{p | [-,— p] €D}
Agentt; € T's decisive stance or intention has to
be I; since it is the best exchange option that the
agent can propose. It is said to have no intention if
eitherB; = () or D; = (.

Finally, in the role of arbitration, an intention with
the highest exchange gain, i.e., one that contributest)
to the highest increase (in total A-QoS) if carried )
out, is selected from all the agents’ intentiahs |
gathered.

With the above formalization, a distributed agent
algorithm that realizes the BDI negotiation model
is proposed in the next section. This algorithm is
referred to as aMulti-Agent AssignmentAlgorithm b)
(MA3), and handles the simple role of arbitration
through a dedicated agent.

MA3 : Arbitration Agent

Agent first receives the intentions (or the lack thereof) of

all the task agents.

) If agent sees that all task agents have no intention to
exchange, it terminates the negotiation by telling all task
agents to quit.

3) Otherwise, it

a) selects an intention with the highest exchange gain
and instructs the two agents concerned to proceed
with the resource exchange;

receives acknowledgement of resource exchange

made as instructed (from the two agents con-

cerned), before telling all task agents to proceed
to next round of negotiation.

- . 2) An Example:To illustrate the working mech-

C. Distributed Agent Algorithm anisms of the proposeMA?, consider the earlier

MA3 assumes thall'| = |R| = N, and consists example problem presented in Section II-B. Fig. 1
of an arbitration agent (or arbiter) and a team shows two assignment tables for the problem, in
t-agents,t € T. Agentt € T only has A-QoS which the resource selection of each agentc
knowledge of the task it represents, i.é[;,r] for {to,t1,t2} is represented by enclosing the corre-
allr € R. Each task agent initially selects a resourconding A-QoS value withid }.
r € R according to (a permutation of]f : 7" — R Referring to Fig. 1, Table (a) represents a ran-
(1). The arbiter then initiates negotiation. domly selected (initial) assignment and Table (b)



represents a solution assignment. The following
illustrates how the solution can be obtained by
collaborative negotiations.

« Round 1

— Agent t, selectsr, and agentt; selects

agent tells all agents to proceed to next
round of negotiation.
« Round 2

— Agentt, selectsry, and believes that it has
the best selection because its belief set is

r1 (as initialized). Both agents believe that
they have the best selection because their
belief sets are empty, hence no desire, and
therefore no intention.

Agent t, selectsry (as initialized) but
believes that there are alternative resource
selections that may increase the total A-
QoS, namely resourceg andr;. It there-
fore generates its desired exchange options
as follows:

x for exchange with agent,, the ex-
change gain is

—d[tz, 7’2] —|—d[t2, T’Q] — d[to, To] —l—d[to, T‘Q]

which is equal to—3 +8 — 14 + 8 =
-1 <0.

« for exchange with agent;, the ex-
change gain is

—d[tg, 7’2] +d[t2, 7’1] — d[tl, 7”1] +d[t1, 7”2]

which is equal to-3+7—6+4 = 2 > 0.

*x Hence, its only desire IS
[(t2,71), (t1,72),2] and is therefore
also its intention.

To get the required pairs of A-QoS values
{d[toﬂTO]a

d[to, o]} and{d[t,, 1], d[t1, 7]} for com-
puting its desire set as done above, agent
t, broadcasts its belief sefrq,,m} and
current selection, € R. The respective
agents whose current resource selection
is in agentt,’s belief set respond with
those values. In subsequent rounds, such
broadcasts and responses are deemed un-
derstood and will not be mentioned again.
Agentst,, t; andt, send their intentions
(or the lack thereof) to the arbitration
agent.

The arbitration agent tells agent to

empty, hence no desire, and therefore no
intention.

Agent t; selectsry but believes that an
alternative resource selection may in-
crease the total A-QoS. It therefore gen-
erates its desired exchange options as fol-
lows:

x for exchange with agent,, the ex-
change gain is

—d[tl, 7’2} +d[t1, 7’1] — d[tg, 7”'1] +d[t2, 7”2]

which is equal to-44-6—-7+3 = -2 <
0.

* Hence, it has no desire, and therefore
no intention.

Agent t, selectsr; but believes that an
alternative resource selection may in-
crease the total A-QoS. It therefore gen-
erates its desired exchange options as fol-
lows:

« for exchange with agent,, the ex-
change gain is

—d[ty, r1] +d[t2, ro] — d[to, 70| +d[to, 1]

which is equal to—7+8 — 14+ 5 =
-8 < 0.

* Hence, it has no desire, and therefore
no intention.

— Agents ty, t; and ¢, send their lack of

intentions to the arbitration agent.

— The arbitration agent tells all agerts ¢,

andt, to quit. The final resource selections
of the agents yield the solution as shown
in Table (b) of Fig. 1.

IV. THEORETICAL ANALYSIS

In this section, we present an analysis of ffie

change its resource selection t9 and N CLAP via a formulation of an assignment reach-

agentt, to change it tor;.

ability graph for the problem. Using the properties

Once both agentg; and ¢, inform the of the reachability graph, basic properties about
arbitration agent that they have changetie proposedVMA3, and hence the BDI negotiation
the selections as instructed, the arbitratiamodel for CLAP, are formalized.



A. The Assignment Reachability Graph

We model the possible sequential execution of
desires in a reachability graph as follows:

For a set of task§” and a set of resources, for
which |T'| = |R| = N > 2, let

represent an assignment reachability graph (ARG)
in which

¢ < (v,D,s,V,) (6)

1) V denotes a (nonempty) finite set of states

2)
3)

4)

uniquely characterizing the permutations[bf Fig. 2. Assignment reachability graph: An example

(1), and we writd1(t)|, to denote the resource

selection of task € T' in statev € V. |V| =

N!. The total A-QoS (2) in a state € V Definition 4 (Max-Transition):At an arbitrary
(i.e., a permutation ofl) is denoted bylv| statev € V, a max-transition is a desig,,, € D
and given by for which

(V-1) Nemaz|e = max{Ael, | é(e,v) € V}. (7)
o] = D dlts, TI(t:)].).
=0

A max-transitione, ., € D is unique if Ae,naz |, >

Nel, foralle € D, §(e,v) € V for whiche # ;4.

A max-transition represents thHeestintention that

the arbitration agent selects to conclude a round of
gotiation.

1) An Example: Note that an ARGG can be
naturally described by a directed-transition graph.
Fig. 2 shows an ARG for the simple example
presented in Section II-B.

Negly = {=d[t;, TI(t;)|o] + d[t;, T1(t,)|]} + To ir}terrlpr?tlllzig. 2 correctrlly, itis neclessary to take
o , ‘ , ote of the following: For this example, as seen in
{=dlt, () o]+ dllty, 1) o]} > -R Table I, there are no equal A-QoS values in
We can interprefie;;|,, as the increase in totaleach row. Thus, for simplicity, in each statec V/,
A-QosS if taskt; and taskt; exchange their we list only the A-QoS values such that the top most
resource selections held in statec V, i.e., value is due to a resource selection by aggnthe
II(t;)|, andIl(t;)|,, respectively. next is due to that by agent and so on. In a state
V, C V denotes a finite set of terminal states; € V/, one can easily determine froff+ R Table
such that forv, € V,, d(e,v,) is not defined | which resource has been selected by which agent.
for anye € D. For instance, in state, € V/, the top most value

D CV x V denotes a finite set of desires.
0 : DxV — V is a state transition
function (due to resource exchange betwe
two arbitrary taskst;,t; € T), such that
5(6@',1)) = ’Ul eV iff H(tz)|vl = H(t]>|v
andI1(t;)|» = TI(t;)|, and the magnitude of
eij € D, Ae;jl, > 0, is defined by

Let D* contain all possible finite sequences, disted is 5 which is due to the resource selection by
strings, overD, plus the null strings. Then, def- taskio, thus we know that task, selects resource

inition of § can be extended t®* as follows: 71 in statev, € V, sinced[ty, 1] = 5 as in Table I.
For 6(e;;,v) = ¢/, the information associated with
d(e,v) = v, ¢;; at statev € V is represented as;, Aeyjl,.
) . 5 :
(Ve € D)(Vw € D*),8(we, v) = 6(e, 8(w, v)). In the illustration of the proposedA® in Section

IlI-C.2 that uses the same example problem, we

For a strings € D*, |s| denotes the length of thenote that the negotiation starts from statee V
string, i.e., the number of elements of é&tn string of the ARG in Fig. 2, since it is an equivalent
s. |s|=01if s =e. (and unique) representation of Table (a) in Fig.
We conclude this section with the following defl. In the illustration, after round 1, the arbitration
inition. agent approves the only and best intention proposed,



as represented by transition, that leads state Proof : If §(w,v) = o' for w € D* — {¢}, then
vy € V to statevs € V, representing Table (b)by applying Property 1 recursively over € D*,
of Fig. 1. But although these agents have reached > |v|. Clearly, there is no string € D* such
a terminal state of the ARG, the task agents ontigat §(z,v") = v, for it would contradict the fact
know about this in another round (i.e., round 2) dhat |v'| > |v|. Hence the property. |
negotiation, when the arbitration agent receives theProperty 3: V, # ) (i.e., given an arbitrary €
lack of intentions by all agents and informs them t&', Jw € D* : §(w,v) € V,).
terminate negotiation. Proof : The property follows from Property 2 and
2) Properties of ARGBelow, we establish somethe finiteness ofV/|. [
basic properties of an ARG (6).

Property 1: If e € D andé(e,v,) = vy € V, then B. Properties of Algorithm

|va| > [v1]. , ,
Proof : If (e, v1) = vq, and arbitrarilye = ¢;; € D, We now present some basic propertiesMA’.
then Theorem 1:MA? always terminates in a finite
number of negotiation rounds.
v = { > dlte, 11(tx) |0, ]} + Proof : Starting from an arbitrary statec V of an
all k€{0,+,N-1}—{i,j} ARG @ that is not a terminal statéA? traverses
{d[ti, TI(t:)]w,] + d[t;, 1(¢)]0 ]} (8) one max-transitior € D (as defined by Definition
4) in one round of negotiation such that by Propert
ol = 4 Z lti Tt )ea) ) + 3? it will eventually egter a terminal staﬁgye VOF.) g

all kei0, N-Li~{id} In a terminal state, a final round of negotiation

{dfts, 1) |oo] + dlty, ()]} (9) proceeds during which the arbitration agent receives

But there is no change in resource selections amdh§ 1ack of intentions by all agents and informs them
tasks inT — {t;,¢;} under transitiore;; € D, thus O (erminate negotiation. Hence the result. W

we can let Theorem 2:Given a random i_nitial assi_gnment,
MA3 does not guarantee an optimal solution.
c = Z d[tr, T(t)] o, | Proof : This can be established by a counter exam-
all ke{0, ,N—1}—{i,j} ple. Consider the problem instance in Fig. 3(a). As
_ Z dlte, T(t)|o,]. (10) shown in Fig. 3(b), this instance’s ARG indicates

that V, = {v4,vs}, with |vy| = 18 (optimal value)

ol KEL N =) and|vs| = 17. This means that iMA? should start

Therefore, we have at statevs € V, it will end in the same state because
it is a terminal state, bui; € V, does not represent
v2] =+ {d[ti, IL(E) o] + dt;, T1(E5)] 0] } : o
By combining Egs. (9) and (10) ?:Sl?lﬁ)tlmal solution becaudes| < |vy|. Hence t:e
= e+ {dlts, 1(t5) o, ] + dlty, TI(t:) |, ]} ' 3 "
Becausal(f;)|y, = I(t,)],, and1(t,)],, = In general, MA® cannot guarantee optimality of

- a solution it reaches since the terminal state set
_ gﬁlgg’ft,bﬁge)ﬁmatfr;g51({3(‘; ?)Tl)”— +U2 V, for a problem's ARG can possibly have more
(—d[t. ﬁ’(t-)ll ]”1+ dlt, ﬁ(t-)f ﬁ; than one element odifferent valuesand a string
{—d[tzf H(t»)rl} +d[tl? H(;)rl i of max-transitionsz the algorithm traces from an
- +Ji—d[§f' ﬁ(t»)| ]J’Jr d[; ﬁ(t-)| I+ arbitrary statev € V' cannot guarantee leading to a
Tt T8 ] - dlts Tt o]} Stated(z,v) € V, which is the optimal.
By combining Egs. (8) and (10) Theorem 3:The number of negotlat_lon rounds
that MA? takes to converge to a solution depends

= |vi| + Lely, he initial )
By definition ofe € D on the initia as&gnment. I ,
> Juil Proof : From an arbitrary initial solution statee

V, MA? traverses a max-transition € D (as

defined by Definition 4) of a problem instance’s

Hence the property. B ARG g following every negotiation round, until it
Property 2: ARG G is acyclic. reaches a terminal state, € V,. Thus, starting

Because/\e|,, > 0 by definition.



A. Simulation Results & Discussion

2
to| 9 8 7 To conduct the study, we first prototyped a sim-
th| 1 3 4 ulator for MA3. The simulator consists of a cen-
b 6 3 5 tralized program running on an InfelPentiun®
personal computer with a 1.6GHz CPU and 128MB
(RAM) memory. For anN x N problem instance,
the program generates and inputs each of Afle
initial assignment solutions to a reasoning mech-
U4§ anism which computes the agents’ resource selec-
tions which would have resulted from the distributed
agent algorithmMA?3. The centralization is aimed
at simplifying the code that, importantly, automates
and speeds up the experimental (running and data
collection) process, but with all the features of the
original algorithm retained, except for its distribu-

SetV,

eo1, +9

eo2, +3

tion.

@ In principle,MA? can handle an arbitrary problem
size N. But for a complete simulation, the number
of simulation runs required isV! per problem
instance. Clearly for a bigV, it can become in-

Fig. 3. An example that showglA*'s no guarantee of optimality tractably time Consumlng to simulate for a large

of solution number of problem instances. For experimental

purposes, we limitN = 10, requiring 10! (or
3,628,800) simulation runs per problem instance.
from different initial solution states (i.e., diﬁ:erent'rhis was manageab|e when we ran the simula-

initial assignments) may take different number qfy prototype for 100randomly generatedl( x

negotiation rounds to reach a terminal state. Hengg problem instances. Despite this limit, we note

the result. B that the simulation results can also provide a base
To illustrate, consider a problem instance in Figeference for addressing large problem instances

3(a). As shown in Fig. 3(b), iIMA? starts from state decomposed into smaller subproblems fdA?.

vy € V, it will take 2 negotiation rounds to reachproplem decomposition, however, is usually done

terminal state), € V; if it starts fromu, € V, itwill  hased on application-specific criteria that are beyond
take 3 negotiation rounds to reach the same statghe scope of this report.

(b) Problem’s ARG

For all the simulation results tabulated in this
V. EXPERIMENTAL SIMULATIONS report, the average value of each variable

In this section, we present an empirical study &f € {€we: mazs Pos Puwes Ponis Phi, Pio}, denotedZ,
MA3 to assess its performance. The performantecomputed using the respective formulae in Ap-
is assessed primarily by the solution quality prdxendix . For the definition of each variablg see
duced and the implementation-independent negatiPpendix .
ation speed. The solution quality is measured (andTable Il presents the average empirical results
graded) in terms of the various extents (in %) th&ased on 10Q0 x 10 problem instances. The experi-
a solution produced deviates from the optimal on&ental results reported herein update and extend the
and the negotiation speed is measured in termspggliminary ones presented in the conference ver-
the number of negotiation rounds needed to cosion [6] of this report, which were generated based
verge to a solution. The ‘profile’ of the performancenly on several hundreds of initial assignments.
is gathered from the various probabilities of inter- Notice that the ratio of the maximum number
est defined, which include those of converging twf negotiation roundsn,,.. (required to produce
these ‘graded’ solutions, and those of the algorithensolution) and the problem sizé approximated
running at various defined speed levels. to 1.5. We also see that the worst-case solutions



TABLE I
MA3 : EXPERIMENTAL RESULTS (AVERAGES)

Worst-Case Solution Quality Negotiation Speeq
€we Nmax PO P5 PlO P15 P2O ch -Phi ]Dlo
11.199 % 15| 0.2702| 0.8974| 0.9973| 1.0000| 1.0000| 0.0019| 0.1078| 0.0426

produced wergjood enoughin the sense that theyin terms of the agent’ mental attitudes B, D and
were either equal to or withig0% of the optimal, | to solve CLAP. However, two aspects clearly
as verified against the solutions produced by alifferentiate our work from existing BDI models. In
existing centralized algorithm [5]. In fact, for all thethe first is our approach to modelling. Existing BDI
problem instances, the probability of converging tmodels are developed without concisely formulating
a solution that is withinl0% of the optimal was the problems they attempt to solve while in our
a high score of ovef7%. Besides, the probability work, the BDI model is developed with a clear
of converging to a worst-case solution was verfgrmulation of the problem it addresses, namely,
low, and so were the respective probabilities &LAP. In the second, eacdhomenis not a moment
convergence at high speed and at low speed. Tdfereasoning in reaction to changes in its envi-
latter probabilities, i.e.P,; and P,,, mean that there ronment, but a negotiation round of collaborative
was a high probability of running at intermediateeasoning - in fact, existing BDI models give no
speed, i.e., InNX,, negotiation rounds, whefe5N < architectural consideration to explicitly multiagent
X < N for N = 10. aspects of behaviour [10] that is essential for ad-
On the average, the worst-case solution produceiessing CLAP.
was definitely good enough as its deviation from
the optimal was a good_ average 0f.199% < B. The Auction Algorithm
20%. From these simulations, we infer that, given _ _ ) _ _
a N x N CLAP instance whereé < N < 10, MA3 Deserving special men_tlo_n for applylng_ a dif-
will certainly converge to a good enough solutiof€rent metaphor of negotiation to the assignment
It will almost certainlyrun at intermediate speedProblem is the auction algorithm [11]. Each iteration
regardless of its efficient implementation, whenevé} auctioning proceeds as follows:
the initial assignment is randomly selected. How « Bid on behalf of the persons (or tasks in
the negotiation can be sped up (without degrading our context) for objects (or resources in our
solution quality) is an issue for future work. context). The bid of each person is tbbject
with the highest net valudhe net value is the
VI. RELATED WORK magnitude of the difference between the benefit
(or A-QoS value in our context) of assigning
A. BDI Models the object to this person and the object’s latest
Among the agent architectures/models (see [2, price.
Ch. 1]), the BDI model [7], [8] is one of the best « Assign each object to person with the highest
known and studied model of practical reasoning. bid for it, after unassigning the object from a
Based on a philosophical model of human practical different person (assigned with it at the start of
reasoning, originally developed by M. Bratman [9], the iteration), and adjust its price accordingly.
the basic model guides us to develop an agentfe algorithm terminates once every object has
decide moment by moment which action 0 tak§een hidded for at least once; for actual details,
in the furtherance of a goal. We adapt this modejee [11]. There have been several multiprocessor-
motivated by its appropriateness in allowing Ugnd shared memory-based implementations [3] of
to conceptualize and metaphorically describe @Re algorithm to exploit the inherently parallelizable
agent's reasoning mechanism, moment by momephases of bidding and assigning. But, to the best
) ‘ , o of our knowledge, there is no reported implemen-
It seems reaso_nableto’use good enough asaqualltat_lve_referngﬁon of the algorithm as a system of software
here since, applyingareto’s 80/20 rule80% of CLAP applications
can tolerate 0% deviation from their optimal solutions. agents performing bidding and assigning to solve
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the N x N CLAP. A multiagent implementation, The proposedA? differs from existing work on

if it exists, is at best a system oV task agents negotiation in that it employs a new BDI negotiation

negotiating with/N resource agents, possibly withmodel for CLAP (Section III).

a simple agent keeping track of the bid receipt of

each resource agent and informing all agents when _

the termination condition holds. This contrasts with- @Sk Allocation

our proposed algorithm a¥ task agents negotiating Also related are distributed approaches to task
among themselves faW resources in the presencallocation [24], [25]. If agents are appointed as col-

of an arbitration agent. laboration agents negotiating for tasks instead, then
o CLAP that they address becomes a task allocation
C. Automated Negotiation problem which can be viewed as a special version of

In distributed problem solving, negotiation is on¢he task allocation problem formally stated in [24,
way that agents use in cooperation to solve pa 68, Definition 1]. In [25], the idea ofoalition
problem. TheMA? task agents are said to be idormation through which agents arrive at task al-
negotiation since they work out, communicativelypcation solutions by themselves has been utilized.
to reach an agreement that is acceptable by bitlependently in [24], the idea afontracting to
agents; this form of negotiation is said to t@lab- address the same problem has been used. Ours uses
orative since the agreement that is reached is dueddlifferent idea oBDI reasoning and one direction
every task agent’s attempt in reasoning to contribuier future work is to extend the basic foundation
to achieving their social (sum-total maximization)leveloped in this report to address the more general
goal. problem of task or resource allocation.

In general, an automated means (or reasoning
mechanism) of negotiation for an agent can be
implemented as aegotiation protocoWithin which
adecision making model (or logigver theobjects  This report has proposed a BDI negotiation model
of negotiationresides. In the literature on generdbor the N x N CLAP, and investigated an algorithm
negotiation frameworks, agents that can negotid#A® that embodies the BDI model concepts and
with exact knowledge of each other’s cost and utilitgffers a novel approximate solution to the problem.
functions, or such knowledge learnt in the initial This research should be of theoretical interest
step of interaction, have been proposed [12], [13h multiagent researchers since to the best of our
There are agents that negotiate using the unifiedowledge, this is perhaps the first effort that de-
negotiation protocol in worth-, state-, and taskelops a BDI negotiation model with a clear formu-
driven domains where agents look for mutualliation of the problem it addresses, namely, CLAP.
beneficial deals to perform task distribution [14]The research should also be of practical interest
[15]. In negotiation via argumentation (NVA), theto application researchers as tiA3 proposed
agents negotiate by sending each other proposei¢ends existing LAP algorithms from centralized
and counter-proposals. In [16], these proposals gm®cessing to distributed agent reasoning. It is hoped
accompanied by supporting arguments (explicit jutitat this report can shed new light on adopting
tifications) formulated as logical models. In [17], thagent approaches for solving traditional combina-
distributed constraint satisfaction problem (DCSRyrial problems in general, and inspire others to do
algorithm [18], [19] provides the computationabo.
model, extended with the supporting arguments The proposedlA? does not guarantee an optimal
(accompanying the proposals) formulated as locablution unless the initial assignment seprsperly
constraints. In [20], agents can conduct NVA igelectedin general, whether an optimal solution can
which an agent sends over its inference rules b@ obtained or not depends on the selection of the
its neighbour to demonstrate the soundness of idtial state (i.e., the initial assignment set). Future
arguments. Finally, there are also negotiating agemisrk includes developing heuristics to select an
that incorporate Al techniques (e.g. [21]) and auitial assignment set, on whidllA? might produce
tion mechanisms (e.g. [22]). For a good albeit nat solution better thayood enoughand in fewer
exhaustive review of agent negotiation, see [23]. rounds of negotiation.

VII. CONCLUSIONS



APPENDIX

1) n : number of negotiation rounds.
2) Nmaz -
terminates, and is the largest of all ob-
tained from each of theV! different initial
assignments simulated for/d x N problem

instance.

3) « : total A-QoS value (2).
4) ey - optimal o
5) a,. : worst-casen, obtained when algorithm
terminates, and is the worst of alls com-
puted based on the simulation df different
initial assignments generated for /& x N
problem instance.
€ . error, given by<|%’;j’“| X 100%).
€we . WOISt-cases, Wherea = o,
P, : probability that an initial assignment can
lead to a solution with total A-Qo& within
z% of optimal, i.e.,a € [F0%D ., a,].
P, : probability that an initial assignment canii]
lead to a worst-case solution, i.e., with=
e

whi - probability that the algorithm runs at [2]
very high speed, i.e., the number of negotia-
tion rounds it can take to reach a solution |s[ 3]
not more than the greatest integer0.3.V.

wi - probability that the algorithm runs at
high speed, i.e., the number of negotiatiorl
rounds it can take to reach a solution is no
more than the greatest integer0.5 V.

: probability that the algorithm runs at low [5]

speed, l.e., the number of negotiation rounds
it can take to reach a solution exceells (6]

All the probabilities of interest defined above are
computed using formul , Where integers is

the number of initial assignments satisfying the asz,
sociated conditionsipon termination of algorithm
and integery is the total number of different initial
assignments input for simulation.= N!.

Let N, denote the sample size, labeV-Y
identify an N x N CLAP instance, and’[Y] refer
to the value of variableZ for a N x N CLAP
instance labelledv-Y. Then the averaging formulag10]
used in Section V to determine the performance of
a proposed algorithm on a ‘per problem instance
basis’, are as foIIows Fab! € {€we, Mmaz, Mhmaz §»

N
ZM ,and P; = N%,J.ZP]-[Y

{0,

Ny

6)
7
8)

9)

10) P

11) P

12) B

(8]

[11]

where

11

pivl = (), i e

5,10, 15,20, we, vhi, hi, lo}.

maximumn, obtained when algorithm Let V,, be the number ofV x NV problem instances
used in the simulation. Then, in the formulae far,
= Np;
o if j € {hi,lo}, N, =
o if j € {0,5,10,15,20,wc}, N, < N, is the

in the formula forFP;,
N,

number of problem instanceg-Y’s for which
aw[Y] < agn[Y]. It is more representative
to average the”[Y]'s of instancesN-Y's for
which several different solutions other than the
optimal one can be obtained via extensive sim-
ulation of its V! possible initial assignments.
In our simulations, for thesé’’s, N, = 100,
but N, = 99; this is because out of the 100
randomly generatetl) x 10 problem instances,
the instancel0-3 hasa,,[3] = auwe[3].
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