

 TR-IIS-06-012

An Algebra of Dependent Data

Types

Tyng-Ruey Chuang, Jan-Li Lin

September 12, 2006 || Technical Report No. TR-IIS-06-012
http://www.iis.sinica.edu.tw/LIB/TechReport/tr2006/tr06.html

An Algebra of Dependent Data Types�

Tyng-Ruey Chuang and Jan-Li Lin��

Institute of Information Science
Academia Sinica

Nangang, Taipei 115, Taiwan

Abstract. We extend the standard categorical approach to algebraic
data types to dependent algebraic data types, so that dependency be-
tween two algebraic data types has natural semantics. Specifically, for
two inductive data types S and A characterized by two F -algebra F and
G, any natural transformation η : F → G gives rise to a dependency of S
on A. This natural dependency is the initial object of what we call a Fη-
algebra. The initiality further allows us to describe certain dependencies
in functions that both involve S and A. We have used Objective Caml to
write functional programs where dependencies among data types (and
in the relevant functions) are made explicit. This is done by a system-
atic mapping of layers of categorical constructions to layers of Objective
Caml modules.

1 Motivation

Types have been used in programming languages to specify computational values
and to check, at compile-time or at run-time, whether the computed values will
meet the specifications. As dependent types are types that depend on values,
dependent types allow for more expressive specifications, and can be used to
better describe and ensure program properties. Research along this direction
has produced Cayenne [1] and Dependent ML [14], among others, which are
programming languages with dependent types. The proof assistant system Coq
[5], which is based on the Calculus of Inductive Construction, can be viewed as a
functional languages with dependent types as well. Coq as a functional language
further possess the properties that dependently typed programs are statically
type-checked and the programs themselves are terminating.

� This result was first announced without review at the 2nd
Taiwanese-French Conference on Information Technologies (TFIT 2005;
http://iir.csie.ncku.edu.tw/TFIT2005/) and at the 2006 Conference of
the Types Project (TYPES 2006; http://www.cs.nott.ac.uk/types06/). This
paper now appears as technical report TR-IIS-06-012 at the Institute of Information
Science, Academia Sinica, Taiwan. A digital copy of this paper is available from the
Institute’s website at <http://www.iis.sinica.edu.tw>, or from the authors by
e-mail (trc@iis.sinica.edu.tw).

�� Jan-Li Lin is now in the PhD program at the Department of Mathematics, University
of Indiana, Bloomington, Indiana 47405, USA.

Inductive List (A: Set): nat -> Set :=

Nil: List A O

| Cons: A -> forall (n: nat), List A n -> List A (1+n).

Fixpoint concat (A: Set) (m: nat) (p: List A m)

(n: nat) (q: List A n) {struct q}: List A (n+m) :=

match q in List _ i return List _ (i+m) with

Nil => p

| Cons a n’ q’ => Cons A a (n’+m) (concat A m p n’ q’)

end.

Definition list2: List bool 2 := Cons bool true 1 (Cons bool true 0 (Nil bool)).

Definition list3: List bool 3 := Cons bool false 2 (Cons bool false 1

(Cons bool false 0 (Nil bool))).

Definition list5: List bool 5 := concat bool 2 list2 3 list3.

Fig. 1. Definitions of List and concat in Coq.

Figure 1 shows the definition in Coq of a data type List in which each of its
values carrying with it its length. Using the terminology of functional languages,
we may call List a type constructor with A being the type variable (i.e., List is
polymorphic). The data type ListA is dependent on data type nat. Each natural
number n gives rise to a type ListA n: The type for all the ListA values whose
length is exactly n. Furthermore, one understands that

ListA =
∑

n

(ListA n).

That is, there is a mapping from ListA to nat and this mapping partitions
ListA. Data type nat, in this case, is often called the index set for data type
ListA. The mapping from ListA to nat is called the indexing function which
in this case is the length function.

Figure 1 further defines a function concat for list concatenation. In the defi-
nition of concat, we take care to prove that the length of the resulting list is the
summation of those of the two input lists. This is done by a structural induction
on q (. . . {struct q} . . .). Coq checks that such a proof is correct, with the help
of the inductive step we provide (. . . q in List _ i return List _ (i+m) with
. . .). Coq confirms that function concat does have the required property by re-
turning a type signature that precisely describes this dependency:

concat : forall (A : Set) (m : nat), List A m ->
forall n : nat, List A n -> List A (n + m)

Figure 2 shows the definitions in O’Caml of data type list and function
concat. As O’Caml does not support dependent data types in the language, we

type ’a list = Nil | Cons of ’a * ’a list

let rec concat p q = match q with

Nil -> p

| Cons (h, t) -> Cons (h, concat p t)

let list2 = Cons (true, Cons (true, Nil))

let list3 = Cons (false, Cons (false, Cons (false, Nil)))

let list5 = concat list2 list3

Fig. 2. Definitions of list and concat in O’Caml.

do not have a way to define a type for lists of a certain length. O’Caml can only
infer the following type signature for concat which do not capture the length
dependency between the result and the two input arguments:

val concat : ’a list -> ’a list -> ’a list = <fun>

This paper is an attempt to understand dependency purely as a property
between data types, and between typed values. Specifically, for two data types,
we seek to capture certain dependencies between the two based on their alge-
braic definitions. We look for ways to carry over such dependencies to inductive
computations involving the two data types. Take as an example the indexing
function length: ListA → nat that characterizes the dependency of ListA on
nat, we ask the following questions:

– How is this dependency defined? What are other dependencies and how shall
they be defined?

– How is this dependency incorporated in computations involving ListA? How
is it used to specify properties of the computations?

As our approach is not based on a particular calculus or a particular type
system for the definitions of dependent types and dependently-typed computa-
tions, the results can be used in languages that do not support dependent types.
We simply view dependencies as properties between typed values, and we aim
to show that such properties can be calculated mechanically at run-time. This
approach will guide us, for example, to define in O’Caml an indexing function
from list to int in a natural way. Further, this indexing function can then be
passed along to inductive functions like concat so that the intended dependen-
cies between the result and the arguments are computed and made explicit if
necessary.

The rest of this paper is organized as the following. Section 2 extends the
standard categorical approach to algebraic data types to dependent algebraic
data types, so that dependency between two algebraic data types has natural
semantics. Section 3 uses the concat function as an example to illustrate how the

categorical semantics developed in Section 2 can be applied. Section 4 shows a
systematic mapping of layers of categorical constructions to layers of Objective
Caml modules, so that the program modules can be readily used to describe
dependencies among various algebraic data types. Section 5 describes future
works and concludes this paper.

2 A Categorical Semantics for Dependent Data Types

There is a well-established semantics based on category theory to explain alge-
braic types. A type is interpreted as an object of a category, usually the category
of Set or Cpo. The product and sum of two types correspond to the product
and coproduct of two objects in a category. The unit type corresponds to the
terminal object in a category. An inductive type, such as lists or binary trees, can
be interpreted as the least fixed point of a functor. In this section, we propose
a way to extend this categorical semantics so that it can explain functions with
dependent data types.

First let us review the categorical interpretation of algebraic types. The al-
gebraic types are those built from the unit type with product, sum, and the
least fixed point operators. As we have described the unit, products and sums
in the last paragraph, we now review the correspondence of least fixed points
in category theory and recursive data types. We assume some basic knowledge
of category theory. Readers not familiar with category theory can consult Bird
and de Moor [3], Hagino [9], or Mac Lane [12].

Let C be a category, and F : C → C be an endofunctor of C. The category
of F -algebra has objects of the form (f,X), where f : FX → X is an arrow.
Its arrows are of the form (μ) : (f,X) → (g, Y), where μ : X → Y is an arrow
satisfying μ ◦ f = g ◦ Fμ. That is, it ensures the commutativity of the following
diagram.

X

μ

��

FX

Fμ

��

f��

Y FYg
��

2.1 Initial F -algebra

If the category of F -algebra has an initial object (α, S), then it is called an initial
F -algebra. For any object (f,X), one uses the notation (|f |) to denote the unique
arrow S → X with (|f |) ◦ α = f ◦ F (|f |). In such case, it is well known that α is
an isomorphism between S and FS. It is in this sense that we view a recursive
data type S as the fixed point of an endofunctor F . A fundamental result for
initial F -algebra is the fusion law.

Lemma 1. (fusion law) If the two arrows g : FY → Y and h : X → Y
satisfies h ◦ f = g ◦ Fh, then (|g|) = h ◦ (|f |).

type (’a, ’b) tF = Nil | Cons of ’a * ’b

let mapF f t = match t with Nil -> Nil | Cons (a, b) -> Cons (a, f b)

type ’a list = Rec of (’a, ’a list) tF

let rec foldF f (Rec t) = f (mapF (foldF f) t)

let concat p q =

let f t = match t with Nil -> p | Cons (a, b) -> Rec (Cons (a, b))

in

foldF f q

Fig. 3. Initial F -algebra definitions of list and concat in O’Caml.

We mention that the proof of the fusion law is based on the following com-
mutative diagram. In the diagram, by definitions, both the upper and the lower
square are commutative, hence one proves that the entire rectangle is also com-
mutative.

S

(|f |)
��

FS

F (|f |)
��

α��

X

h

��

FX

Fh

��

f
��

Y FYg
��

The fusion law will be used later to prove our result. For more informa-
tion about initial F -algebra and its use in interpreting recursive types and fold
functions, please see Bird and de Moor [3] or Manes and Arbib [13].

The O’Caml code in Figure 3 illustrates how to define the list data type and
the associated fold function with this initial F -algebra point-of-view. The initial
F -algebra semantics of the list data type:

ListA = μX.FA(X), where FA(X) = 1 + A × X

is used literally for the definition in O’Caml the type constructor ’a list. Note
that we define function contact with the fold function. O’Caml infers from
the definitions the following type signatures, which are exactly what ones have
expected:

val mapF : (’x -> ’y) -> (’a, ’x) tF -> (’a, ’y) tF = <fun>
val foldF : ((’a, ’b) tF -> ’b) -> ’a list -> ’b = <fun>
val concat : ’a list -> ’a list -> ’a list = <fun>

2.2 Arrow Category and Fη Algebra

As described in Section 1, the dependent data type ListA can be thought as a
partition derived from an indexing function from ListA to nat:

ListA =
∑

n

(ListA n).

This motivate the use of arrow category, where indexing function like length:
ListA → nat is considered as an object in the arrow category.

Let C be a category, the arrow category of C, which we denote by C→, is
as the following. It has families (ϕ : X → A) as objects. Thus, arrows in C
become objects in C→. For two objects ϕ : X → A and ψ : Y → B, the arrows
of C→ from ϕ : X → A to ψ : Y → B are of the form (h, k), where h is a
arrow of C from X to Y and k is a arrow of C from A to B, with the property
that k ◦ ϕ = ψ ◦ h. The objects and arrows of the arrow category C→ can be
visualized as:

objects: X

ϕ

��

arrows: X
h ��

ϕ

��

Y

ψ

��
A A

k
�� B

For two endofunctors F,G : C → C of C, and a natural transformation
η : F → G, we can construct a functor Fη : (C→) → (C→) as follows. For an
object ϕ : X → A, let

Fη(ϕ) = ηA ◦ (Fϕ) = (Gϕ) ◦ ηX : FX → GA

Note that the second equality holds because η is a natural transformation. More-
over, for an arrow (h, k) : ϕ → ψ, define

Fη(h, k) = (Fh, Gk)

This definition of the functor Fη : (C→) → (C→) can be visualized as:

Fη(ϕ) : FX

Fη(ϕ)

��

ηX

����
��

��
��

�
Fϕ

����
��

��
��

�
Fη(h, k) : FX

Fη(ϕ)

��

Fh �� FY

Fη(ψ)

��

FA

ηA ����
��

��
��

GX

Gϕ����������

GA GA
Gk

�� GB

Given two endofunctors F and G, the above describes how to derive a depen-
dency Fη(ϕ) : FX → GA if there are already a dependency ϕ : X → A as well

as a natural transformation η : F → G. We now lift the definition of F -algebra
to form the definition for Fη-algebra. Fη-algebra can be thought as an F -algebra
operating on the arrow category, the category of dependencies.

Let η : F → G be natural transformation between two endofunctors F and
G. The category of Fη-algebra is described below.

objects: arrows:

X

ϕ

��

FX

Fη(ϕ)

��

p�� X

μ

��

ϕ

����������� FX
Fη(ϕ)

����������

p��

Fμ

��

A GA
q�� A

ν

��

GA

Gν

��

q��

B GB
h

��

Y

ψ

�����������
FY

Fη(ψ)

		��������

k
��

Intuitively, an object in the Fη-algebra is a pair (p, q), where p an object
in the category of F -algebra and q an object in the category of G-algebra, such
that they relate the two dependencies ϕ : X → A and Fη(ϕ) : FX → GA, where
η : F → G is a natural transformation. An arrow in the Fη-algebra is a pair
(μ, ν), where μ a dependency of X on Y and ν a dependency of A on B, such
that the two dependencies relate the two existing dependencies established by
the natural transformation η : F → G.

2.3 Initial Fη-algebra

We are now ready for the main result. Let (αS , S) and (αA, A) be the initial
object of an F -algebra and a G-algebra, respectively. And η : F → G be a
natural transformation, then the following diagram illustrates an object of the
Fη-algebra:

S

(|αA◦ηA|)
��

FS

ηA◦F (|αA◦ηA|)
��

αS��

A GAαA

��

Proposition 1. The above object is the initial Fη-algebra.

Proof. The proof of the proposition is based on the following diagram:

S

(|k|)S

��

(|αA◦ηA|)S

�
��

��
��

��
��

��
� FS

F (|αA◦ηA|)S

��		
		

		
		

αS��

F (|k|)S

��

FA

F (|h|)A

��

ηA

��		
		

		
		

A

(|h|)A

��

GA

G(|h|)A

��

αA��

B GB
h

��

FB

ηB

		��������

T

g

��

FT

Fg

		��������

k
��

If we can show that all parts of the diagram is commutative, then the propo-
sition is proved because the uniqueness part comes directly from the uniqueness
of (|k|)S and (|h|)A. First, by the definition of an Fη-algebra, we have

(|αA ◦ ηA|)S ◦ αS = αA ◦ ηA ◦ F (|αA ◦ ηA|)S

g ◦ k = h ◦ ηB ◦ Fg.

Next, since (αS , S) and (αA, A) are the initial F -algebra and G-algebra, respec-
tively, we know that

(|k|)S ◦ αS = k ◦ F (|k|)S

(|h|)A ◦ αA = h ◦ G(|h|)A.

Furthermore, since η is a natural transformation, the equality

G(|h|)A ◦ ηA = ηB ◦ F (|h|)A

also holds. Now, it remains to show that

g ◦ (|k|)S = (|h|)A ◦ (|αA ◦ ηA|)S .

By the fusion law, both sides are equal to (|h ◦ ηB |)S . ��

3 Function concat Re-visited

Let us revisit function concat from Section 1. Let

p : ListA m

be a list of length m, then the partially applied function (concat p) has type

concat p : (forall n : nat) ListA n → ListA (n + m)

where A is type of the list elements.
To interpret this type of concat p, we can draw the following diagram:

L

concat p

��

length�� N

add m

��
L

length
�� N

Where L is the object for type ListA, and N is the object for type nat. Here
the function add m : N → N is defined by (add m) n = n + m.

Let F and G be two functors defined by FX = 1 + A×X and GX = 1 + X,
respectively. It is well known that L is the least fixed point of F , and N is the
least fixed point of G. Note that it is not hard to write down two functions
k : FL → L and h : GN → N such that concat p = (|k|)L and add m = (|h|)N .
(See, for example, functions k and h in Figure 6 in Section 4.) Moreover, we can
define a natural transformation η : F → G by

ηX = id1 + πX

which means ηX(p) = p if p ∈ 1 is the unique element in the unit type, and
ηX(a, x) = x for (a, x) ∈ A × X. We can check that length = (|αN ◦ ηN |).

The following diagram then describes the length dependency in function con-
cat.

L

concat p = (|k|)L

��

length=(|αN◦ηN |)L

�
��

��
��

��
��

��
� FL

F length

��		
		

		
		

αL��

F (concat p)

��

FN
ηN

����������

N

add m = (|h|)N

��

GN

G (add m)

��

αN��

N GN
h

��

FN

ηN

		��������

L

length

��

FL

F length

		��������

k
��

In particularly, we can infer that

length ◦ (concat p) = (add m) ◦ length

That is, the length of the result list can be computed in two ways —- complete
the concat operation first then compute the length of the result, or compute the
length of the second list argument to concat then add up with the length of the
first list argument — and they produce the same result. Furthermore, both can
be fused and are equal to the following fold function

(|h ◦ ηN |)N

This shows how to compute the length of the resulting list, i.e., the dependency
of ListA on nat, at the same time while completing the concat operation. Note
that the diagram above is just a specialized version of the diagram used in the
proof of proposition 1.

4 Programming Initial Fη-algebra, Modularly

In this section we use the module facility in O’Caml to realize the categorical
semantics of dependent data types in Section 2. We have followed the categori-
cal constructions as faithful as possible so as to produce a layered structure of
O’Caml modules. The O’Caml modules are quite abstract but are very general.
They can be used to specify dependencies between various algebraic data types.

We have used the following principles in mapping categorical constructions
to O’Caml modules:

– objects are mapped to O’Caml types (actually, unary type constructors);
– arrows are mapped to typed functions;
– functors become type constructors, with the associated map functions;
– natural transformations become polymorphic functions;
– fixpoints and dependencies are built with parameterized modules.

Currently the module library is rather restrictive as we only deal with type
constructors of a fixed arity. The modules are highly parameterized, however.
Module applications are used to achieve a high-level of code re-use.

Figure 4 includes some basic definitions. Module type CAT is the interface
for categories. Not much is required except that there must be an unary type
constructor t for objects. Module type FUN is the interface for functors. It is
required that there is a binary type constructor to build algebraic data types
(objects) from other types (objects), as well as a map function for defining func-
tions (arrows) between these types. Module type NAT is the interface for natural
transformations. Natural transformations must be polymorphic functions. Mod-
ule type FIX is the interface for fixed points. The least fixed points are derived
by applying module Mu to a module of type FUN. Dependencies are simply viewed
as indexing functions in module type DEP. Module Dep shows how to to generate
a dependency whenever given a natural transformation between two functors.
Function index in module Dep is the indexing function that characterizes a de-
pendency of the algebraic data type S on the algebraic data type A. Note that the
definition of index is exactly that same as the initial object in the Fη-algebra
as proved in Proposition 1.

Figure 5 shows the module definitions necessary for folding dependent data
types. Module type DEP’FOLD is the interface for module Fold. The type signa-
ture for function f in DEP’FOLD looks rather complex. Let’s review it together
with the diagram used in Proposition 1. What f asks is a pair of functions k
and h, where k is the inductive step for folding an S-typed value to a T -typed
value, and h is the inductive step necessary to index the resulting T -typed value
onto type B. When given k and h, function f then returns two functions that
fold, respectively, from S to T , and from S to the index set B. We can do the
following new-naming (too bad O’Caml does not allow this): module T for mod-
ule D.S, module B for module D.A, module F for module S.Base, and module G
for module A.Base. We then arrive at the following type signature for f

val f: ((’a, ’a T.t) F.t -> ’a T.t) *
((’a, ’a B.t) G.t -> ’a B.t) ->
(’a S.t -> ’a T.t) *
(’a S.t -> ’a B.t)

The above is exactly what is described in the diagram in Proposition 1. Note also
that the implementation in module Fold follows the diagram as well. Module
ListNatDep defines an indexing function from List to Nat deriving from natural
transformation List2Nat. This indexing function is in fact the length function.
Using this dependency, module NewListNatDep will define function f which not
only folds a list but also computes the index of the result.

Figure 6 reconstructs the concat example. Function k is the inductive step
for computing list concatenation, and function h is the corresponding step for
calculate the index of the returned result. When both are passed to function
NewListNatDep.f, it returns two functions: One that computes the result of the
concatenation, and one that computes the result’s index. Apparently, functions
k and h much be properly matched and they must ensure that, together with the
natural transformation List2Nat, they make the diagram commutative. This is
the responsibility of the programmer. Other than that, module NewListNatDep
will mechanically generate efficient functions for computing the result and its
index.

Note that, in the concat case, module Fold takes up again the dependency
ListNatDep (as its fourth argument) for describing the data type of the final
result (List) and and its dependency on Nat (length). One can plug in other de-
pendency as well. As an example, we may only be interested in knowing whether
the resulting list is a null list or not. In such a case, the fourth argument will be
ListBoolDep. When used together with the following function h′

let h’ p_i q_i = match q_i with
true -> p_i

| false -> Bool.up false

as the new inductive step for calculating the index, function NewListNatDep.f
will return the (usual) function for list concatenation but with a new indexing
function telling whether the resulting list is null or not.

5 Conclusion and Future Work

We have extended the usual F -algebra interpretation of algebraic data types
using arrow category, so that fold functions for dependent data types are given
sound semantics. The extended algebra provides us with a better understanding
of dependent data types, hence lead ways to further research.

Right now we only handle regular data types where the algebraic data types
under investigation appears as a fixed point in a uniform way in the type ex-
pression. We have not yet considered dependencies for irregular data types or
nested data types.

Also, dependency between algebraic data types currently must be generated
by a natural transformation. This can be too restrictive. A closer examination of
the diagram in Proposition 1 shows that the natural transformation is only used
for two instances A and B, where both are the index sets. It may well be the
case that one can prove the necessary diagram is commutative using properties
of A and B, and property of the inductive indexing function h, without resorting
to a natural transformation.

We are also re-casting Fη-algebra in Coq so that properties about specific
dependent data types and inductive computations can be proved. As an example,
we may want to prove that the pair of functions (k, h) that is passed to the fold
function is properly matched up: h is in deed the corresponding indexing step
for k. In O’Caml, this is the responsibility of the programmer. Using Coq, the
system can be used to check that it is so.

References

1. L. Augustsson. Cayenne: A Language with Dependent Types. In Proceedings of
ICFP 1998, pp. 239–250. ACM Press, 1998.

2. Henk Barendregt and Herman Geuvers. Proof-assistants using Dependent Type Sys-
tems. In Handbook of Artificial Reasoning, Volume II, Chapter 18 (2001), pp. 1149–
1240.

3. Richard Bird and Oege de Moor. Algebra of Programming. Prentice Hall, 1997.
4. N. G. de Bruijn. A survey of the project AUTOMATH. In Sheldin and Hindley,

editors. To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus and For-
malism. Academic Press Limited, 1980. pp. 579–606.

5. The Coq proof assistant. URL: http://coq.inria.fr .
6. R. M. Amadio and P.-L. Curien. Domains and Lambda-Calculi. Cambridge Tracts

in Theoretical Computer Science, 1998.
7. Herman Geuvers. Induction Is Not Derivable in Second Order Dependent Type The-

ory. In S. Abramsky, editor, Proceedings of Typed Lambda Calculus and Applications
(TLCA 2001), Krakow, Poland, May 2001. LNCS 2044, pp. 166–181, 2001.

8. J.-Y. Girard, Y. Lafont, and P. Taylor. Proofs and Types. Cambridge Tracts in
Theoretical Computer Science 7, Cambridge University Press, 1989.

9. Tatsuya Hagino. A Categorical Programming Language. Ph.D. thesis. University of
Edinburgh, 1987.

10. R. Harper, F. Honsell, and F. Plotkin. A framework for defining logics. Journal of
the ACM, 40(1):143–184, 1993.

11. G. Longo and E. Moggi, Constructive Natural Deduction and its “Modest” Inter-
pretation. Technical Report CMU-CS-88-131.

12. S. Mac Lane, Categories for the Working Mathematician, second edition, Graduate
Texts in Mathematics, no. 5, Springer-Verlag, 1998.

13. E.G. Manes and M.A. Arbib. Algebraic Approaches to Program Semantics. Text
and Monographs in Computer Science. Springer Verlag, 1986.

14. Hongwei Xi and Frank Pfenning, Dependent Types in Practical Programming.
In Proceedings of ACM SIGPLAN Symposium on Principles of Programming Lan-
guages (POPL ’99), pp. 214–227, San Antonio, January 1999.

module type CAT =

sig

type ’a t

end

module type FUN =

sig

type (’a, ’b) t

val map: (’b -> ’c) -> (’a, ’b) t -> (’a, ’c) t

end

module type NAT =

sig

module S: FUN

module T: FUN

val eta: (’a, ’b) S.t -> (’a, ’b) T.t

end

module type FIX =

sig

module Base: FUN

type ’a t

val up: (’a, ’a t) Base.t -> ’a t

val down: ’a t -> (’a, ’a t) Base.t

end

module type MU = functor (B: FUN) -> FIX with module Base = B

module Mu: MU = functor (B: FUN) ->

struct

module Base = B

type ’a t = Rec of (’a, ’a t) Base.t

let up a = Rec a

let down (Rec a) = a

end

module type DEP =

sig

module S: CAT

module A: CAT

val index: ’a S.t -> ’a A.t

end

module type NAT’DEP =

functor (S: FIX) ->

functor (A: FIX) ->

functor (N: NAT with module S = S.Base and module T = A.Base) ->

DEP with module S = S and module A = A

module Dep: NAT’DEP =

functor (S: FIX) ->

functor (A: FIX) ->

functor (N: NAT with module S = S.Base and module T = A.Base) ->

struct

module S = S

module A = A

let rec index s = A.up (N.eta (S.Base.map index (S.down s)))

end

Fig. 4. A modular definition of dependencies between two data types (Dep).

module type DEP’FOLD =

functor (S: FIX) ->

functor (A: FIX) ->

functor (N: NAT with module S = S.Base and module T = A.Base) ->

functor (D: DEP) ->

sig

val f: ((’a, ’a D.S.t) S.Base.t -> ’a D.S.t) *

((’a, ’a D.A.t) A.Base.t -> ’a D.A.t) ->

(’a S.t -> ’a D.S.t) * (’a S.t -> ’a D.A.t)

end

module Fold: DEP’FOLD =

functor (S: FIX) ->

functor (A: FIX) ->

functor (N: NAT with module S = S.Base and module T = A.Base) ->

functor (D: DEP) ->

struct

let f (k, h) =

let rec s2t s = k (S.Base.map s2t (S.down s))

in let rec s2b s = h (N.eta (S.Base.map s2b (S.down s)))

in

(s2t, s2b)

end

module FNat =

struct

type (’a, ’b) t = O | S of ’b

let map f t = match t with O -> O | S a -> S (f a)

end

module FList =

struct

type (’a, ’b) t = Nil | Cons of ’a * ’b

let map f t = match t with Nil -> Nil | Cons (a, b) -> Cons (a, f b)

end

module Nat = Mu (FNat)

module List = Mu (FList)

module List2Nat =

struct

module S = FList

module T = FNat

let eta t = match t with Nil -> O | Cons (_, b) -> S b

end

module ListNatDep = Dep (List) (Nat) (List2Nat)

module NewListNatDep = Fold (List) (Nat) (List2Nat) (ListNatDep)

Fig. 5. A modular definition of fold for dependent data types (Fold).

let k p q = match q with Nil -> p | _ -> List.up q

let h p_i q_i = match q_i with O -> p_i | _ -> Nat.up q_i

let list2 = List.up (Cons (true, List.up (Cons (true, List.up Nil))))

let nat2 = ListNatDep.index list2

let (cat, cat_i) = NewListNatDep.f (k list2, h nat2)

let list3 = List.up (Cons (false, List.up (Cons (false,

List.up (Cons (false, List.up Nil))))))

let list5 = cat list3

let nat5 = cat_i list3

Fig. 6. The concat example re-constructed.

