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Abstract—Medication dispensers treated in this paper are 
designed to help improve compliance by users who live at homes 
and take medications over long periods of time. The paper first 
presents an overview of medication specifications that define 
constraints for dispensers and dispenser components that 
administer medications as specified. When given a specification 
and constraints defined by it, the dispenser scheduler checks for 
consistency and feasibility of constraints and schedules 
medications to meet the constraints. Several basic algorithms 
needed for these purposes are described and evaluated. 

I. INTRODUCTION 
These days, one can find on-line and in specialty stores 
numerous devices and services designed to ease the effort and 
improve the chance in medication compliance. They include 
dumb pillboxes and programmable medicine dispensers (e.g., 
[1, 2]), as well as websites that help the user to generate 
medication schedules (e.g., [3]). Modern drugs can do 
wonders in controlling deceases and maintaining health, but 
only if the user follows the prescribed directions. 
Unfortunately, non-compliance is far too common and severe 
[4, 5], especially for elderly and chronically ill individuals: 
Such an individual may still live at home, on several 
prescribed and over-the-counter (OTC) medications at a time, 
and have 10 or more different prescriptions each year for 
many years, even decades. Existing devices and services are 
not ideal in many ways: They typically require manual 
handling of the medications, and the schedules they support 
are rigid. For long term users, it is essential that medication 
schedules are as flexible as possible. The dispenser must be 
tolerant to user tardiness since tardiness is unavoidable. 

This paper describes architecture of smart medication 
dispensers that are designed for flexibility and tolerance and 
basic algorithms that a dispenser scheduler can use for 
compliance enforcement. By a smart medication dispenser 
(or dispenser for short), we mean specifically a device for use 
by a naive user at home without close professional 
supervision. During normal operation, the dispenser 
schedules the user’s medications, reminds the user at times 
when medications should be taken, controls the dosages 

dispensed each time, and dynamically readjust the medication 
schedule to stay compliant when the user is tardy. The 
dispenser provides appropriate warnings when it becomes 
impossible to stay compliant.  
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A requirement for proper usage is that all (prescription or 
OTC) medications taken by the user are managed by a single 
dispenser. The user is provided by user’s pharmacist with a 
machine readable Medication Schedule Specification (MSS) 
either via Internet or a portable storage device each time the 
user acquires medication supplies. When loaded into the 
dispenser, the specification defines for the dispenser nominal 
temporal and dosage constraints that should be satisfied by 
schedules used for dispensing the medications under its care. 
In addition, the specification provides hard limits; they are 
criteria for compliance monitoring and enforcement.  

The models underlying medication schedule specifications 
[6, 7] resemble well-known real-time work-load models (e.g., 
[8-15]) in many respects. The resemblance is intentional; we 
want to apply established real-time systems principles and 
existing techniques to medication scheduling wherever 
appropriate. We will discuss relationships between related 
models and algorithms in later sections where MSS and 
associated algorithms are described.  

Our assumption is that some professional(s) has verified 
for each user the safety and effectiveness of the user’s 
medications and the correctness of their directions. Hence, 
many difficult problems on medications addressed by 
medication consultation projects (e.g., [16]) are out of scope 
for us. On the other hand, their treatment to medication 
scheduling lacks the depth and rigor we need.  

Following this introduction, Section II describes what and 
how requirements and constraints are defined in MSS. 
Section III describes dispenser architecture and operations. 
Section IV presents consistency and feasibility conditions. 
Section V and VI describe dosage selection and scheduling 
algorithms. Section VII is a summary.  

II. MEDICATION SCHEDULE SPECIFICATION 
Throughout the paper, by medications we mean both 

prescription drugs and OTC drugs and supplements. Except 
for where distinction is necessary, we also refer to food as a 
medication. The dispenser does not handle food, but must 
schedule meals and snacks and send remembers for them 
when some of the user’s medications interfere with food. 

A. Usage Assumptions 
We confine our attention to dispensers for individual users 
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who live at home without assistance and are on multiple 
medications, some of which are taken on long term basis. 
Again, we assume that all medications taken by a user are 
managed by a dispenser. A likely scenario is that the user is 
given a dispenser by the user’s pharmacy, hospital or medical 
clinic, with expense covered in part by health insurance as a 
reward for improved compliance. 

Smart medication dispensers are end-user devices in a tool 
chain for medication management and delivery. Tools at high 
end of the chain include various manual and computerized 
physician order entry systems (e.g., [17-20]). Using them 
together with on-line drug libraries and health information 
systems (e.g., [21, 22]), medical and health-care professionals 
can in principle verify automatically or interactively that the 
user can safely and effectively take the medications ordered 
and directed in each prescription. A requirement for correct 
usage of dispensers is that this verification has been done. 

Another important assumption is that the pharmacist is 
provided with access to all prescriptions of the user, as well as 
information on OTC medications the user takes at the time. 
We are building incrementally a prescription authoring tool 
[23] to aid the pharmacist: Each time when the user comes to 
fill a new prescription or to purchase some OTC drug, the 
pharmacist uses the tool to extract user specific directions 
from the user’s prescriptions; put the extracted directions in a 
unified representation; and check for conflicts while 
integrating user specific directions with general directions the 
tool extracts from drug libraries. By conflicts, we mean 
inconsistencies and flaws in directions that the tool cannot 
resolve automatically. If tool finds no conflict during the 
integration process, it translates the merged directions into a 
MSS for the user’s dispenser. Otherwise, it sends the 
information on the conflicts to the responsible order entry 
systems and the physicians, requests conflict resolution, and 
repeats all the steps when the conflicts are resolved.  

B. Direction Parameters 
The MSS generated by the authoring tool consists of two 

parts: direction of each medication when taken alone and 
changes in directions and additional constraints when some of 
the user’s medications interact. Fig. 1 gives a partial list of 
parameters that define the direction of a medication. Other 
parameters and further details can be found in [6].  

The name M of the medication identifies the medication 
and provides the dispenser with information on its physical 
characteristics. We consider here only medications that are 
dispensed in discrete units. The granularity g specifies the 
minimum size of a dose. A granule of a medication may be a 
tablet or caplet, some number of milligrams (mg) or cubic 
centimeters (cc), etc. So, a dose of size 1 means different 
amounts for different medications.  

We will make frequent reference to the parameters starting 
from [Tmin, Tmax]: The minimum duration Tmin and maximum 
duration Tmax bound the length of time over which the 
medication is to be administered. Normal operations of the 
dispenser are guided by the parameters listed in the 4 lines 

below duration. The dispenser treats the constraints defined 
by these parameters as firm constraints: The medication 
schedules it uses meet the constraints, but user tardiness may 
lead to the violation of some of them and trigger the 
re-computation of the schedule in effort to stay compliant. 

M:               Name of the medication
g:               Granularity

[Tmin, Tmax]: Minimum and maximum durations
[dmin, dmax]:  Nominal minimum and maximum dose sizes
[smin, smax]:  Nominal minimum and maximum separations
(B, R):        Maximum intake over a specified time interval given 

by budget B and replenishment delay R
(L, P):         Minimum intake over a specified time interval given 

by lower bound L and interval length P
[Dmin, Dmax]: Absolute minimum and maximum dose sizes 
[Smin, Smax]: Absolute minimum and maximum separations 

Non-compliance event types and corresponding actions.  
Fig. 1 Direction parameters  

Dose size is the number of granules taken in one dose. 
Separation is the length of time between consecutive doses. 
Dosage means the combination of dose size and separation. 
The dispenser normally provides the user with doses of sizes 
in the range [dmin,, dmax], delimited by the nominal minimum 
dose size dmin and nominal maximum dose size dmax, with 
separations in the range [smin, smax], delimited by the nominal 
minimum separation smin and the nominal maximum 
separation smax of the medication. We use hour as unit of time 
throughout the paper. The actual time granularity of 
dispensers is 10 – 100 milliseconds, however.  

The maximum intake (B, R) requires that no more than B 
granules of M are taken in any time interval of length R. B 
stands for budget, and R stands for replenishment delay. The 
current budget is B initially. When a dose of size d is 
dispensed at time t, d granules of budget are consumed, and 
the d-granule chunk is replenished at t + R. At the time of any 
dose, the dose size can be at most equal to the current budget. 
This way of enforcing the maximum intake (B, R) constraint 
is similar to how a sporadic server [9, 10] limits processor 
bandwidth consumption of aperiodic tasks.  

For some medications (e.g., antibiotics), it is important that 
a certain amount of the medication is at work at all times. 
Such a medication typically has a minimum intake constraint 
(L, P). It requires that the total size of doses within any 
interval of length P to be at least equal to the lower bound L.  

As illustrative examples, we quote below the directions of 
a pain killer and an antibiotic. 

Example 1: “1 gel caplet every 4 to 6 hours …. If pain or 
fever does not respond to 1 caplet, 2 caplets may be used but 
do not exceed 6 gel caplets in 24 hours unless directed by a 
doctor. The smallest effective dose should be used.” 

Example 2: “Take 250 to 500 milligrams (mg) every eight 
hours. Keep taking this medicine for at least ten days …. It is 
best to take the doses at evenly spaced times … on an empty 
stomach (either 1 hour before or 2 hours after meals).”  

The nominal dose size and separation of the pain killer have 
ranges [1, 2] and [4, 6], respectively. It has a maximum intake 
of (6, 24) to safeguard against over dose, but has no minimum 
intake. The granularity of the antibiotic is 125 mg. Its 
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direction allows a large dose-size range [2, 4], but suggests a 
narrow separation range [8, 8]. Its intakes are (B, R) = (12, 24) 
and (L, P) = (6, 24). These constraints provide a guideline for 
deviation from the rigid 8-hour day and night schedule. 

The antibiotic in Example 2 has a minimum duration of 
240 hours. This is a hard constraint, as are constraints defined 
by absolute dose size and separation. The dispenser treats a 
violation of a hard constraint as a non-compliance event that 
warrants a specified action. As shown in Fig. 1, MSS includes 
medication-specific rules governing how the dispenser is to 
define and respond to non-compliance events. This issue will 
be addressed in a later paper.  

The absolute minimum dose size Dmin and absolute 
maximum dose size Dmax are the smallest and the largest dose 
sizes, respectively, amongst all values that are explicitly or 
implicitly specified by statements in the direction. Similarly, 
absolute minimum separation Smin and absolute maximum 
separation Smax are the smallest and largest separations, 
respectively, specified by direction statements. In Example 1, 
the absolute maximum dose size is also 2. Because of the last 
statement in the direction, the absolute minimum doze size is 
0, and the absolute maximum separation is infinity. 
Directions of many medications allow large ranges of 
absolution separation, while suggesting no variation in 
nominal dose sizes and separation. An example is a brand of 
digoxin [11] for control of some heart conditions. Its 
instruction suggests taking a dose a day, at the same time each 
day.  On how to handle a missed dose, the instruction says “If 
you remember within 12 hours, take it immediately. If you 
remember later, skip the dose you missed and go back to your 
regular schedule”. For this medication, the nominal 
separation range is [24, 24], and the absolute separation range 
is [12, 36]. 

C. Interaction Pairs 
The MSS captures the information on direction changes 

due to interactions between medications using interaction 
pairs. There is an interaction pair I(M, N) for each pair of 
medications M and N that may interact to a degree as to 
require modification in how the medications are to be 
administered. The attributes of the interaction pair contains 
three components: direction change lists, inter-medication 
separations, and precedence constraints.  

Some direction parameters for individual medications in an 
interaction pair may need to be modified. Consider Fosamax 
[11] for treatment and prevention of brittle bone decease as an 
example. When taken alone, [dmin, dmax] = [1, 7], [smin, smax] = 
[20, 168], and (B, R) = (7, 168). However, when the user is 
also taking aspirin, only dose size 1 with separation in the 
range [20, 24] is allowed in order to minimize the chance of 
stomach upset. The MMS captures such changes in change 
lists C(M) and C(N) of each medications in the interaction 
pair I(M, N). While user is taking both medications, the 
parameters given by the change lists replace the direction 
parameters of the individual medications. 

The separation attribute of I(M, N) includes minimum 

separation σmin (M, N) between the medications: An earlier 
dose of M (N) must be separated from a later dose of N (M), 
by at least σmin (M, N) (σmin (N, M)). σmin (M, N) may not equal 
to σmin (N, M). In Example 2, σmin (Antibiotic, Food) = 0.5 and 
σmin (Food, Antibiotic) = 1. Some medications may be 
constrained to be taken sufficiently close together or taken 
together with food. This requirement is expressed in terms of 
maximum separation, which can be defined similarly [6].  

Finally, interaction of medications may also lead to 
precedence constraints that dictate the order of their 
administrations. We do not consider medications with 
precedence constraints in this paper.  

III. DISPENSER ARCHITECTURE 
Fig. 2 shows the hardware and software components of a 

smart medication dispenser: They include the medication 
scheduler, dispenser controller, compliance monitor, network 
interface and I/O devices, as well as the dispensing unit 
shown in the upper right-hand corner of the figure. 
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Fig. 2 Architecture and components 

A. Dispensing Unit, I/O Devices and Extended MSS   
The dispensing unit has a base with an array of sockets on 

the top. Containers, each holding a medication, are plugged in 
the sockets. Each socket has a dispensing module (DM). The 
DM holds the mechanism for releasing the content of the 
container in the socket. Underneath all the sockets is a 
dispensing drawer; that is where the user retrieves 
medications. The Push-To-Dispense (PTD) button in front of 
the base controls this drawer in the manner described below.  

The user is provided with the supply of each medication in 
a container, with a RFID tag attached. To put new supplies 
under the control of the dispenser, the user plugs containers 
into the sockets, one container at a time. The plug-in action 
causes the dispenser controller to read RFID tags and acquire 
the name of the medication in the new container upon reading 
the new tag. After making sure that the MSS includes the 
direction of the new medication, the controller creates an 
association between the medication and its socket and 
maintains the association as long as the container remains 
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plugged in. As a part of initialization, the controller picks up 
from MSS information on physical properties of the 
medication, which the DM of the socket will need.   

The number of granules released by DM is determined by 
the value stored in the dose-size register (DSR) of the DM. 
During initialization, the controller clears the DSR of every 
DM. It loads the dose size into the register immediately 
before it commands the DM to release a dose. When 
commanded, the DM releases the specified number of 
granules and clears the register when it completes. 

During normal usage, the dispenser sends a reminder to the 
user shortly before each time for medication. Fig. 2 shows an 
array of I/O devices. A support infrastructure such as the one 
described in [24] will allow the dispenser to leverage them in 
the delivery of reminders to the user in and out of the home. 
Such connectivity is desirable but not necessary. A minimal 
dispenser has a local alarm such as the bell on top of the base; 
an audio interface for delivery of voice reminders, 
instructions and warnings; a dial-up connection for 
transmissions of MSS updates and notifications; and a keypad 
for text input from the user.  

The dispenser allows the user to extend the MSS with 
information on preferences and habits. Armed with this 
information, the dispenser tries to fit the medication schedule 
into the daily routine of the user. We assume that the user has 
configured the dispenser to monitor and record medication 
history and user behavior. Many behavior parameters affect 
scheduling. An important one is promptness, an estimate of 
the length of time the user takes to come and retrieve a 
medication after being reminded that it is time for a dose. 
Promptness varies, and the user can provide only a rough 
estimate. By collecting statistics on this parameter, the 
dispenser will improve the estimate over time. 

B. Dispenser Operations 
The bulk of the work of the dispenser is done by three 

components: compliance monitor, medication scheduler, and 
dispenser controller. The compliance monitor maintains 
medication record and detects and handles non-compliance 
events. As stated earlier, we do not address this aspect here.  

The pseudo code in Fig. 3 gives an overview of operations 
of the dispenser controller. Initialization is carried out 
whenever any medication container is added and removed. At 
the successful conclusion of initialization, the controller calls 
Schedule.Schedule( ) to start administering the medications.  

As its name indicates, the scheduler is responsible for 
determining the time and dose size of each dose of every 
medication managed by the dispenser. Schedule( ) and 
GetNextDose( ) are two of its functions. When invoked, the 
former computes schedule_table. Similar to schedule tables 
used in time-driven real-time systems, schedule_table  is a list 
of {time, dose_list} structures, sorted by time in increasing 
order. time gives the absolute time when some dose of some 
medication is due, and dose_list provides the names of the 
medications and their dose sizes to be dispensed at the time. 

The function GetNextDose( ) returns the {time, dose_list} at 
the head of schedule_table.   

Main(…)
{

NextDoseTime = 0;
NextDoseList = NULL;
…
Initialization( );
error_occurred = 0;
error_occurred = Scheduler.Schedule( );
if (error_occurred != 0) request user attention;

resume:
dispenser_runs = TRUE;
while (dispenser_runs == TRUE) {

error_occurred = Scheduler.GetNextDose(NextDoseTime,
NextDoseList);

if (error_occurred != 0) break;
WaitForTimer(NDTT, NextDoseTime – promptness);
error_occurred = AdministerOperation(NextDoseTime,

NextDoseList);
if (error_occurred != 0) break;

}
if (error_occurred != 0) {

if (error recovery is successful) goto resume;
}
clean up;
return;

}
AdministerOperation(DoseTime, DoseList) { … }
ReleaseOperation(DoseList) { … }
…  

Fig.3 Dispenser operation 

The dispenser controller works with three timers: 
Next-Dose-Time-Timer (NDTT) times when the next dose is 
to be dispensed. While the dispenser runs, the controller 
repeatedly sets NDTT to expire at a short time before the 
instant for the next dose of some medication. The length of 
this short time is equal to promptness. Whenever NDTT 
expires, the controller carries out the administer operation 
described in Fig.4. The operation maintains and uses the 
Wait-for-Retrieval-Timer (WFRT) to limit the length of time 
the dispenser will wait for the user to respond to a reminder. 
Release-Mechanism-Timer (RMT) is the third timer. It is 
used to limit the length of time the dispenser wait for DM’s to 
complete their operations.  

ReleaseOperation(DoseList) 

AdministerOperation(DoseTime, DoseList)

1. For every medication in the DoseList, puts the corresponding dose 
size in the DSR of the DM for the medication.

2. Broadcasts a release command to all DM’s. 
3. Sets the RMT and waits for timer expiration or all DM’s complete. 
4. If every DM completes and their DSR cleared before RMT timer 

expires, clears RMT, records current time, opens the dispensing 
drawer and plays instructions (e.g., take with a glass of water), if 
any, and returns 0 to indicate success. If RMT times out, records 
socket numbers of malfunctioned DM’s and error conditions and 
returns error code. 

1. Sounds a voice reminder and reminder bell, sets WFRT to expire 
at DoseTime + MAT, and waits for either WFRT timer expiration or 
the event that PTD button is pressed.

2. When awaken,
A. If user has pressed the PTD button, cancels the WFRT timer, 

and commands a release operation. 
(1) If the release operation succeeded, sends the time 

recorded by the release operation to compliance monitor
along with dose list for logging. Returns 0.

(2) If release operation failed, picks up error log and returns
error code.

B. If WFRT expired, logs the timer expiration; returns error code.  
Fig. 4. Administer and release operations 

The administer operation takes as input DoseTime and 
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DoseList. The former is the time for the current dose, i.e., the 
dose to be dispensed at the time. In Fig. 4, MAT stands for 
maximum allowed tardiness: If the user does not respond by 
DoseTime + MAT, the medication scheduler is invoked to 
re-compute the schedule. We will define the parameter 
precisely at the end of Section VI.  

The administer operation in turn invokes the release 
operation, which is also described in Fig. 4. We recall the 
Push-to-Dispense (PTD) button mentioned earlier. The user 
responds to reminders by pressing the button. If no 
medication is due at the time when the button is pressed, the 
dispenser controller keeps the drawer closed and informs the 
user by voice that no medication is due until some specified 
time. If some medications are due when the button is pressed, 
the release operation is invoked. As the result of a successful 
release operation, the user is given the correct dose of each 
medication to be taken at the time in the dispensing drawer.  

By examining the error code and log, the controller can 
determine how to recovered from a failed administer 
operation. A well-built dispenser should rarely, if ever, fail in 
Step 2A of administer operation, but error due to user’s 
tardiness (i.e., in step 2B) can occur from time to time during 
normal usage for most users. When this error occurs, the 
controller calls the scheduler to re-compute the medication 
schedule and then repeats the administer operation at a later, 
newly scheduled time. As shown in [7], it is often possible to 
avoid non-compliance by re-adjusting the schedule. The 
dispenser sends warnings and notifications only when 
non-compliance becomes unavoidable.  

IV. CONSISTENCY AND FEASIBILITY 
When called for the first time after initialization, the 
Scheduler.Schedule( ) checks the MSS for consistency and 
feasibility in three steps: 

1. For each medication that has interaction pairs, updates 
its direction parameters if changes specified by change 
lists in all its interaction pairs are consistent.  

2. Ensures that the direction parameters of every 
medication are consistent and feasibility.  

3. Ensure that the separation constraints defined by 
interaction pairs are consistent and feasibility.  

The MSS, and the parameters and constraints given by it, are 
consistent when the medication scheduler can resolve 
automatically discrepancies, if any, among the parameters. 
The parameters, and hence the MSS, are feasible if all the 
constraints defined by them can be met simultaneously by 
some schedule. Scheduler.Schedule() fails and user attention 
is  requested when the medication scheduler finds  the MSS 
inconsistent or infeasible.  

In Step 1, dispensers apply only general common sense 
rules, rather than medication-specific knowledge-based rules. 
As examples, if change lists of a medication modify some of 
its absolute limits, the new limits after incorporating the 
changes should be at least as stringent as the limits set by the 
medication’s own direction parameters unless the MSS 

explicitly instructs the scheduler to do otherwise. The 
scheduler declares the MSS inconsistent when it finds the 
nominal dose size ranges specified by change lists in 
interaction pairs of a medication do not overlap, because it 
cannot resolve the difference without external guidance. 

A.  Necessary Conditions 
Hereafter, we assume that the scheduler has completed 

Step 1 and parts of Steps 2 and 3 successfully. The direction 
parameters of every medication satisfy the following 
conditions:  

(1) Dmin ≤ dmin ≤ dmax ≤ Dmax 
(2) Smin ≤ smin ≤ smax ≤ Smax 
(3) Dmax ≤ B, and Smax ≤ P ≤ Tmin if Smax and P are finite. 

Furthermore, for every pair of medications M and N,  
(4) σmin (M, N) ≤ σmax (M, N). 
(5) Precedence relations are consistent [8]. 
In addition, the direction parameters of every medication 

with maximum and/or minimum intake constraints must 
satisfy the following necessary conditions:  

(6) dmin × Floor[R/smax] ≤ B  
(7) Ceil[L /dmax ] ≤ Floor[P/smin]  
(8) B/R ≥ L/P 

Floor[x] and Ceil[x] denote the floor and ceiling of x, 
respectively. It is impossible for the scheduler to make the 
total intake smaller than the value given by the left-hand side 
of the inequality in (6). The budget B must be at least equal to 
the lower bound. The left-hand side of inequality in (7) is the 
minimum number of doses required to have total size L. The 
number must be no greater than the maximum possible 
number of doses in an interval of length P. Finally, (8) 
requires that the dosage rates given by the maximum intake to 
be no less than the dosage rate given by the minimum intake.  

A consistent medication is one whose directions 
parameters satisfy conditions (1) – (8). In general, these 
conditions are necessary but not sufficient for feasibility: We 
know that a medication has no feasible dosage (i.e., a 
combination of dose size and separation meeting all 
constraints) if its direction parameters do not meet some of 
the conditions, but meeting all the conditions does not mean 
that there is feasible dosage. The observation below gives 
some of the special cases:  

Observation 1 A consistent medication has a feasible dosage 
if either of the following is true. (a) L = 0, or B =∞, or both. 
(b) dmax divides B, R divides P, and the nominal separation 
range includes R (dmax / B). 

The medication in case (a) does not have both minimum and 
maximum intake constraints. That it has a feasible dosage is 
obvious. In case (b), the scheduler can dispense periodically 
doses with total size B every R units of time. It follows from 
(8) that the minimum intake constraint is satisfied as well.  

Below is an example. The parameters satisfy necessary 
conditions (1) – (8) but not conditions in Observation 1.  
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Example 3: Dmin = dmin = 5; Dmax = dmax = 6; Smin = smin = 45; 
Smax = smax = 46; (B, R) = (10, 79); (L, P) = (17, 159) 

To show that the medication has no feasible dosage, we note 
that there are three doses within a constraint interval of length 
159. The dotted and solid step functions in Fig. 5 depict two 
possible ways for the scheduler to meet the minimum intake 
constraint using three doses. The time origin is the time of the 
first of the three doses. The 3-ASAP (As Soon As Possible) 
function gives the total intake as a function of time when the 
scheduler uses size dmax at 0, followed by two doses of 
non-increasing sizes with non-decreasing separations. The 
one labeled 3-ALAP (As Late As Possible) gives the total 
intake when the scheduler uses dose size dmin at 0, followed 
by doses of non-decreasing sizes with non-increasing 
separations. The intake function of any schedule that 
dispenses three doses with total size 17 lies in the shaded 
region bounded by these two functions. We can think of 
intake as the required dosage demand. The maximum intake 
(10, 79) constraints the supply; it is depicted by the heavy 
dashed lines. The fact that the dashed line lies below the 
intake functions sometimes indicates that the supply is 
insufficient to meet the demand at all times and, therefore, the 
medication has no feasible dosage. 

0

Total Intake/supply
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Fig. 5 A Feasibility test 

B. Dosage Demand Analysis   
Fig.6 describes a feasibility test motivated by this example. 

It is called Dosage-Demand Analysis (DDA). The input for 
DDA consists of nominal dosage and intake parameters (i.e., 
dmin, dmax, smin, smax, B, R, L, and P) of the medication under test. 
If the parameters satisfy the necessary conditions listed above 
but not the conditions in Observation 1, the test starts from the 
minimum number of doses required to get a total dose size L 
and tries every possible number of doses. As soon as it finds 
an ALAP intake function that never exceeds the dosage 
supply in the interval [0, P), it concludes that the medication 
may be feasible. It declares the medication infeasible if it 
finds no such intake function after trying all possible numbers 
of doses.  

DDA uses the function ALAP_Doses_Separations( ), 
which takes as an input the number K of doses to be dispensed 
in a minimum intake constraint interval. If successful, the 
function returns the arrays dose_size[K] and separation[K] 
based on the ALAP strategy. Part (b) of Fig. 6 describes the 
function.  

Let t0 = 0, and tj , for j = 1, … K-1, be the time of the j-th 
dose. By definition, t j is equal to the sum of separation[ k ] for 
1≤ k ≤ j. The value of intake(0) is dose_size[0], and intake(t) 

increases by dose_size[ j ] at tj. The value of the supply 
function supply(t) is equal to B at 0. It increases at 
replenishment time t = R by dose_size[0] and again by 
dose_size[ j ] at t = tj + R, for each j = 1, … K-1. 

Input:
Output

Parameters dmin, dmax, smin, smax, B, R, L, P
: is_consistent = TRUE; is_infeasible = FALSE; 

If (any of the conditions (1) – (8) is not satisfied)
is_consistent = FALSE; return;

if ((M satisfies any of the conditions stated in Observation 1)  return;

max_number_doses = Ceil [P / smin];
min_number_doses = Ceil [L / dmax];
number_doses = min_number_doses; 
times_doses_chosen = FALSE; 
while (number_doses < max_number_doses) {

times_doses_chosen = ALAP_Doses_Separations(number_doses); 
if (times_doses_chosen == FALSE) {

break;
} else {

compute ALAP intake function Intake(t) for t in [0, P);
compute dosage supply function Supply(t) for t in [0, P);
if Intake(t) ≤ Supply(t) for all t in [0, P)  return;

} 
increment  number_doses by 1; times_doses_chosen = FALSE;

}
Is_infeasible = TRUE;
return;   (a) 

Input
Output

// Select dose sizes.

// Select separations

: Parameters dmin, dmax, smin, smax, B, R, L, P; Number of doses K;
: dose_size[K] = {dmin}; separation[K] = {smin}; succeeded = TRUE;

remaining_dose = L ; remaining_interval = P – 1; 

for (index = 1; index <= K; index = index + 1) {         
dose_size[K – index] = remaining_dose – (K – index) * dmin ;
if (dose_size[K – index] < dmin) return succeeded = FALSE; 
if (dose_size[K – index] = dmin) {

break; 
} elseif (dose_size[K – index] > dmax) {

dose_size[K – index] = dmax; 
}
remaining_dose = L – dose_size[K – index] ; 

}
separation[0] = 0;                                              
for (index = 1; index < K; index = index + 1) {

separation[index] = remaining_interval – (K – 1 – index) * smin ;
if (separation[index] < smin) return succeeded = FALSE; 
if (separation[index] = smin ) {

break; 
} elseif (separation[index] > smax) {

separation[index] = smax; 
}
remaining_interval = P – separation[index]; 

}
return succeeded;  (b) 
Fig. 6 Dosage Demand Analysis (DDA) 

To illustrate DDA, suppose that the ranges of dose size and 
separation in Example 3 are widen so that dmin = 3,  dmax = 10, 
smin = 45, and  smax = 80. It is possible to use two doses in a 
minimum intake constraint interval of length 159. Initially, 
the dose-separation selection function sets both elements of 
dose_size[ ] to the minimum dose size 3. In the first iteration 
of select-dose-size loop, dose_size[1] is set to 10, which is the 
minimum of dmax = 10 and L - dmin = 14. dose_size[0] is then 
set to 7. Select-separation loop computes only separation[1] 
and sets it to min(80, 158 – 45) = 80. In this case, the 2-ALAP 
intake function never lies above the supply function. This fact 
suggests that some dosage may be able to meet both the 
minimum intake and maximum intake constraints. Indeed a 
dose of size 10 every 79 units of time is such a dosage. 

The DDA test resembles the time-demand analysis method 
[19] used for determining the schedulability of fixed priority 
periodic tasks scheduled on a processor. The scheduler only 
needs to check whether the supply meets the demand at time 
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instants where the intake function or supply function has step 
increases. The number of times for this check is 2 K. There is 
an important difference however. In time-demand analysis, 
time supply increases with time independent how the 
processor is allocated to tasks. In contrast, dosage supply at 
time t depends on the sizes and times of the doses dispensed 
before t. In this respect, DDA resembles slack time estimation 
in fixed priority systems (e.g., [21]).  

V. DOSAGE SELECTION  

Before computing a medication schedule, the scheduler 
selects for each medication, from the respective nominal 
ranges given by the MSS, a feasible dosage (i.e., values of 
dose size d and separation s) it will use in scheduling the 
medication. An algorithm used for this purpose is called a 
dosage selection algorithm.  

A.  Heuristic Algorithms 
The previous section says that dosage selection can fail in the 
general when the medication has both intake constraints. 
Table 1 lists two families of heuristic dosage selection 
algorithms for the general case: Independent algorithms make 
independent selections of the sizes and separations for 
individual doses. The four in the first column select boundary 
values: Their selections of dosage (d, s) are (dmax, smin), (dmin, 
smax), (dmax, smax) and (dmin, smin), respectively, for all doses. 

TABLE 1 Dosage selection algorithms 

Maximum
Minimum
Likely_Large
Likely_Small

Average
Uniform
Random_Large
Random_Small

MaxD_AMAP
MinD_AMAP
AveS_AMAP
AveD_AMAP

MaxD_ALAP
MinD_ALAP
AveS_ALAP
AveD_ALAP

Independent Intake-Guided

 
  The Average Algorithm uses average dose size and average 
separation. The last three in this group make independent 
random selections for each dose. Uniform Algorithm selects 
for d and s from uniform distributions over the respective 
ranges of the parameters. Random_Large and Random_Small 
randomly select d and s from right triangle shape probability 
density functions (pdf) over the dose-size and separation 
ranges. For the former, the right angles of the dose-size and 
separation pdf’s are at dmax and smin, respectively, while for the 
latter, they are at dmin and smax. 

In contrast, intake-guided algorithms make correlated 
selections. Each of these algorithms starts by fixing either 
dose size or separation and then uses one of the intake 
constraints to guide the selection of the second dosage 
parameter. The first parts in the names of these algorithms 
tells us their choices of the first parameter: MaxD, MinD, 
AveD and AveS indicate that the choices of the algorithms 
are d = dmax, d = dmin , d = (dmax + dmin )/2, and s = (smax + smin )/2, 
respectively.  

The algorithms with AMAP (As Much As Possible) in 
their names use the maximum intake (B, R) to guide the 
selection of the second dosage parameter. In essence, the 

algorithms try to make the total dose size in each interval of 
length R as close to the upper limit B as possible, hence the 
name. When the dose size d is selected first, the algorithms 
selects as separation s the value in the nominal separation 
range closest to Ceil[R / Floor[B/d]]. If s is first selected, d is 
the nominal dose size closest to Floor[B / Ceil[R/s]]. 
Algorithms with ALAP (As Little As Possible) in their names 
use the minimum intake (L, P) as the guide; they try to make 
the total size of doses in each interval P as close to the lower 
limit L as possible. If s is first selected, then d is the nominal 
dose size closest to Ceil[L / Floor[P/s]]. If d is first selected, s 
is the nominal separation closest to Floor[P / Ceil[L/d]]. 

B. Performance 
The determine their performance, we evaluated the 

algorithms in Table 1 by using them to select dosages for 
“medications” with randomly generated direction parameters. 
The heuristics are compared according to two criteria. First, 
success rate is the fraction of all medications for which the 
algorithm succeeded in finding feasible dosages. A selected 
dosage gives the scheduler more leeway in scheduling if it 
allows larger deviation from the selected separation s: The 
larger the allowed deviation, the better. We use usable 
separation range to quantify this aspect: It is the width of the 
allowed deviation, normalized with respect to the width of the 
given nominal separation range.   
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Fig. 7 Relative performance of dosage selection algorithms 

The performance summary in Fig.7 was obtained from 
sample medications whose parameters were generated in the 
following manner: For each sample, dmax and smax were 
chosen first independently from even distributions [1, 30] and 
[1, 1440], respectively. We use two ratio parameters rd and rs 

to determine the lower boundaries of dose size and separation 
ranges: dmin = dmax (2-rd)/(2+rd)  and smin = smax (2-rs)/(2+rs). rd 
and rs were initialized as 0 and incremented independently by 
0.1 per step until 2.0 and 1.9, respectively. Intake parameters 
B and L are random multiples of dmax and dmin, respectively. 
Their respective multipliers rB and rL are independently 
selected from the even distribution over the range [1, 100].  
Similarly, P and R are random multiples of smax and smin, 
respectively. Their respective multipliers rP and rR are also 
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independently selected from the even distribution over the 
range [1, 100].  We threw away samples that were found 
inconsistent, and the number of remaining samples was large 
enough to yield 10% statistical error.  

From Fig. 7, we can see that the success rates of almost all 
algorithms are acceptably good. They differ noticeably in 
usable separation range, however. (The reason for leaving out 
the algorithms listed in the first column of Table 1, despite 
their good success rates, is that their usable separation ranges 
are equal to 0.) In general, a consequence of intake constraints 
is a significant reduction in separation range.  

VI. MEDICATION SCHEDULING 
When the scheduler starts to compute a medication 

schedule, it has already selected a feasible dosage for every 
medication M. Since there is no possibility of confusion, we 
denote the usage separation range also by [smin(M), smax(M)]) 
and call them nominal separations. The dosage selection 
process has also made sure that that the scheduler can always 
find a size for each dose.  Hereafter, we focus solely on the 
problem of choosing times of the doses, i.e., scheduling.  

A. Resource and Workload Models 
The medication scheduler is concerned solely with 

scheduling the only scarce resource, the user. It uses two 
types of virtual resources to manage contention for the user [7] 
and allocates these entities as if they were physical processors 
and resources: There is a processor PM for every medication 
M. The scheduler uses PM to maintain correct separation 
between doses of M. If M interacts with some other 
medication or with food, then there is also a resource RM for M. 
The scheduler uses the resource RM in its effort to maintain 
the required minimum separation between doses of M and 
doses of other medications and food. 

Processor Scheduling It is convenient to view doses of M 
as non-preemptable jobs JM(i), for i = 1, 2, …, on PM. A job 
starts at the time when the dose it models is released. The job 
occupies the processor PM (i.e., the user) for smin(M) units of 
time. In terms from real-time systems literature, eM =  smin(M) 
is the execution time of (jobs of) M. 

The first job of each medication M is scheduled to start at 
some specified time or on best effort basis. The start times of 
subsequent jobs of M are constrained by three types of 
deadlines: First, the inter-stream relative deadline of JM(i) 
with respect to the previous job JM(i-1) of M is equal to their 
absolute maximum separation Smax(M). Second, JM(i) may be 
required to start by the end of the current minimum intake 
interval. This requirement imposes on the job an effective 
minimum intake deadline. Third, if doses of M must be taken 
sufficiently close together with doses of other medications, 
the inter-medication maximum separations imposes on JM(i) 
one or more inter-stream separation deadlines. The absolute 
start time deadline of JM(i) is the earliest absolute deadline 
computed from these relative deadlines.  Precise definitions 
and illustrative examples can be found in [7]. 

A job is said to be precisely scheduled when the time 
allocated to it by the scheduler is equal to its execution time. 
The medication scheduler always starts with a feasible 
precise schedule according to which all jobs start within their 
deadlines and are precisely scheduled.  

A typical user is not always prompt. A larger than expected 
promptness may cause some jobs to start later than their 
scheduled times. As a consequence, there may not be enough 
time to give some job JM(i) smin(M) units of time before the 
subsequent job of M must start. When this occurs, the 
scheduler treats the job as an imprecise job [14], consisting of 
a mandatory part followed by an optional part. The execution 
time of the mandatory part is equal to the absolute minimum 
separation Smin(M). The scheduler may allocate the optional 
part less than eM - Smin(M) units of time when user tardiness 
forces it to short change the part in order to enable the on-time 
start of the subsequent jobs of M.  

The observations below follow from the definitions of jobs, 
their processor time requirements, start time deadlines and 
scheduling rules [7]. 

Observation 2 All separation constraints between doses of 
M are met when every job of M starts within its deadline 
Smax(M) relative to the start time of the previous job of M 
and its mandatory part is precisely scheduled on PM.   
Observation 3 Absolute maximum separation constraints 
specified by all the interaction pairs are met when every 
job starts by its absolute deadline and its mandatory part is 
precisely scheduled on PM. 

Resource Allocation The scheduler follows two rules in 
allocation of RM: (1) Each job of M must have RM exclusively 
for an infinitesimally small amount of time in order to start. (2) 
Every job of N (≠ M) in each interaction pair I(M, N) of M 
requires the resource RM on a shared basis for σmin(N, M) units 
of time beginning from when the job starts.  

Because of Rule (1), the resource RM serves as a permit for 
jobs of M. A job of N can block a job of M for σmin(N, M) units 
of time. We call this time blocking time of M by N. The worst 
case blocking time of a medication M is equal to the 
maximum over all N ≠ M the blocking time of M due to N. In 
contrast, an arbitrary number of jobs of medications other 
than M can share the resource RM. The observation below 
follows as a direct consequence. 

Observation 4 Minimum separation constraints specified 
by all interaction pairs are met when resources are 
allocated to jobs according to Rules (1) and (2).  

B. Scheduling Algorithms 
We have been experimenting with scheduling algorithms 

based on the above described model. All the algorithms 
assign priorities to jobs. There are two variants: non-greedy 
and priority-driven. A non-greedy algorithm may choose to 
let jobs wait intentionally. A priority-driven algorithm never 
let any processor or resource idle intentionally.  
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MVF Scheme Among the priority schemes we have 
studied, the MVF (Most-Victimized-First) schemes seems to 
be a natural choice for scheduling interacting medications. 
MVF priority scheme gives fixed priorities to jobs based on 
their worst case blocking times; the longer the worst case 
blocking time, the higher the priority: Jobs of the same 
medications are scheduled in FIFO order. Using the 
non-greedy version, the scheduler considers one medication 
at a time in priority order and generates a complete schedule 
of the medication. According to the priority-driven variant, 
ready jobs are scheduled one at a time without look ahead. 
The scheduler views the sequence of jobs of each medication 
as a periodic task [8]. The length of intervals between 
consecutive jobs of the task is in the range [smin(M), smax(M)]. 

 To illustrate, we consider a user who takes the medications 
named in the graph in Fig. 8. The graph, called a separation 
graph [7], has a node for each medication and food. The 
square bracket under the medication name gives its usable 
separation range. There is an edge from M to N with label 
σmin(M, N) if σmin(M, N) ≠ 0. (Maximum separations between 
medications are all zero in this example.) The worst case 
blocking times of Fosamax, antibiotic, food and vitamin are 6, 
2, 1.0 and 0.5, respectively. Hence, the MVF scheme gives 
jobs of Fosamax the highest priority, followed by jobs of 
antibiotic, meals and then by jobs of vitamin.  

Fosamax
[20, 24]

Food

0.5 6.0

0.5

1.0

0.5

1
2

Antibiotic
[4,6]

Vitamin
[12, 24]

6.0

 
Fig. 8 A separation graph  

Fig. 9 shows segments of schedules produced by three 
variants of MVF scheme: non-greedy MVF (MVF-NG); 
MVF-NG-Food-First (MVF-NG-FF); and the priority-driven 
version (MVG-PD). All three schedules are periodic with a 
24-hour period. The time origin is the start of a day. In the 
figure, PFX, PA, PFD, and PV refer to processors for Fosamax, 
antibiotic, food and vitamin, respectively; their resources are 
named RFX, RA, RFD, and RV, respectively. The boxes on a 
timeline labeled by a processor name indicate the time 
intervals during which the processor is in use.  

Following the MVF-NG algorithm, the scheduler treats 
food as if it were a medication. It begins by scheduling jobs of 
Fosamax. It then schedules jobs of antibiotic, meals and 
vitamin in order. The Fosamax job (i.e., dose) of day starts at 
0 and is allocated RA, RFD, and RV, each for 0.5 hour. The job 
occupies the processor PFX for 20 hours. The first antibiotic 
job cannot start until 0.5, since RA is not available until then. 
The scheduler decides to use the maximum nominal 
separation and schedules the 4 jobs of the day evenly space in 
time at 0.5, 6.5, 12.5 and 18.5. Each job occupies PA for 4 
hours and is allocated RFX and RFD for one hour. The user 
cannot eat the first meal until time 1.5 when RFD becomes 
available. Each food job occupies PF for 0.5 hr. Given the 

schedule of subsequent antibiotic jobs, the scheduler 
schedules the second and third meals at 7.5 and 13.5. Finally, 
since only Fosamax blocks the vitamin job of the day, the job 
can start at time 0.5. 

0 8 124 16

PFX

PA

PV

PFD

20 24

(a) MVF-NG

PFX

PA

PV

PFD

(b) MVF-NG-FF

PFX

PA

PV

PFD

(c) MVF-PD   
Fig. 9 MVF schedules of interacting medication 

While MVF-NG algorithm treats food a medication, 
MVF-NG-FF algorithm plan meals times based on user 
preference and then schedules jobs of medications in time 
intervals allowed. This is the strategy advocated in [6]. In 
essence, meal times specified by the user are treated as 
forbidden intervals for medications that interact with food. It 
alters the forbidden intervals only when changes are 
necessary. Suppose that the start of the day is 6 AM. The user 
prefers to have breakfast at 6:30 AM, lunch at noon and 
dinner at 6PM, as well as uninterrupted sleep for 6 hrs. The 
MVF-NG-FF schedule in Fig. 9 is generated to fit these user 
preferences.   

The MVF-PD schedule shown in Fig. 9 is generated using 
the priority-driven variant. The job in each period is ready for 
scheduling at the beginning of the period. In this example, 
periods of the Fosamax, antibiotic, and vitamin are 24, 6, and 
24, respectively. At time 0 (the start of the day), the tasks are 
in-phase (i.e., a period of every task starts at 0.). Suppose that 
according to the user preference, the food jobs of the day 
become ready at 0 or 0.5, 6 and 12. We note that the MVF-PD 
schedule is similar to the MVF-NG schedule except for the 
large jitter of the antibiotic job. It is acceptable only when the 
absolute maximum separation is 6.5 or more. Compared with 
RM-PD and EDF-PD schemes however, MVF-PD is much 
superior; the rate-monotonic and EDF priority schemes fail to 
produce acceptable schedules in this case [7].   

Performance Measures We measure the merit of a 
medication scheduling algorithm by the quality of the 
schedules it produces. Quality of medication schedules has 
two dimensions: adherence to medication directions and user 
friendliness. Several figures of merit quantify how close a 
schedule adheres to medication directions. They include 
dose-size variation, separation jitter, and deviation from 
nominal parameter ranges [7]. By these criteria, the MVF-NG 
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schedule in Fig.10 is almost ideal: If the user is prompt, there 
is no separation jitter and no deviation from nominal 
separation for every medication. However, keeping a 
constant separation between doses is also why the schedule is 
not user friendly, with poor meal times and sleep times. In 
contrast, separation jitters of antibiotic are 2.25 and 0.5, 
respectively, for the MVF-NG-FF and the MVF-PD schedule. 
By this criterion, MVF-NG-FF performs poorly, especically 
if the user’s condition treated by the antibiotic is serious 
enough to warrant a relative constant level of the medication.  

We use the maximum allowed tardiness as a measure to 
quantify user friendliness. Tardiness is the difference 
between the actual promptness and the estimated promptness, 
if the difference is positive and is equal to 0 otherwise. The 
maximum allowed tardiness (MAT) of a dose i of medication 
M according to a schedule is the maximum length of time the 
start time of the corresponding job JM(i) can be delayed 
without violation any hard constraints. The MAT of the 
medication M is the minimum MAT over all doses of M. Take 
the MVF-NG-FF schedule in Fig. 9. Suppose that the 
absolute maximum separation of antibiotic is 9 and the 
minimum separation of antibiotic is 3. Then the values of 
MAT of the 4 daily doses of antibiotic are 0.5, 3, 1 and 5. 
Therefore, the MAT of antibiotic is 0.5. According to the 
MVF-NG schedule, the MAT of antibiotic is 0. (A delay in 
any of the first three doses of antibiotic would violate the 
minimum separation constraint between the medication and 
food.) By this criterion also, MVF-NG is not user friendly.  

VII. SUMMARY 
We describe in this paper architecture of smart medication 
dispensers and algorithms for consistency checking, dosage 
selection and scheduling. In addition to building a prototype 
dispenser, we are evaluating these and other medication 
scheduling algorithms, to determine their ability to produce 
feasible schedules and other quality measures, on real-life and 
synthetic medication schedule specification. Much work in 
this direction remains to be done. Compared with what we 
know about algorithms for scheduling real-time tasks, we are 
still far from having the necessary insight and understanding 
about the behavior of medication scheduling algorithms. We 
also need to have sound graceful degradation mechanisms. 
We discussed earlier the application of imprecise 
computation. We will explore in depth its use, as well as the 
use of other schemes (e.g., [25]) for prevention of 
non-compliance. 
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