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Collaborative Assignment Using BDI Multiagent
Negotiation

Kiam Tian Seow, Kwang Mong Sim and Yuan Chia Kwek

Abstract— In this report, we propose a distributed agent
model that embodies belief-desire-intention (BDI) reason-
ing and negotiation for addressing the linear assignment
problem (LAP) collaboratively. In resource allocation, LAP
is viewed as seeking a concurrent allocation of one different
resource for every task to optimize a linear sum objective
function. The proposed model provides a basic agent-based
foundation needed for efficient resource allocation in a
distributed environment. A distributed agent algorithm
realizing the BDI negotiation model is developed and exam-
ined both analytically and experimentally. The significance
of the model and its algorithm is also discussed in relation
to existing multiagent work.

Index Terms— Intelligent Agents, BDI Negotiation
Model, Reasoning Systems, Reasoning Control, Collabo-
rative Linear Assignment Problem, Decision Support.

I. I NTRODUCTION

Efficient resource allocation is a basic problem
inherent in a variety of real world applications. In
this report, we studylinear assignment, an important
subclass of this problem, but in the modern context
of multiagent systems [1], [2], and the significant
role collaborative negotiationplays in a new dis-
tributed agent-based approach to the problem.

Classical assignment problems deal with the
question of how to assignN distinct elements in
a set toN distinct elements in another on a one-
to-one basis in the best possible way; underlying
the assignmentis a combinatorial structure, with
an objective function modelling thebest way[3].
Assignment problems are distinguished by their dif-
ferent objective functions. Of fundamental interest
is the linear (sum) assignment problem (LAP) which
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attracted decades of active research [3]. In a LAP
instance, a table or matrix of assignment values is
given; cast in the important context of concurrent
resource allocation, each value indicates the A-QoS
(application quality-of-service) of one resource for
one task (e.g., see Table I, where the A-QoS of
resourcer0 for task t0 has a value of 14, and so
on). The objective of LAP is to maximize the sum
total A-QoS of the concurrent allocations1 of one
different resource for every task.

For decades, solving LAP has traditionally been
done in a centralized fashion, producing many cen-
tralized algorithms [3] as highly efficient solutions.
However, with modern advancement in commu-
nication and networking technologies, creating an
ubiquitous (distributed) environment, it is becom-
ing practically more effective or feasible to deploy
multiple problem solvers cooperating for a wider
variety of application problems that were hitherto
not possible. In exploiting this infrastructure, we are
increasingly seeing the need to have computational
entities call agents [2, Ch.1] that go beyond being
just algorithmic. Existing centralized LAP solutions
were never intended for online deployment in such
an environment.

Motivated by the naturalness and ease by which
many a variety of applications can be characterized
in terms of distributed interacting agents that co-
operate [4], we propose a multiagent perspective
to LAP, leading to a new collaborative problem
solving approach. This distributed agent approach
involves different task agents capable of interacting
collaboratively with one another to select different
resources during problem solving. The objective
of LAP becomes the joint (social) goal of these
task agents, and we call the resulting problem a
collaborative LAP (CLAP). Importantly, this new
perspective admits a logical or physical distribution

1In this study,allocating a resource to a taskis used interchange-
ably with assigning a task to a resource.
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of information and processing that characterizes a
distributed resource allocation (or task assignment)
environment.

In addressing CLAP as a distributed agent prob-
lem, a task agent attempting to reach an opti-
mal assignment faces the basic issue of deciding
what action to perform. In so doing, each agent
needs to reason about its beliefs and preferences as
well as its collaborating agents’, mediating through
negotiative interactions among the agents during
problem solving. In assignment, an agent’s beliefs
refer to its local information obtained that lead the
agent to believe whether or not there are alternative
resource selections that will help move closer to-
wards the joint goal, and its preferences refer to
the ordering of all its resource exchange options
with different agents, each leading to an incremental
social gain towards achieving the joint goal. The
agent, possessing only partial A-QoS information,
would need to determine its preferences through
some form of reasoning that entails negotiation,
by exchanging A-QoS information believed to be
useful for determining its own preferences or the
preferences of its collaborating agents. Conceptually
the mediation also requires a simple arbitration
agent, and a collaborative agent’s preferences can
naturally be viewed as the agent’sdesires(generated
motivations), of which itsintention(decisive stance)
represents perhaps the best (local) desire that it
commits to in an arbitrary round of negotiation.
The result is a novel Belief-Desire-Intention (BDI)
negotiation model for CLAP. The proposed model
extends existing LAP solutions fromcentralized al-
gorithmic processingto distributed agent reasoning.

Following, the key contribution in this report is
a basic BDI negotiation model for CLAP, by which
a distributed agent algorithm is developed (Sections
II and III) that we examine both analytically and
experimentally (Sections IV and V). Discussions
in relation to existing multiagent research efforts
examine the significance of the work (Section VI).

II. T HE L INEAR ASSIGNMENTPROBLEM (LAP)

A. Problem Formulation

Let T = {t0, t1, · · · , t|T |−1} and R =
{r0, r1, · · · , r|R|−1} denote a set of tasks and re-
sources respectively; and

dij = d[ti, rj], for ti ∈ T, rj ∈ R

be a measure of the A-QoS that a resourcerj ∈ R

can offer to a taskti ∈ T upon allocation.
Assume|T | ≤ |R|. Then formally, the objective

of the |T | × |R| LAP is to find the particular (total)
assignment mapping

Π : T → R such that forti, tj ∈ T,

i 6= j implies Π(ti) 6= Π(tj)
(1)

and the total quality of service (total A-QoS)

Stot =

|T |−1
∑

i=0

d[ti, Π(ti)] (2)

is maximized over all possible permutations of
Π. Each permutation represents an assignment (or
allocation) set.

Π(t) ∈ R is referred to as a resource selection by
task t ∈ T (under an arbitrary permutation ofΠ).
Intuitively, Π (1) specifies that no two different tasks
select the same resource, and every task inT selects
only one resource inR. An assignment set (or
simply assignment) corresponds to one permutation
of Π (1); and can also be equivalently represented as
containing elements of the form(t, Π(t)) ∈ T ×R.

Note that if |T | = |R|, then every resource inR
is selected (by one different task inT ).

B. A Simple Example

Consider the following3× 3 LAP example, with

T = {t0, t1, t2} and R = {r0, r1, r2}.

The individual A-QoS values are tabulated inT -R
Table I.

TABLE I

A 3 × 3 LAP MATRIX

r0 r1 r2

t0 {14} 5 8
t1 2 6 {4}
t2 8 {7} 3

For this example, the optimal solution consists of
the assignment set{(t0, r0), (t1, r2), (t2, r1)}, with a
maximal total A-QoS of 14 + 4 + 7 = 25.

Existing algorithms such as [5] can yield such
optimal solutions. These are, however, minimization
algorithms, so to solve our A-QoS maximization
problem, they need to operate on aT -R table of
negatedA-QoS values.
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LAP is fundamental in a variety of resource
allocation applications. For example, in a multiple
sensor-multiple target tracking problem,T repre-
sents a set of tracks andR represents a set of
sensors. In the example, the A-QoS valued[ti, rj]
represents the effectiveness of the resourcerj ∈ R

for task ti ∈ T , and the goal is to find a set
of allocations (i.e., a permutation ofΠ (1)) that
maximizes the total A-QoS (2).

C. CLAP: A Distributed LAP

In this section, we propose a new collaborative
agent approach to LAP. This distributed approach
involves different task agents capable of interacting
collaboratively with one another to select different
resources during problem solving.

The basic approach is to decompose theT -R
table row-wise, such that each task agent represents
(i.e., has the responsibility of selecting a resource
r ∈ R for) a taskti ∈ T and has A-QoS knowledge
of task ti ∈ T only, namely, the individual A-
QoS valuesd[ti, r] for all resourcesr ∈ R. For
the example of Section II-B, three task agents are
needed; each agent represents a differentti ∈ T and
only has A-QoS knowledge contained in theti-row
of Table I. A task agent representing taskt ∈ T is
called at-agent; for convenience, where it is clear
in the context, we simply use the termstask t ∈ T

or agentt ∈ T to refer to at-agent.
The goal of LAP becomes the joint goal of these

task agents, and we call the resulting problem a
collaborative LAP (CLAP). In attempting to reach
an optimal assignment solution, the basic issue a
task agent faces is deciding what resource exchange
option to propose, as detailed in Section III.

III. B ASIC BDI NEGOTIATION MODEL FOR

CLAP

A. An Overview

The proposed model divides the reasoning pro-
cess into negotiation rounds, and in each round,
performs negotiative means-end reasoning, where
the end is to increase the social value, i.e., the total
allocated A-QoS (2), using themeansof resource
exchange between two task agents. In each round,
each task agent locally accesses and directly acts
only on its own row of A-QoS data, and determines
its belief set - the information or evidence that
indicates all the possible options - the alternative

resources - a task agent can exchange its current
resource selection for to achieve its end. Every task
agent then beginsnegotiating by communicating
with one another to acquire A-QoS data from any
task agent whose current resource selection is in the
agent’s belief set. In collaborating, any such agents
will respond with the required A-QoS values, using
which the agent would deliberate to determine its
own desireset - the means of exchanging its cur-
rent resource selection for options (that survive the
deliberation) with the respective agents (currently
holding on to these options). As a final step in
a negotiation round, the agent will select the best
(local) desire - the one that offers a net exchange
gain that is the highest from the agent’s perspective
- as its intention, which it would then use as the
basis for a resource exchange proposal. All the
agents’ resource exchange intentions (or the lack
thereof) would undergo arbitration to decide which
two agents to proceed with the resource exchange,
before negotiation is concluded, and the next round
begins. The negotiation process terminates when
simultaneously, all task agents have no (more) in-
tention to exchange resources.

B. BDI Concept Formalization

To formally ground the BDI concepts for CLAP,
the following CLAP-specific data structures are
formally defined in such a way that they can be
naturally interpreted as a task agent’s beliefs, desires
and intentions computed in an arbitrary round of
collaborative negotiation. In these definitions, the
current resource selections of all agents refer to
those made under an arbitrary permutation ofΠ (1).

Definition 1 (Belief SetBi): Given that an agent
ti ∈ T ’s current resource selection isri ∈ R. Then
its (current) belief setBi is given by

Bi = {r ∈ R | d[ti, r] > d[ti, r
i]} (3)

If Bi 6= ∅, this means that agentti ∈ T has at least
one alternative resource selectionr ∈ Bi that may
lead to increase in total A-QoS (2) (when made in
exchange with an agent whose current selection is
r ∈ R).

Definition 2 (Desire SetDi): Given that an agent
ti ∈ T ’s current resource selection isri ∈ R and its
belief set isBi, Bi 6= ∅. An arbitrary agenttj ∈ T

whose current resource selection isrj ∈ R is said
to accept agentti ∈ T ’s beliefs Bi if rj ∈ Bi. To
generate the desired exchange options or desiresDi,
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agentti ∈ T broadcasts its beliefsBi and current
selectionri ∈ R, and an arbitrary agenttj ∈ T who
accepts the beliefs would respond with a pair of A-
QoS valuesd[tj, r

j] and d[tj, r
i], so that for each

of the |Bi| responses received, the corresponding
resource exchange option[(ti, rj), (tj, r

i), ρ] ∈ Di

(i.e., is agentti ∈ T ’s desire) if ρ > 0, whereρ is
defined by

ρ = −d[ti, r
i] + d[ti, r

j] − d[tj, r
j] + d[tj, r

i] (4)
If ρ > 0, it means that there is a net exchange gain
if agentti ∈ T gives up its current selectionri ∈ R

and selectsrj ∈ R, and in exchange, agenttj ∈ T

gives up its current selectionrj ∈ R and selects
ri ∈ R. Thus, any desired ∈ Di, when carried out,
will definitely lead to an increase in total A-QoS
without violatingΠ (1). Quite naturally, it provides
the motivation for agentti ∈ T to want to exchange
its current resource selection.

Definition 3 (IntentionIi): Given that an agent
ti ∈ T ’s desire set isDi, Di 6= ∅. Then, agent
ti ∈ T ’s intentionIi is given by

Ii = [(ti, r
j), (tj, r

i), ρ] ∈ Di, for which

ρ = max{ρ′ | [−,−, ρ′] ∈ Di }
(5)

Agent ti ∈ T ’s decisive stance or intention has to
be Ii since it is the best exchange option that the
agent can propose. It is said to have no intention if
eitherBi = ∅ or Di = ∅.

Finally, in the role of arbitration, an intention with
the highest exchange gain, i.e., one that contributes
to the highest increase (in total A-QoS) if carried
out, is selected from all the agents’ intentionsIi ∈ I

gathered.
With the above formalization, a distributed agent

algorithm that realizes the BDI negotiation model
is proposed in the next section. This algorithm is
referred to as aMulti-AgentAssignmentAlgorithm
(MA3), and handles the simple role of arbitration
through a dedicated agent.

C. Distributed Agent Algorithm

MA3 assumes that|T | = |R| = N , and consists
of an arbitration agent (or arbiter) and a team of
t-agents,t ∈ T . Agent t ∈ T only has A-QoS
knowledge of the task it represents, i.e.,d[t, r] for
all r ∈ R. Each task agent initially selects a resource
r ∈ R according to (a permutation of)Π : T → R

(1). The arbiter then initiates negotiation.

r0 r1 r2 r0 r1 r2

t0 {14} 5 8
MA

3

=⇒ t0 {14} 5 8
t1 2 { 6} 4 t1 2 6 {4}
t2 8 7 {3} t2 8 {7} 3

Table (a) Table (b)

Fig. 1. Example to illustrateMA3

1) Algorithmic Details:The generic BDI reason-
ing mechanism of a task agent and the simple role
of the arbitration agent in an arbitrary round of
collaborative negotiation can now be described as
follows:

MA3 : Collaborative (Task) Agent

1) If agent believes that there are alternative resource se-
lections which may lead to increase in total A-QoS, it
would, based on its (local) beliefs, generate the desired
exchange options or desires, from which the best option
will be chosen as its intention.

2) Agent submits its intention (or the lack thereof) to the
arbitration agent.

3) Concurrent with Step 1 and Step 2, it responds to any re-
questing task agent whose beliefs it accepts, by sending
to the requesting agent the A-QoS values as required for
computing the requesting agent’s desire.

4) Agent changes its resource selection (and then acknowl-
edges it), proceeds to next round of negotiation or quit,
as decided by the arbitration agent.

MA3 : Arbitration Agent

1) Agent first receives the intentions (or the lack thereof) of
all the task agents.

2) If agent sees that all task agents have no intention to
exchange, it terminates the negotiation by telling all task
agents to quit.

3) Otherwise, it
a) selects an intention with the highest exchange gain

and instructs the two agents concerned to proceed
with the resource exchange;

b) receives acknowledgement of resource exchange
made as instructed (from the two agents con-
cerned), before telling all task agents to proceed
to next round of negotiation.

2) An Example:To illustrate the working mech-
anisms of the proposedMA3, consider the earlier
example problem presented in Section II-B. Fig. 1
shows two assignment tables for the problem, in
which the resource selection of each agentti ∈
{t0, t1, t2} is represented by enclosing the corre-
sponding A-QoS value within{}.

Referring to Fig. 1, Table (a) represents a ran-
domly selected (initial) assignment and Table (b)
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represents a solution assignment. The following
illustrates how the solution can be obtained by
collaborative negotiations.

• Round 1
– Agent t0 selectsr0 and agentt1 selects

r1 (as initialized). Both agents believe that
they have the best selection because their
belief sets are empty, hence no desire, and
therefore no intention.

– Agent t2 selects r2 (as initialized) but
believes that there are alternative resource
selections that may increase the total A-
QoS, namely resourcesr0 andr1. It there-
fore generates its desired exchange options
as follows:
∗ for exchange with agentt0, the ex-

change gain is

−d[t2, r2]+d[t2, r0]−d[t0, r0]+d[t0, r2]

which is equal to−3 + 8 − 14 + 8 =
−1 ≤ 0.

∗ for exchange with agentt1, the ex-
change gain is

−d[t2, r2]+d[t2, r1]−d[t1, r1]+d[t1, r2]

which is equal to−3+7−6+4 = 2 > 0.
∗ Hence, its only desire is

[(t2, r1), (t1, r2), 2] and is therefore
also its intention.

– To get the required pairs of A-QoS values
{d[t0, r0],
d[t0, r2]} and{d[t1, r1], d[t1, r2]} for com-
puting its desire set as done above, agent
t2 broadcasts its belief set{r0, r1} and
current selectionr2 ∈ R. The respective
agents whose current resource selection
is in agent t2’s belief set respond with
those values. In subsequent rounds, such
broadcasts and responses are deemed un-
derstood and will not be mentioned again.

– Agents t0, t1 and t2 send their intentions
(or the lack thereof) to the arbitration
agent.

– The arbitration agent tells agentt1 to
change its resource selection tor2 and
agentt2 to change it tor1.

– Once both agentst1 and t2 inform the
arbitration agent that they have changed
the selections as instructed, the arbitration

agent tells all agents to proceed to next
round of negotiation.

• Round 2
– Agent t0 selectsr0 and believes that it has

the best selection because its belief set is
empty, hence no desire, and therefore no
intention.

– Agent t1 selectsr2 but believes that an
alternative resource selectionr1 may in-
crease the total A-QoS. It therefore gen-
erates its desired exchange options as fol-
lows:
∗ for exchange with agentt2, the ex-

change gain is

−d[t1, r2]+d[t1, r1]−d[t2, r1]+d[t2, r2]

which is equal to−4+6−7+3 = −2 ≤
0.

∗ Hence, it has no desire, and therefore
no intention.

– Agent t2 selectsr1 but believes that an
alternative resource selectionr0 may in-
crease the total A-QoS. It therefore gen-
erates its desired exchange options as fol-
lows:
∗ for exchange with agentt0, the ex-

change gain is

−d[t2, r1]+d[t2, r0]−d[t0, r0]+d[t0, r1]

which is equal to−7 + 8 − 14 + 5 =
−8 ≤ 0.

∗ Hence, it has no desire, and therefore
no intention.

– Agents t0, t1 and t2 send their lack of
intentions to the arbitration agent.

– The arbitration agent tells all agentst0, t1
andt2 to quit. The final resource selections
of the agents yield the solution as shown
in Table (b) of Fig. 1.

IV. T HEORETICAL ANALYSIS

In this section, we present an analysis of theN ×
N CLAP via a formulation of an assignment reach-
ability graph for the problem. Using the properties
of the reachability graph, basic properties about
the proposedMA3, and hence the BDI negotiation
model for CLAP, are formalized.
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A. The Assignment Reachability Graph

We model the possible sequential execution of
desires in a reachability graph as follows:

For a set of tasksT and a set of resourcesR, for
which |T | = |R| = N ≥ 2, let

G
def
= (V,D, δ, Vo) (6)

represent an assignment reachability graph (ARG)
in which

1) V denotes a (nonempty) finite set of states
uniquely characterizing the permutations ofΠ
(1), and we writeΠ(t)|v to denote the resource
selection of taskt ∈ T in statev ∈ V . |V | =
N !. The total A-QoS (2) in a statev ∈ V

(i.e., a permutation ofΠ) is denoted by|v|
and given by

|v| =

(N−1)
∑

i=0

d[ti, Π(ti)|v].

2) D ⊆ V × V denotes a finite set of desires.
3) δ : D × V → V is a state transition

function (due to resource exchange between
two arbitrary tasksti, tj ∈ T ), such that
δ(eij, v) = v′ ∈ V iff Π(ti)|v′ = Π(tj)|v
and Π(tj)|v′ = Π(ti)|v and the magnitude of
eij ∈ D, △eij|v > 0, is defined by

△eij|v = {−d[ti, Π(ti)|v] + d[ti, Π(tj)|v]} +

{−d[tj, Π(tj)|v] + d[tj, Π(ti)|v]} > 0.

We can interpret△eij|v as the increase in total
A-QoS if task ti and tasktj exchange their
resource selections held in statev ∈ V , i.e.,
Π(ti)|v andΠ(tj)|v, respectively.

4) Vo ⊆ V denotes a finite set of terminal states
such that forvo ∈ Vo, δ(e, vo) is not defined
for any e ∈ D.

Let D∗ contain all possible finite sequences, or
strings, overD, plus the null stringε. Then, def-
inition of δ can be extended toD∗ as follows:

δ(ε, v) = v,

(∀e ∈ D)(∀w ∈ D∗), δ(we, v) = δ(e, δ(w, v)).

For a strings ∈ D∗, |s| denotes the length of the
string, i.e., the number of elements of setD in string
s. |s| = 0 if s = ε.

We conclude this section with the following def-
inition.

5
2
3

8
2
7

14
4
7

5
4
8

*
e02, +7

j

e12, +7

8
6
8

14
6
3

:
e01, +13

°

e12, +5

o
e01, +5

:
e02, +1

j

e01, +8

qe12, +2

*

e02, +8

v0

v1

v3

v2

v4

v5

Fig. 2. Assignment reachability graph: An example

Definition 4 (Max-Transition):At an arbitrary
statev ∈ V , a max-transition is a desireemax ∈ D

for which

△emax|v = max{△e|v | δ(e, v) ∈ V }. (7)

A max-transitionemax ∈ D is unique if△emax|v >

△e|v for all e ∈ D, δ(e, v) ∈ V for which e 6= emax.
A max-transition represents thebest intention that
the arbitration agent selects to conclude a round of
negotiation.

1) An Example: Note that an ARGG can be
naturally described by a directed-transition graph.
Fig. 2 shows an ARG for the simple example
presented in Section II-B.

To interpret Fig. 2 correctly, it is necessary to take
note of the following: For this example, as seen in
T -R Table I, there are no equal A-QoS values in
each row. Thus, for simplicity, in each statevi ∈ V ,
we list only the A-QoS values such that the top most
value is due to a resource selection by agentt0, the
next is due to that by agentt1 and so on. In a state
vi ∈ V , one can easily determine fromT -R Table
I which resource has been selected by which agent.
For instance, in statev0 ∈ V , the top most value
listed is 5 which is due to the resource selection by
task t0, thus we know that taskt0 selects resource
r1 in statev0 ∈ V , sinced[t0, r1] = 5 as in Table I.
For δ(eij, v) = v′, the information associated with
eij at statev ∈ V is represented aseij, △eij|v.

In the illustration of the proposedMA3 in Section
III-C.2 that uses the same example problem, we
note that the negotiation starts from statev4 ∈ V

of the ARG in Fig. 2, since it is an equivalent
(and unique) representation of Table (a) in Fig.
1. In the illustration, after round 1, the arbitration
agent approves the only and best intention proposed,



7

as represented by transitione12 that leads state
v4 ∈ V to statev5 ∈ Vo representing Table (b)
of Fig. 1. But although these agents have reached
a terminal state of the ARG, the task agents only
know about this in another round (i.e., round 2) of
negotiation, when the arbitration agent receives the
lack of intentions by all agents and informs them to
terminate negotiation.

2) Properties of ARG:Below, we establish some
basic properties of an ARGG (6).

Property 1: If e ∈ D andδ(e, v1) = v2 ∈ V , then
|v2| > |v1|.
Proof : If δ(e, v1) = v2, and arbitrarilye = eij ∈ D,
then

|v1| = {
∑

all k∈{0,··· ,N−1}−{i,j}

d[tk, Π(tk)|v1
]} +

{d[ti, Π(ti)|v1
] + d[tj, Π(tj)|v1

]} (8)

|v2| = {
∑

all k∈{0,··· ,N−1}−{i,j}

d[tk, Π(tk)|v2
]} +

{d[ti, Π(ti)|v2
] + d[tj, Π(tj)|v2

]} (9)

But there is no change in resource selections among
tasks inT − {ti, tj} under transitioneij ∈ D, thus
we can let

c =
∑

all k∈{0,··· ,N−1}−{i,j}

d[tk, Π(tk)|v1
]

=
∑

all k∈{0,··· ,N−1}−{i,j}

d[tk, Π(tk)|v2
]. (10)

Therefore, we have

|v2| = c + {d[ti, Π(ti)|v2
] + d[tj, Π(tj)|v2

]}
By combining Eqs. (9) and (10)

= c + {d[ti, Π(tj)|v1
] + d[tj, Π(ti)|v1

]}
BecauseΠ(ti)|v2

= Π(tj)|v1
andΠ(tj)|v2

=
Π(ti)|v1

by definition ofδ(eij, v1) = v2

= c + {d[ti, Π(ti)|v1
] + d[tj, Π(tj)|v1

]}+
{−d[ti, Π(ti)|v1

] + d[ti, Π(tj)|v1
]}+

{−d[tj, Π(tj)|v1
] + d[tj, Π(ti)|v1

]}
= |v1| + {−d[ti, Π(ti)|v1

] + d[ti, Π(tj)|v1
]}+

{−d[tj, Π(tj)|v1
] + d[tj, Π(ti)|v1

]}
By combining Eqs. (8) and (10)

= |v1| + △e|v1

By definition of e ∈ D

> |v1|
Because△e|v1

> 0 by definition.

Hence the property.
Property 2: ARG G is acyclic.

Proof : If δ(w, v) = v′ for w ∈ D∗ − {ε}, then
by applying Property 1 recursively overw ∈ D∗,
|v′| > |v|. Clearly, there is no stringx ∈ D∗ such
that δ(x, v′) = v, for it would contradict the fact
that |v′| > |v|. Hence the property.

Property 3: Vo 6= ∅ (i.e., given an arbitraryv ∈
V , ∃w ∈ D∗ : δ(w, v) ∈ Vo).
Proof : The property follows from Property 2 and
the finiteness of|V |.

B. Properties of Algorithm

We now present some basic properties ofMA3.
Theorem 1:MA3 always terminates in a finite

number of negotiation rounds.
Proof : Starting from an arbitrary statev ∈ V of an
ARG G that is not a terminal state,MA3 traverses
one max-transitione ∈ D (as defined by Definition
4) in one round of negotiation such that by Property
3, it will eventually enter a terminal statevo ∈ Vo.
In a terminal state, a final round of negotiation
proceeds during which the arbitration agent receives
the lack of intentions by all agents and informs them
to terminate negotiation. Hence the result.

Theorem 2:Given a random initial assignment,
MA3 does not guarantee an optimal solution.
Proof : This can be established by a counter exam-
ple. Consider the problem instance in Fig. 3(a). As
shown in Fig. 3(b), this instance’s ARG indicates
that Vo = {v4, v5}, with |v4| = 18 (optimal value)
and |v5| = 17. This means that ifMA3 should start
at statev5 ∈ V , it will end in the same state because
it is a terminal state, butv5 ∈ Vo does not represent
an optimal solution because|v5| < |v4|. Hence the
result.

In general,MA3 cannot guarantee optimality of
a solution it reaches since the terminal state set
Vo for a problem’s ARG can possibly have more
than one element ofdifferent values, and a string
of max-transitionsx the algorithm traces from an
arbitrary statev ∈ V cannot guarantee leading to a
stateδ(x, v) ∈ Vo which is the optimal.

Theorem 3:The number of negotiation rounds
that MA3 takes to converge to a solution depends
on the initial assignment.
Proof : From an arbitrary initial solution statev ∈
V , MA3 traverses a max-transitione ∈ D (as
defined by Definition 4) of a problem instance’s
ARG G following every negotiation round, until it
reaches a terminal statevo ∈ Vo. Thus, starting
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t0 9 8 7
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t2 6 3 5
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(b) Problem’s ARG

Fig. 3. An example that showsMA3’s no guarantee of optimality
of solution

from different initial solution states (i.e., different
initial assignments) may take different number of
negotiation rounds to reach a terminal state. Hence
the result.

To illustrate, consider a problem instance in Fig.
3(a). As shown in Fig. 3(b), ifMA3 starts from state
v4 ∈ V , it will take 2 negotiation rounds to reach
terminal statev4 ∈ V ; if it starts fromv0 ∈ V , it will
take 3 negotiation rounds to reach the same state.

V. EXPERIMENTAL SIMULATIONS

In this section, we present an empirical study of
MA3 to assess its performance. The performance
is assessed primarily by the solution quality pro-
duced and the implementation-independent negoti-
ation speed. The solution quality is measured (and
graded) in terms of the various extents (in %) that
a solution produced deviates from the optimal one,
and the negotiation speed is measured in terms of
the number of negotiation rounds needed to con-
verge to a solution. The ‘profile’ of the performance
is gathered from the various probabilities of inter-
est defined, which include those of converging to
these ‘graded’ solutions, and those of the algorithm
running at various defined speed levels.

A. Simulation Results & Discussion

To conduct the study, we first prototyped a sim-
ulator for MA3. The simulator consists of a cen-
tralized program running on an Intelr Pentiumr

personal computer with a 1.6GHz CPU and 128MB
(RAM) memory. For anN × N problem instance,
the program generates and inputs each of theN !
initial assignment solutions to a reasoning mech-
anism which computes the agents’ resource selec-
tions which would have resulted from the distributed
agent algorithmMA3. The centralization is aimed
at simplifying the code that, importantly, automates
and speeds up the experimental (running and data
collection) process, but with all the features of the
original algorithm retained, except for its distribu-
tion.

In principle,MA3 can handle an arbitrary problem
sizeN . But for a complete simulation, the number
of simulation runs required isN ! per problem
instance. Clearly for a bigN , it can become in-
tractably time consuming to simulate for a large
number of problem instances. For experimental
purposes, we limitN = 10, requiring 10! (or
3,628,800) simulation runs per problem instance.
This was manageable when we ran the simula-
tor prototype for 100randomly generated10 ×
10 problem instances. Despite this limit, we note
that the simulation results can also provide a base
reference for addressing large problem instances
decomposed into smaller subproblems forMA3.
Problem decomposition, however, is usually done
based on application-specific criteria that are beyond
the scope of this report.

For all the simulation results tabulated in this
report, the average value of each variableZ,
Z ∈ {ǫwc, nmax, Px, Pwc, Pvhi, Phi, Plo}, denotedZ,
is computed using the respective formulae in Ap-
pendix . For the definition of each variableZ, see
Appendix .

Table II presents the average empirical results
based on 10010×10 problem instances. The experi-
mental results reported herein update and extend the
preliminary ones presented in the conference ver-
sion [6] of this report, which were generated based
only on several hundreds of initial assignments.

Notice that the ratio of the maximum number
of negotiation roundsnmax (required to produce
a solution) and the problem size10 approximated
to 1.5. We also see that the worst-case solutions
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TABLE II

MA3 : EXPERIMENTAL RESULTS (AVERAGES)

Worst-Case Solution Quality Negotiation Speed
ǫwc nmax P0 P5 P10 P15 P20 Pwc Phi Plo

11.199 % 15 0.2702 0.8974 0.9973 1.0000 1.0000 0.0019 0.1078 0.0426

produced weregood enough2 in the sense that they
were either equal to or within20% of the optimal,
as verified against the solutions produced by an
existing centralized algorithm [5]. In fact, for all the
problem instances, the probability of converging to
a solution that is within10% of the optimal was
a high score of over97%. Besides, the probability
of converging to a worst-case solution was very
low, and so were the respective probabilities of
convergence at high speed and at low speed. The
latter probabilities, i.e.,Phi andPlo, mean that there
was a high probability of running at intermediate
speed, i.e., inXm negotiation rounds, where0.5N <

Xm ≤ N for N = 10.
On the average, the worst-case solution produced

was definitely good enough as its deviation from
the optimal was a good average of11.199% ≤
20%. From these simulations, we infer that, given
a N × N CLAP instance where2 ≤ N ≤ 10, MA3

will certainly converge to a good enough solution.
It will almost certainlyrun at intermediate speed,
regardless of its efficient implementation, whenever
the initial assignment is randomly selected. How
the negotiation can be sped up (without degrading
solution quality) is an issue for future work.

VI. RELATED WORK

A. BDI Models

Among the agent architectures/models (see [2,
Ch. 1]), the BDI model [7], [8] is one of the best
known and studied model of practical reasoning.
Based on a philosophical model of human practical
reasoning, originally developed by M. Bratman [9],
the basic model guides us to develop an agent to
decide moment by moment which action to take
in the furtherance of a goal. We adapt this model,
motivated by its appropriateness in allowing us
to conceptualize and metaphorically describe an
agent’s reasoning mechanism, moment by moment,

2It seems reasonable to use ‘good enough’ as a qualitative reference
here since, applyingPareto’s 80/20 rule, 80% of CLAP applications
can tolerate a20% deviation from their optimal solutions.

in terms of the agent’ mental attitudes B, D and
I to solve CLAP. However, two aspects clearly
differentiate our work from existing BDI models. In
the first is our approach to modelling. Existing BDI
models are developed without concisely formulating
the problems they attempt to solve while in our
work, the BDI model is developed with a clear
formulation of the problem it addresses, namely,
CLAP. In the second, eachmomentis not a moment
of reasoning in reaction to changes in its envi-
ronment, but a negotiation round of collaborative
reasoning - in fact, existing BDI models give no
architectural consideration to explicitly multiagent
aspects of behaviour [10] that is essential for ad-
dressing CLAP.

B. The Auction Algorithm

Deserving special mention for applying a dif-
ferent metaphor of negotiation to the assignment
problem is the auction algorithm [11]. Each iteration
in auctioning proceeds as follows:

• Bid on behalf of the persons (or tasks in
our context) for objects (or resources in our
context). The bid of each person is theobject
with the highest net value. The net value is the
magnitude of the difference between the benefit
(or A-QoS value in our context) of assigning
the object to this person and the object’s latest
price.

• Assign each object to aperson with the highest
bid for it, after unassigning the object from a
different person (assigned with it at the start of
the iteration), and adjust its price accordingly.

The algorithm terminates once every object has
been bidded for at least once; for actual details,
see [11]. There have been several multiprocessor-
and shared memory-based implementations [3] of
the algorithm to exploit the inherently parallelizable
phases of bidding and assigning. But, to the best
of our knowledge, there is no reported implemen-
tation of the algorithm as a system of software
agents performing bidding and assigning to solve
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the N × N CLAP. A multiagent implementation,
if it exists, is at best a system ofN task agents
negotiating withN resource agents, possibly with
a simple agent keeping track of the bid receipt of
each resource agent and informing all agents when
the termination condition holds. This contrasts with
our proposed algorithm ofN task agents negotiating
among themselves forN resources in the presence
of an arbitration agent.

C. Automated Negotiation

In distributed problem solving, negotiation is one
way that agents use in cooperation to solve a
problem. TheMA3 task agents are said to be in
negotiation since they work out, communicatively,
to reach an agreement that is acceptable by all
agents; this form of negotiation is said to becollab-
orativesince the agreement that is reached is due to
every task agent’s attempt in reasoning to contribute
to achieving their social (sum-total maximization)
goal.

In general, an automated means (or reasoning
mechanism) of negotiation for an agent can be
implemented as anegotiation protocolwithin which
a decision making model (or logic)over theobjects
of negotiationresides. In the literature on general
negotiation frameworks, agents that can negotiate
with exact knowledge of each other’s cost and utility
functions, or such knowledge learnt in the initial
step of interaction, have been proposed [12], [13].
There are agents that negotiate using the unified
negotiation protocol in worth-, state-, and task-
driven domains where agents look for mutually
beneficial deals to perform task distribution [14],
[15]. In negotiation via argumentation (NVA), the
agents negotiate by sending each other proposals
and counter-proposals. In [16], these proposals are
accompanied by supporting arguments (explicit jus-
tifications) formulated as logical models. In [17], the
distributed constraint satisfaction problem (DCSP)
algorithm [18], [19] provides the computational
model, extended with the supporting arguments
(accompanying the proposals) formulated as local
constraints. In [20], agents can conduct NVA in
which an agent sends over its inference rules to
its neighbour to demonstrate the soundness of its
arguments. Finally, there are also negotiating agents
that incorporate AI techniques (e.g. [21]) and auc-
tion mechanisms (e.g. [22]). For a good albeit not
exhaustive review of agent negotiation, see [23].

The proposedMA3 differs from existing work on
negotiation in that it employs a new BDI negotiation
model for CLAP (Section III).

D. Task Allocation

Also related are distributed approaches to task
allocation [24], [25]. If agents are appointed as col-
laboration agents negotiating for tasks instead, then
CLAP that they address becomes a task allocation
problem which can be viewed as a special version of
the task allocation problem formally stated in [24,
p. 68, Definition 1]. In [25], the idea ofcoalition
formation through which agents arrive at task al-
location solutions by themselves has been utilized.
Independently in [24], the idea ofcontracting to
address the same problem has been used. Ours uses
a different idea ofBDI reasoning, and one direction
for future work is to extend the basic foundation
developed in this report to address the more general
problem of task or resource allocation.

VII. C ONCLUSIONS

This report has proposed a BDI negotiation model
for theN ×N CLAP, and investigated an algorithm
MA3 that embodies the BDI model concepts and
offers a novel approximate solution to the problem.

This research should be of theoretical interest
to multiagent researchers since to the best of our
knowledge, this is perhaps the first effort that de-
velops a BDI negotiation model with a clear formu-
lation of the problem it addresses, namely, CLAP.
The research should also be of practical interest
to application researchers as theMA3 proposed
extends existing LAP algorithms from centralized
processing to distributed agent reasoning. It is hoped
that this report can shed new light on adopting
agent approaches for solving traditional combina-
torial problems in general, and inspire others to do
so.

The proposedMA3 does not guarantee an optimal
solution unless the initial assignment set isproperly
selected. In general, whether an optimal solution can
be obtained or not depends on the selection of the
initial state (i.e., the initial assignment set). Future
work includes developing heuristics to select an
initial assignment set, on whichMA3 might produce
a solution better thangood enough, and in fewer
rounds of negotiation.
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APPENDIX

1) n : number of negotiation rounds.
2) nmax : maximumn, obtained when algorithm

terminates, and is the largest of alln ob-
tained from each of theN ! different initial
assignments simulated for aN × N problem
instance.

3) α : total A-QoS value (2).
4) αopt : optimal α.
5) αwc : worst-caseα, obtained when algorithm

terminates, and is the worst of allα’s com-
puted based on the simulation ofN ! different
initial assignments generated for aN × N

problem instance.
6) ǫ : error, given by

(

|α−αopt

αopt
| × 100%

)

.
7) ǫwc : worst-caseǫ, whereα = αwc.
8) Px : probability that an initial assignment can

lead to a solution with total A-QoSα within
x% of optimal, i.e.,α ∈ [ (100−x)

100
αopt, αopt].

9) Pwc : probability that an initial assignment can
lead to a worst-case solution, i.e., withα =
αwc.

10) Pvhi : probability that the algorithm runs at
very high speed, i.e., the number of negotia-
tion rounds it can take to reach a solution is
not more than the greatest integer≤ 0.3N .

11) Phi : probability that the algorithm runs at
high speed, i.e., the number of negotiation
rounds it can take to reach a solution is not
more than the greatest integer≤ 0.5N .

12) Plo : probability that the algorithm runs at low
speed, i.e., the number of negotiation rounds
it can take to reach a solution exceedsN .

All the probabilities of interest defined above are
computed using formula

(

β

γ

)

, where integerβ is
the number of initial assignments satisfying the as-
sociated conditionsupon termination of algorithm,
and integerγ is the total number of different initial
assignments input for simulation.γ = N !.

Let N ′
p denote the sample size, labelN -Y

identify anN × N CLAP instance, andZ[Y ] refer
to the value of variableZ for a N × N CLAP
instance labelledN -Y . Then the averaging formulae
used in Section V to determine the performance of
a proposed algorithm on a ‘per problem instance
basis’, are as follows: ForM ∈ {ǫwc, nmax, nhmax},

M =





1
N ′

p
.

N ′

p
∑

Y =1

M [Y ]



, and Pj =





1
N ′

p
.

N ′

p
∑

Y =1

Pj[Y ]



,

where Pj[Y ] =
(

β[Y ]
γ[Y ]

)

, j ∈

{0, 5, 10, 15, 20, wc, vhi, hi, lo}.
Let Np be the number ofN×N problem instances

used in the simulation. Then, in the formulae forM ,
N ′

p = Np; in the formula forPj,
• if j ∈ {hi, lo}, N ′

p = Np;
• if j ∈ {0, 5, 10, 15, 20, wc}, N ′

p ≤ Np is the
number of problem instancesN -Y ’s for which
αwc[Y ] < αopt[Y ]. It is more representative
to average thePj[Y ]’s of instancesN -Y ’s for
which several different solutions other than the
optimal one can be obtained via extensive sim-
ulation of its N ! possible initial assignments.
In our simulations, for thesePj ’s, Np = 100,
but N ′

p = 99; this is because out of the 100
randomly generated10×10 problem instances,
the instance10-3 hasαopt[3] = αwc[3].
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