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Abstract. Modular arithmetic is the underlying integer computation model in conventional program-

ming languages. In this paper, we discuss the satisfiability problem of modular arithmetic formulae over

the finite ring Z2ω . Although an upper bound of 22O(n4)

can be obtained by solving alternation-free

Presburger arithmetic, it is easy to see that the problem is in fact NP-complete. Further, we give an

efficient reduction to integer programming with the number of constraints and variables linear in the

length of the given linear modular arithmetic formula. For non-linear modular arithmetic formulae,

an additional factor of ω is needed. With the advent of efficient integer programming packages, our

word-level encoding could be useful to software verification in practice.

1 Introduction

Modular arithmetic is widely used in the design of cryptosystems and pseudo random number

generators. In the RSA public key system, exponentiation in modular arithmetic is needed

in its encryption and decryption schemes [30]. And many pseudo random number generators

use the linear congruent method [19]. Since integers are represented in finite bits in conven-

tional programming languages such as C, modular arithmetic is often required in software

verification as well. Consider the following C program.

void main (void) {

int i = 0x87654321, j = 0xfedcba09;

printf ("%u * %u = %u\n", i, j, i * j);

printf ("%d * %d = %d\n", i, j, i * j);

}

Its output may look as follows.1

2271560481 * 4275878409 = 3283179049

-2023406815 * -19088887 = -1011788247

But 2271560481 × 4275878409 = 9712916415445554729 and −2023406815 × −19088887 =

38624584046564905. On the other hand, it is straightforward to check 38624584046564905

1 The program is compiled by gcc 4.0.2 and executed on a Fedora Core 4 Linux system.



≡ 9712916415445554729 ≡ 3283179049 ≡ −1011788247 (mod 232). Signed and unsigned

integral computations in C are modular arithmetic. Indeed, many algorithms are designed

to avoid overflow in modular arithmetic explicitly. Verification tools therefore need to support

modular arithmetic to check these algorithms.

However, modular arithmetic has yet to be found in modern software model checkers ([15,

3, 14] to name a few). Since it does not seem to be easy to perform modular arithmetic by

binary encoding, recent development in BDD and SAT technologies does little help in this

regard. Particularly, the abstraction of programs with modular arithmetic may still need user

intervention. One therefore wonders whether efficient decision procedures can be deployed

in the construction of the abstract program.

In this paper, we consider the satisfiability problem of propositional formulae with mod-

ular arithmetic. All arithmetic computation in the formulae is over the finite ring Z2ω for

some fixed ω. In addition to linear terms, non-linear terms such as term multiplications

and modulo operations of terms are allowed. We show that the satisfiability problem is NP-

complete for formulae of linear modular arithmetic. The problem is still in NP for non-linear

expressions.

We give a reduction to integer programming to construct the decision procedure in prac-

tice. From theoretical point of view, a reduction to SAT is also possible. But it is only natural

to exploit linear arithmetic in integer programming, rather than perform arithmetic com-

putation bitwisely. Additionally, the problem of solving integral linear constraints has been

investigated by the operation research community for decades. Many heuristics for integer

programming are known, especially those by relaxation and rounding [11, 24]. Our reduction

could exploit these heuristics unavailable to Boolean encoding.

In order to have practical decision procedures for modular arithmetic, several issues have

to be addressed in our reduction. Firstly, modular computation must be simulated by linear

constraints, as well as all logical operations. Furthermore, non-linear multiplications and

modulo operations need be expressed in the form of linear constraints. Most importantly, we

would not like our reduction to increase the size of the problem significantly. Our construction

should not use more than linear number of constraints and variables in the length of the

modular linear arithmetic formula.

It is well-known that the first-order non-linear arithmetic theory is undecidable [12].

Presburger arithmetic is a first-order linear arithmetic theory which is decidable [9, 22, 27].

In [22], Oppen shows an upper bound of 222cn lg n

for determining the truth of Presburger

arithmetic formula of length n. If the number of quantifier alternation is m, the problem can

be solved in time 22O(nm+4)
and space 2O(nm+4) [27]. Although Presburger arithmetic can ex-

press first-order linear arithmetic properties, it does not support modular arithmetic directly.

The modular arithmetic found in conventional programming languages has to be encoded in



the first-order linear arithmetic theory. But the doubly exponential time complexity makes

this approach impractical.

Other approaches to solving Presburger arithmetic are available. In [5], a survey of the

automata-theoretic approach is given. For a special class of quantifier-free Presburger arith-

metic, [29] shows a reduction to Boolean satisfiability. Similar to [9, 22, 27], neither of them

considers modular arithmetic nor non-linear expressions, however.

Integer programming models the optimization problem with a set of linear constraints [24,

11, 23]. The problem is known to be NP-complete. But it does not support modular arith-

metic natively. It also does not consider arbitrary combinations of constraints, only their

conjunction is allowed. [6] transforms conjunctions of linear constraints to integer program-

ming.

In [13, 21, 20], the inference of the affine relations among integer variables in conventional

languages is discussed. But inequalities and non-linear modular arithmetic are not considered.

In [2], a decision procedure for modular arithmetic is proposed. Although the authors use a

mathematical approach, the complexity of their decision procedure is not discussed. Besides,

it is unclear whether the logical and modulo operations can be added in their framework.

We note that our reduction may also serve as a reduction to Presburger arithmetic. Since

Presburger arithmetic does not allow modular arithmetic, encoding it in linear constraints

allows us to solve the problem by various decision procedures for Presburger arithmetic.

However, solving the corresponding Presburger arithmetic formula requires 22O(n4)
in the

length of the modular arithmetic formula. Our reduction is more efficient than this approach

asymptotically.

The remaining of paper is organized as follows. Section 2 contains the background. It is

followed by the syntax and semantics of linear modular arithmetic in Section 3. The algorithm

for the satisfiability of linear modular arithmetic is presented in Section 4. Section 5 discusses

the satisfiability problem for non-linear modular arithmetic. Applications of our algorithm

are shown in 6. Finally, Section 7 concludes the paper.

2 Preliminaries

Let Z be the set of integers, Z
+ the set of positive integers, and Z

× the set of non-zero

integers. In the following exposition, we will fix the set X of integer variables and m = 2ω

where ω ∈ Z
+.

Definition 1. ([17], for example) For any a ∈ Z, b ∈ Z
×, there are q, r ∈ Z such that

a = bq + r and 0 ≤ r < b.



The numbers q and r are called a quotient b (a quo b) and a modulo b (a mod b) respec-

tively. For convenience, we define signed quotient and signed modulo as follows.

a smod b
�
=

{
a mod b if 0 ≤ a mod b < � |b|

2
�

a mod b − |b| if � |b|
2
� ≤ a mod b < |b|

a squo b
�
=

a − (a smod b)

b

For example, −7 quo −3 = 3 and −7 mod −3 = 2, but −7 squo −3 = 2 and −7 smod

−3 = −1 for −7 = −3 × 3 + 2. We say a is congruent to b modulo m, a ≡ b (mod m), if

(a − b) mod m = 0. For any a ∈ Z, the residue class of a modulo m is the set [a]
�
= {x|x ≡

a (mod m)}. It is easy to verify that the residue class system Zm = ({[0], [1], . . . , [m −

1]}, +, [0], ·, [1]) is a commutative ring [17].

Since Zm consists of residue classes of integers modulo m, several representations of the

equivalence classes are possible. Particularly, we call {−m
2
, . . . ,−1, 0, 1, m

2
− 1} the signed

representation and {0, 1, . . . , m − 1} the unsigned representation.

To emulate integral computation in conventional languages, we use the signed represen-

tation if not mentioned otherwise. It is straightforward to support both signed and unsigned

representations within our framework, though. If c ∈ Z, the notation c ∈ Zm denotes that c

is an element in the signed representation of Zm.

Let c, aj ∈ Z and xj ∈ X for 0 ≤ j < N . A linear constraint is of following form

N−1∑
j=0

ajxj ∼ c

where ∼∈ {≤, <, =, >,≥}. Given a set of M linear constraints
∑N−1

j=0 ai,jxj ∼i ci for 0 ≤ i <

M , and a linear objective function
∑N−1

j=0 bjxj , the integer programming problem is to find

a valuation ρ : X → Z such that ρ satisfies all linear constraints and attains the maximum

value of the objective function. We denote an instance of integer programming problem as

follows.
maximize

∑N−1
j=0 bjxj

subject to

∑N−1
j=0 a0,jxj ∼0 c0∑N−1
j=0 a1,jxj ∼1 c1

...∑N−1
j=0 aM−1,jxj ∼M−1 cM−1

It is known that the integer programming problem is NP-complete [23]. If the range of

the valuation is relaxed to be rational, it is called the linear programming problem. It is also

known that the linear programming problem is in P [23]. There are heuristics for integer

programming by relaxing the problem to linear programming [24, 11].



3 Linear Modular Arithmetic

Term t
�

= c | c · t | t% c | t ÷ c | t + t
′

Atomic Proposition l
�

= ff | t ≤ t
′ | t = t

′

Formula f
�

= l | ¬f | f ∧ f
′ | f ∨ f

′

Fig. 1. Syntax of Linear Modular Arithmetic Formula over Zm

For any c ∈ Zm and x ∈ X, define the syntax of a Linear Modular Arithmetic Formula

over Zm in Figure 1. We use the symbols % and ÷ for the modulo and quotient opera-

tors respectively in our object language to avoid confusion. Also, we do not use syntactic

translation for equality nor any of the logical connectives. A more efficient reduction can

be attained by treating each operator separately, although it does not improve the perfor-

mance asymptotically. Finally, only constants in Zm are allowed. Overflowed constants would

produce warnings by compilers.2 They could be identified rather easily.

[[c]]ρ
�

= c

[[c · t]]ρ
�

= c[[t]]ρ smod m

[[t + t′]]ρ
�

= [[t]]ρ + [[t′]]ρ smod m

[[t % c]]ρ
�

= [[t]]ρ mod c

[[t ÷ c]]ρ
�

= [[t]]ρ quo c

[[ff]]ρ
�

= false

[[t ≤ t′]]ρ
�

= [[t]]ρ ≤ [[t′]]ρ

[[t = t′]]ρ
�

= [[t]]ρ = [[t′]]ρ

[[¬f ]]ρ
�

= ¬[[f ]]ρ

[[f ∧ f ′]]ρ
�

= [[f ]]ρ ∧ [[f ′]]ρ

[[f ∨ f ′]]ρ
�

= [[f ]]ρ ∨ [[f ′]]ρ

Fig. 2. Semantics of Linear Modular Arithmetic Formula over Zm

Let ρ be a valuation. The semantic function [[•]]ρ for linear modular arithmetic formulae

over Zm is defined in Figure 2. Since c ∈ Zm, it is unnecessary to compute the representative of

the result for constants, modulo and quotient operations. For the other cases, their semantic

values are obtained by signed modulo m.

Assume each integral and logical computation in a typical conventional language takes

O(1) time.3 We can now phrase the satisfiability problem as follows.

Problem 1. (Satisfiability) Given a linear modular arithmetic formula f over Zm with vari-

ables x̄, determine whether there is a valuation ρ such that [[f ]]ρ = true.

2 In gcc 4.0.2, the warning message “integer constant is too large for its type” is shown.
3 For languages with infinite-precision integers such as Scheme [18], this assumption does not hold.



Since the evaluation of any linear modular arithmetic formula is in P, we immediately

have the following upper bound for the satisfiability problem.

Proposition 1. The satisfiability problem for any linear modular arithmetic formula f can

be decided in NP.

Proof. We first guess |x̄| numbers from Zm in the valuation ρ, and then evaluate [[f ]]ρ. 
�

The lower bound of the problem can be obtained by reduction from 3CNF. Although

Boolean variables are not allowed in linear modular arithmetic, they can be simulated by

the parity of integer variables fairly easily.

Proposition 2. The satisfiability problem for any linear modular arithmetic formula f is

NP-hard.

Proof. We reduce 3CNF to the satisfiability problem as follows. For any Boolean variable

bi, we use the atomic proposition xi % 2 = 1 instead. For example, the clause b0 ∨¬b1 ∨ b2 is

translated to

(x0 % 2 = 1) ∨ ¬(x1 % 2 = 1) ∨ (x2 % 2 = 1).

If there is a satisfying truth assignment to bi’s, we choose

xi =

{
1 if bi = true

0 otherwise

Conversely, if there is a satisfying valuation to xi’s, we choose

bi =

{
true if xi is odd

false otherwise


�

Corollary 1. The satisfiability problem for linear modular arithmetic formula is NP-complete.

4 Solving the Satisfiability Problem for Linear Modular

Arithmetic

Since modular arithmetic is the default integral computation in conventional languages,

deciding the satisfiability of linear modular arithmetic formula could be useful in software

verification. One may, of course, use binary encoding and solve the problem in the Boolean

domain. But it would disregard the underlying mathematical nature of the problem. We are

therefore looking for alternatives capable of exploiting the underlying mathematical structure

of the problem.



Integer programming is chosen for the following reasons. Firstly, linear arithmetic is

primitive to the problem. The underlying mathematical structure can be reflected in the

reduction naturally. Secondly, heuristics for integer programming are known, especially those

by relaxation and rounding [24]. Some instances of the integer programming problem may be

solved by linear programming efficiently in practice. Lastly, optimized integer programming

packages are available [25, 26]. They could be viable alternatives to the traditional formal

verification techniques.

Given an instance of any syntactic class (terms, atomic propositions, or formulae), we

translate it to an integer variable and a set of constraints. Intuitively, the integer variable has

the semantic value of the given instance for any valuation subjecting to the set of constraints.

For terms, the integer variable has a value in [−m
2
, m

2
− 1]. For atomic propositions and

formulae, it has values 0 or 1.

σ(c)
�

= (p, p = c)
σ(c · t)

�

=

0
B@p,

α

−m
2
≤ p < m

2

cp′ − mq = p

1
CA

where (p′, α) = σ(t)

σ(t0 + t1)
�

=

0
BBB@p,

α0

α1

−m
2
≤ p < m

2

p0 + p1 − mq = p

1
CCCA

where
(p0, α0) = σ(t0)

(p1, α1) = σ(t1)

σ(t% c)
�

=

0
B@p,

α

0 ≤ p < |c|

p′ − cq = p

1
CA

where (p′, α) = σ(t)

σ(t ÷ c)
�

=

 
p,

α

0 ≤ p′ − cp < |c|

!

where (p′, α) = σ(t)

Fig. 3. Linear Constraints for Terms

Consider, for example, the following translation of t % c (Figure 3).⎛
⎜⎝p,

α

0 ≤ p < |c|

p′ − cq = p

⎞
⎟⎠ where (p′, α) = σ(t)

The semantic value p′ and constraints α of t are obtained by σ(t) recursively. Since

the semantic value p of t % c is equal to p′ % c, we add the constraints 0 ≤ p < |c| and

p′ − cq = p. The following lemma shows that the semantics of terms is still retained in spite

of the constraints in Figure 3.

Lemma 1. Let t be a term in linear modular arithmetic and (p, α) = σ(t). For any valuation

ρ, there is a valuation η such that



– η satisfies α;

– η(p) = [[t]]ρ; and

– η(x) = ρ(x) for any x appearing in t.

Proof. We proceed by induction. The basis follows from the definition immediately. For the

inductive step, consider the following four cases.

1. t0 + t1. Let (p0, α0) = σ(t0) and (p1, α1) = σ(t1). There are valuations η0 and η1 such that

η0(p0) = [[t0]]ρ and η1(p1) = [[t1]]ρ. Define η as follows.

– η(y) = η0(y) for all y appearing in α0;

– η(y) = η1(y) for all y appearing in α1;

– η(p) = η0(p0) + η1(p1) smod m; and

– η(q) = η0(p0) + η1(p1) squo m.

Then η is the desired valuation.

2. c · t. Similar to the previous case.

3. t % c. There is a valuation η′ such that η′(p′) = [[t]]ρ by inductive hypothesis. Define

η(y) = η′(y) for all y appearing in α, η(p) = η′(p′) mod c, and η(q) = η′(p′) quo c.

4. t ÷ c. Similar to the previous case. 
�

Since any valuation satisfying additional constraints is still a valuation, the following

lemma shows the constraints in Figure 3 do not change the semantics of terms.

Lemma 2. Let t be a term in linear modular arithmetic and (p, α) = σ(t). For any valuation

ρ satisfying α, we have [[t]]ρ = ρ(p).

Proof. We proceed by induction. The verification is routine. 
�

Proposition 3. Let t be a term in linear modular arithmetic. The following statements are

equivalent.

– There is a valuation ρ such that [[t]]ρ = d.

– There is a valuation η such that η satisfies α and η(p) = d where (p, α) = σ(t).

Proof. By Lemma 1 and 2. 
�

For atomic propositions, observe that

−m < −m + 1 = −
m

2
− (

m

2
− 1) ≤ [[t0]]ρ − [[t1]]ρ ≤ (

m

2
− 1) − (−

m

2
) = m − 1 < m.

Consider the atomic proposition t0 ≤ t1. From Figure 4, we have⎛
⎜⎜⎜⎜⎜⎜⎝

p,

α0

α1

0 ≤ p ≤ 1

p0 − p1 − (m − 1)(1 − p) ≤ 0

p0 − p1 + mp > 0

⎞
⎟⎟⎟⎟⎟⎟⎠

where
(p0, α0) = σ(t0)

(p1, α1) = σ(t1)
.



λ(ff)
�

= (p, p = 0)

λ(t0 ≤ t1)
�

=

0
BBBBBB@

p,

α0

α1

0 ≤ p ≤ 1

p0 − p1 − (m − 1)(1 − p) ≤ 0

p0 − p1 + mp > 0

1
CCCCCCA

where
(p0, α0) = σ(t0)

(p1, α1) = σ(t1)

λ(t0 = t1)
�

=

0
BBBBBBBBBBBBB@

p,

α0

α1

0 ≤ q0 + q1 ≤ 1

p0 − p1 + m(1 − q0) − q0 ≥ 0

p0 − p1 − m(1 − q1) + q1 ≤ 0

p0 − p1 − m(q0 + q1) ≤ 0

p0 − p1 + m(q0 + q1) ≥ 0

1 − q0 − q1 = p

1
CCCCCCCCCCCCCA

where
(p0, α0) = σ(t0)

(p1, α1) = σ(t1)

Fig. 4. Linear Constraints for Atomic Propositions

Since the variables p0 and p1 have the semantic values of the terms t0 and t1 respectively,

we have −m < p0 − p1 ≤ m − 1. If p0 ≤ p1, it is easy to verify that the constraints are

satisfied if we choose the semantic value p to be 1. Conversely, if the variable p has the value

1, p0 − p1 − (m − 1)(1 − p) = p0 − p1 ≤ 0 is enforced by the constraints. Thus p0 ≤ p1.

For equality, one could use a less efficient construction by conjunctions and comparisons.

But we have a slightly better translation in Figure 4. Intuitively, the variables q0 and q1

denote p0 > p1 and p0 < p1 respectively. Hence at most one of q0 and q1 can be 1. And the

semantic value of t0 = t1 is 1 if and only if q0 = q1 = 0, namely, 1 − q0 − q1.

The following lemma shows that we can replace the semantics values of atomic proposi-

tions by 0 or 1.

Lemma 3. Let l be an atomic proposition in linear modular arithmetic and (p, α) = λ(l).

For any valuation ρ, there is a valuation η such that

– η satisfies α;

– [[l]]ρ = false implies η(p) = 0; and

– [[l]]ρ = true implies η(p) = 1.

Proof. For the terms t0 and t1 in any atomic proposition, there are valuations η0 and η1 such

that



– η0(p0) = [[t0]]ρ, η0 satisfies α0; and

– η1(p1) = [[t1]]ρ, η1 satisfies α1

by Proposition 3, where (p0, α0) = σ(t0) and (p1, α1) = σ(t1). Define η(y) = η0(y) for any

variable y appearing in α0, and η(y) = η1(y) for any variable y appearing in α1.

Consider the following cases.

1. ff. Trivial.

2. t0 ≤ t1. If [[t0]]ρ ≤ [[t1]]ρ, define η(p) = 1. Then the constraints p0−p1 − (m−1)(1−p) ≤ 0

and p0 − p1 + mp > 0 reduce to η(p0) − η(p1) ≤ 0 and η(p0) − η(p1) + m > 0. Since

η(p0) = [[t0]]ρ ≥ −m
2

and η(p1) = [[t1]]ρ < m
2
, we have η(p0) − η(p1) > −m.

If [[t0]]ρ > [[t1]]ρ, define η(p) = 0. Then the constraints reduce to η(p0)−η(p1)−(m−1) ≤ 0

and η(p0) − η(p1) > 0. Since η(p0) < m
2

and η(p1) ≥ −m
2
, η(p0) − η(p1) < m. Thus

η(p0) − η(p1) ≤ m − 1.

3. t0 = t1. Define

η(q0) =

{
1 if ρ(p0) > ρ(p1)

0 otherwise

η(q1) =

{
1 if ρ(p1) > ρ(p0)

0 otherwise

η(p) = 1 − η(q0) − η(q1)

If ρ(p0) > ρ(p1), then the constraints

p0 − p1 + m(1 − q0) − q0 ≥ 0

p0 − p1 − m(1 − q1) − q1 ≤ 0

p0 − p1 − m(q0 + q1) ≤ 0

p0 − p1 + m(q0 + q1) ≥ 0

reduce to

η(p0) − η(p1) − 1 ≥ 0

η(p0) − η(p1) − m ≤ 0

η(p0) − η(p1) + m ≥ 0.

Note that −m ≤ η(p0) − η(p1) ≤ m for −m
2
≤ η(p0) = [[t0]]ρ, η(p1) = [[t1]]ρ < m

2
. Since

[[t0]]ρ > [[t1]]ρ, η(p0) − η(p1) ≥ 1 as well.

The case for ρ(p1) > ρ(p0) can be proved similarly.



When [[t0]]ρ = [[t1]]ρ, we have η(q0) = η(q1) = 0. The constraints reduce to

η(p0) − η(p1) + m ≥ 0

η(p0) − η(p1) − m ≤ 0

η(p0) − η(p1) ≤ 0

η(p0) − η(p1) ≥ 0.

And the result follows. 
�

Conversely, we can show that the constraints in Figure 4 reflect the semantic values of

atomic propositions.

Lemma 4. Let l be an atomic proposition in linear modular arithmetic and (p, α) = λ(l).

For any valuation ρ satisfying α, we have

– ρ(p) = 0 implies [[l]]ρ = false; and

– ρ(p) = 1 implies [[l]]ρ = true.

Proof. Note that ρ(p0) = [[t0]]ρ and ρ(p1) = [[t1]]ρ by Proposition 3.

1. t0 ≤ t1. If ρ(p) = 0, the constraint p0 − p1 + mp > 0 reduces to ρ(p0) − ρ(p1) > 0. Hence

ρ(p0) = [[t0]]ρ > ρ(p1) = [[t1]]ρ.

If ρ(p) = 1, the constraint p0 − p1 − (m − 1)(1 − p) ≤ 0 reduces to ρ(p0) − ρ(p1) ≤ 0.

Hence ρ(p0) = [[t0]]ρ ≤ ρ(p1) = [[t1]]ρ.

2. t0 = t1. Note that 0 ≤ ρ(p) ≤ 1 for 0 ≤ ρ(q0) + ρ(q1) ≤ 1.

If ρ(p) = 1, then ρ(q0) = ρ(q1) = 0. Hence the constraints

p0 − p1 − m(q0 + q1) ≤ 0

p0 − p1 + m(q0 + q1) ≥ 0

reduce to ρ(p0) − ρ(p1) = 0. Therefore ρ(p0) = [[t0]]ρ = ρ(p1) = [[t1]]ρ as required.

On the other hand, suppose ρ(q0) = 1 but ρ(q1) = 0. Then the constraint p0 −p1 +m(1−

q0)− q0 ≥ 0 reduces to ρ(p0)− ρ(p1) ≥ 1. Hence ρ(p0) = [[t0]]ρ > ρ(p1) = [[t1]]ρ. The other

case is similar. 
�

Proposition 4. Let l be an atomic proposition in linear modular arithmetic. Then

1. there is a valuation ρ such that [[l]]ρ = true ⇔ there is a valuation η such that η satisfies

α and η(p) = 1 where (p, α) = λ(l).



φ(l)
�

= λ(l)
φ(¬f)

�

=

 
p,

α

1 − p′ = p

!

where (p′, α) = φ(f)

φ(f0 ∧ f1)
�

=

0
BBBBBB@

p,

α0

α1

0 ≤ p ≤ 1

p0 + p1 ≥ 2p

p0 + p1 ≤ 1 + p

1
CCCCCCA

where
(p0, α0) = φ(f0)

(p1, α1) = φ(f1)

φ(f0 ∨ f1)
�

=

0
BBBBBB@

p,

α0

α1

0 ≤ p ≤ 1

p0 + p1 ≥ p

p0 + p1 ≤ 2p

1
CCCCCCA

where
(p0, α0) = φ(f0)

(p1, α1) = φ(f1)

Fig. 5. Linear Constraints for Formulae

2. there is a valuation ρ such that [[l]]ρ = false ⇔ there is a valuation η such that η satisfies

α and η(p) = 0 where (p, α) = λ(l).

Proof. By Lemma 3 and 4. 
�

Let p0 and p1 be the semantic values of the subformulae f0 and f1 respectively. Consider

the constraints in the translation of their disjunction (Figure 5).

p0 + p1 ≥ p

p0 + p1 ≤ 2p

We would like the semantic value p of their disjunction to be 0 when both p0 and p1 are

0. The constraint p0 + p1 ≥ p forces p to be 0 when p0 and p1 are 0. On the other hand, p

may be 0 or 1 when any of the disjuncts is true. We therefore add a lower bound of p by the

constraint p0 + p1 ≤ 2p.

Note that we do not translate the input formula to canonical forms. Since the translation

could increase the length of the formula significantly, it would not be efficient. In order

to have linear number of constraints and variables, it is crucial not to rearrange the input

formula to canonical forms.

Lemma 5. Let f be a formula in linear modular arithmetic and (p, α) = φ(f). For any

valuation ρ, there is a valuation η such that

– η satisfies α;

– [[f ]]ρ = false implies η(p) = 0; and

– [[f ]]ρ = true implies η(p) = 1.



Proof. For atomic propositions and negations, the lemma follows from Proposition 4 and

inductive hypothesis immediately.

For conjunctions and disjunctions, there are valuations η0 and η1 such that

– η0 satisfies α0, [[f0]]ρ = false implies η0(p0) = 0, [[f0]]ρ = true implies η0(p0) = 1; and

– η1 satisfies α1, [[f1]]ρ = false implies η1(p1) = 0, [[f1]]ρ = true implies η1(p1) = 1.

Define η(y) = η0(y) for any variable y occurring in α0 and η(y) = η1(y) for any variable

y occurring in α1.

1. f0 ∧ f1. If one of [[f0]]ρ and [[f1]]ρ is false, define η(p) = 0. We have 0 ≤ η(p0) + η(p1) ≤ 1.

Hence 2η(p) ≤ η(p0) + η(p1) ≤ 1 + η(p).

If [[f0]]ρ = [[f1]]ρ = true, define η(p) = 1. We have η(p0) + η(p1) = 2. Hence 2η(p) ≤

η(p0) + η(p1) ≤ 1 + η(p).

In both cases, the following constraints are satisfied.

p0 + p1 ≥ 2p

p0 + p1 ≤ 1 + p

2. f0 ∨ f1. If one of [[f0]]ρ and [[f1]]ρ is true, define η(p) = 1. We have 1 ≤ η(p0) + η(p1) ≤ 2.

Hence η(p) ≤ η(p0) + η(p1) ≤ 2η(p).

If [[f0]]ρ = [[f1]]ρ = false, define η(p) = 0. We have η(p0) + η(p1) = 0. Hence η(p) ≤

η(p0) + η(p1) ≤ 2η(p).

Hence, the following constraints are satisfied as required.

p0 + p1 ≥ p

p0 + p1 ≤ 2p


�

All logical operations in linear modular arithmetic are in fact mimicked by the constraints

in Figure 4.

Lemma 6. Let f be a formula in linear modular arithmetic and (p, α) = φ(f). For any

valuation ρ satisfying α, we have

– ρ(p) = 0 implies [[f ]]ρ = false; and

– ρ(p) = 1 implies [[f ]]ρ = true.

Proof. The lemma follows from Proposition 4 and inductive hypothesis respectively for

atomic propositions and negations.

For f0 ∧ f1 and f0 ∨ f1, we have



– ρ(p0) = 0 implies [[f0]]ρ = false, ρ(p0) = 1 implies [[f0]]ρ = true; and

– ρ(p1) = 0 implies [[f1]]ρ = false, ρ(p1) = 1 implies [[f1]]ρ = true

by inductive hypothesis.

1. f0 ∧ f1. Suppose ρ(p) = 0. Then 0 ≤ ρ(p0) + ρ(p1) ≤ 1 by the following constraints

p0 + p1 ≥ 2p

p0 + p1 ≤ 1 + p.

Hence ρ(p0) = 0 or ρ(p1) = 0. Thus [[f0]]ρ = false or [[f1]]ρ = false. [[f0 ∧ f1]]ρ = false as

required.

On the other hand, ρ(p) = 1 implies 2 ≤ ρ(p0) + ρ(p1) ≤ 2. Hence [[f0]]ρ = [[f1]]ρ = true.

2. f0 ∨ f1. Suppose ρ(p) = 0. Then 0 ≤ ρ(p0) + ρ(p1) ≤ 0 by

p0 + p1 ≥ p

p0 + p1 ≤ 2p.

Therefore [[f0]]ρ = [[f1]]ρ = false.

Finally, ρ(p) = 1 implies 1 ≤ ρ(p0) + ρ(p1) ≤ 2. Hence [[f0]]ρ = true or [[f1]]ρ = true as

required. 
�

Given a formula in linear modular arithmetic, there is a set of constraints such that the

semantic value of the formula is denoted by the designated variable in our construction. Our

progress is summarized in the following proposition.

Proposition 5. Let f be a formula in linear modular arithmetic. Then

1. there is a valuation ρ such that [[f ]]ρ = true ⇔ there is a valuation η such that η satisfies

α and η(p) = 1 where (p, α) = φ(f).

2. there is a valuation ρ such that [[f ]]ρ = false ⇔ there is a valuation η such that η satisfies

α and η(p) = 0 where (p, α) = φ(f).

Proof. By Lemma 5 and 6 
�

To decide the satisfiability problem of a linear modular arithmetic formula f , we first

obtain an integer variable p and a set of constraints α from the translation φ(f). It is

straightforward to see that the satisfiability problem can be solved by optimizing the objec-

tive function p with respect to α.

Our translation is constructed recursively. A recursive call is invoked for each subformula

in the input formula. Further, a constant number of constraints and variables are added in



each recursion. Since the number of subformulae is linear in the length of the input formula,

the corresponding integer programming problem has the number of variables and constraints

linear in the length of the input formula. The following theorem summarizes our result on

the satisfiability problem for linear modular arithmetic formulae.

Theorem 1. Given a formula f in linear modular arithmetic, the satisfiability problem can

be solved by an instance of the integer programming problem with the number of constraints

and variables linear in |f |.

Proof. Let (p, α) = φ(f). Consider the following integer programming problem.

maximize p

subject to α

If f is satisfiable, there is a valuation η satisfying α with η(p) = 1 by Proposition 5. On

the other hand, if there is a satisfying valuation η with η(p) = 1, then f is satisfiable by

Proposition 5 as well.

In the construction of α, at most 3 variables and 7 constraints are added for each subterms

or subformulae in f . Since the number of subterm or subformula in f is linear in |f |, the

number of variables and constraints in α is linear in |f |. 
�

5 Solving the Satisfiability Problem for Modular Arithmetic

Based on the translation of linear modular arithmetic formulae, multiplications and modulo

operations of arbitrary terms can be emulated in integer programming. Of course, one could

use the binary representation and encode a multiplication circuit in linear modular arith-

metic. But it would introduce many temporary variables. Besides, the mathematical nature

of the problem would not be preserved by Boolean encoding. We hereby propose a more

efficient translation.

Term t
�

= . . . | t · t′ | t% t
′

[[t · t′]]ρ
�

= [[t]]ρ[[t′]]ρ smod m

[[t % t
′]]ρ

�

= [[t]]ρ mod [[t′]]ρ

Fig. 6. Syntax and Semantics of Modular Arithmetic over Zm

The syntax and semantics of modular arithmetic extend those of linear modular arith-

metic by term multiplication, t · t′, and modulo operation of terms, t mod t′, (Figure 6).



Similar to linear terms, the semantic value of term multiplication uses signed modulo to

reflect the semantics of conventional programming languages (as illustrated in Introduc-

tion). On the other hand, it is unnecessary to compute the signed representation for modulo

operations of terms since overflow would not occur.

Theorem 2. The satisfiability problem for modular arithmetic formula is NP-complete.

Proof. The lower bound follows from Proposition 2. The upper bound is also obtained by

nondeterministic evaluation. 
�

In order to compute non-linear terms, we will find the binary representations of operands’

semantic values first. But it becomes complicated for negative numbers. However, it is safe

to use unsigned representation in this context. Observe that

ab ≡ (a + m)b ≡ a(b + m) ≡ (a + m)(b + m) (mod m).

We therefore assume the unsigned representation, compute the result, then convert it back

to the signed representation for multiplications of terms. Thus, only the linear constraints

for unsigned multiplication is needed.

χ(p0, p1)
�

=

0
BBBBBBBBBBB@

c,

p1 < m

0 ≤ bi ≤ 1 for 0 ≤ i < ωPω−1
i=0 2ibi = p0

0 ≤ ci ≤ 2ip1 for 0 ≤ i < ω

2ip1 − 2im(1 − bi) ≤ ci for 0 ≤ i < ω

2imbi ≥ ci for 0 ≤ i < ωPω−1
i=0 ci = c

1
CCCCCCCCCCCA

Fig. 7. Linear Constraints for Unsigned Multiplication

More concretely, suppose 0 ≤ p0 < m. The following constraints compute the unsigned

representation of p0 (Figure 7).

0 ≤ bi ≤ 1 for 0 ≤ i < ω∑ω−1
i=0 2ibi = p0

Intuitively, the bit string bω−1bω−2 · · · b1b0 is the binary representation for p0.

To compute the partial result ci = 2ibip1, we use the following constraints.

0 ≤ ci ≤ 2ip1

2ip1 − 2im(1 − bi) ≤ ci

2imbi ≥ ci.



If bi = 0, we have 2imbi = 0 ≥ ci ≥ 0. On the other hand, we have 2ip1 − 2im(1− bi) = 2ip1

≤ ci ≤ 2ip1 when bi = 1. Thus, ci = 2ibip1.

Lemma 7. Let p0, p1 be variables and (p, α) = χ(p0, p1). For any valuation ρ where 0 ≤

ρ(p0), ρ(p1) < m, there is a valuation η such that

– η(p0) = ρ(p0), η(p1) = ρ(p1);

– η satisfies α; and

– η(p) = ρ(p0)ρ(p1).

Proof. Define η as follows.

– η(p0) = ρ(p0);

– η(p1) = ρ(p1);

– η(bi) = (η0(p0) mod 2i+1) quo 2i for 0 ≤ i < ω;

– For 0 ≤ i < ω, η(ci) = 0 if η(bi) = 0; η(ci) = 2iη(p1) if η(bi) = 1;

– η(c) =
∑ω−1

i=0 η(ci);

Firstly, note that η(p0) ≥ 0. Consider m > M =
∑ω−1

j=0 2jβj ≥ 0 where 0 ≤ βj ≤ 1 for 0 ≤

j < ω. Then (M mod 2i+1) quo 2i = (
∑i

j=0 2jβj) quo 2i = βj. Thus,
∑ω−1

i=0 2iη(bi) = η(p0).

Now observe that η(ci) = 0 or 2iη(p1), we have 0 ≤ η(ci) ≤ 2iη(p1). Suppose η(bi) = 0.

Hence η(ci) = 0 ≤ 2imη(bi). Additionally, 2iη(p1) − 2im(1 − η(bi)) = 2iη(p1) − 2im ≤ 0 =

η(ci) for η(p1) < m.

On the other hand, if η(bi) = 1, η(ci) = 2iη(p1). Hence, η(ci) ≥ 2iη(p1)−2im(1−η(bi)) =

2iη(p1). Further, we have η(ci) ≤ 2imη(bi) for η(p1) < m. The other constraints can be

verified easily. 
�

Conversely, the constraints in Figure 7 indeed compute the unsigned multiplication.

Lemma 8. Let p0, p1 be variables and (p, α) = χ(p0, p1). For any valuation ρ satisfying α,

ρ(p) = ρ(p0)ρ(p1).

Proof. We claim that for any ρ satisfies α, ρ(ci) = 2iρ(bi)ρ(p1) Suppose ρ(bi) = 0. Due to

the constraint 2imbi ≥ ci, we have ρ(ci) = 0. On the other hand, if ρ(bi) = 1, we have

ρ(ci) ≥ 2iρ(p1) − 2im(1 − ρ(bi)) = 2iρ(p1). Therefore ρ(ci) = 2iρ(p1) for 0 ≤ η(ci) ≤ 2iη(p1).

Now ρ(p0) =
∑ω−1

i=0 2iρ(bi). Thus, ρ(p0)ρ(p1) =
∑ω−1

i=0 2iρ(bi)ρ(p1) =
∑ω−1

i=0 ci = ρ(p). 
�

Proposition 6. Let p0, p1 be variables. The following statements are equivalent.

– There is a valuation ρ such that 0 ≤ η(p0) = d0, ρ(p1) = d1 < m, and ρ(p0)ρ(p1) = d;

– There is a valuation η such that η satisfies α, η(p0) = d0, η(p1) = d1, and η(p) = d where

(p, α) = χ(p0, p1).



ζ(p′)
�

=

0
BBB@p,

0 ≤ a ≤ 1
m
2

(a − 1) ≤ p′ ≤ m
2

a − 1

−ma ≤ p + p′ ≤ ma

−m(1− a) ≤ p − p′ ≤ m(1 − a)

1
CCCA

Fig. 8. Linear Constraints for Absolute Value

Proof. By Lemma 7 and 8. 
�

For modulo operations of terms, observe that

a mod b = a mod |b| =

{
|a| mod |b| if a ≥ 0

(−|a|) mod |b| = |b| − (|a| mod |b|) if a < 0.

We can therefore perform the modulo operations of terms by computing their absolute values

first. Consider the following constraints in Figure 8 where p′ has the semantic value of any

term.

0 ≤ a ≤ 1
m

2
(a − 1) ≤ p′ ≤

m

2
a − 1

The variable a can only have value 0 or 1. Intuitively, p′ is non-negative if and only if a = 1.

Suppose p′ ≥ 0 and a = 0. We would have −m
2
≤ p′ ≤ −1, a contradiction. Conversely, a = 1

implies 0 ≤ p′ ≤ m
2
− 1. Hence p′ ≥ 0.

Lemma 9. Let p′ be a variable and (p, α) = ζ(p′). For any valuation ρ where −m
2
≤ ρ(p′) <

m
2
, there is a valuation η such that

– η(p′) = ρ(p′);

– η satisfies α; and

– η(p) = |ρ(p′)|.

Proof. Define η as follows.

– η(p′) = ρ(p′);

– η(a) = 1 if η(p′) ≥ 0; η(a) = 0 otherwise;

– η(p) = η(p′) if η(a) = 1; η(p) = −η(p′) otherwise.

Now if η(p′) ≥ 0, η(a) = 1. Clearly, 0 = m
2
(η(a)−1) ≤ η(p′) ≤ m

2
−1 = m

2
η(a)−1. Furthermore,

−mη(a) = −m ≤ η(p) + η(p′) ≤ m = mη(a). Also, −m(1 − η(a)) = 0 = η(p) − η(p′) =

m(1 − η(a)). The other case is similar. 
�



Lemma 10. Let p′ be a variable and (p, α) = ζ(p′). For any valuation ρ satisfying α, ρ(p) =

|ρ(p′)|.

Proof. Due to the constraints 0 ≤ a ≤ 1 and m
2
(a − 1) ≤ p′ ≤ m

2
a − 1, ρ(p′) ≥ 0 implies

ρ(a) = 1 and ρ(p) < 0 implies ρ(a) = 0. If ρ(a) = 1, ρ(p) − ρ(p′) = 0 by the constraints

−m(1 − a) ≤ p − p′ ≤ m(1 − a). Hence ρ(p) = ρ(p′) = |ρ(p′)|. Similarly, ρ(p) + ρ(p′) = 0 if

ρ(a) = 0 by the constraints −ma ≤ p + p′ ≤ ma. Therefore ρ(p) = −ρ(p′) = |ρ(p′)|. 
�

Proposition 7. Let p′ be a variable. The following statements are equivalent.

– There is a valuation ρ such that −m ≤ ρ(p′) = d′ ≤ m and |ρ(p′)| = d;

– There is a valuation η such that η satisfies α, η(p′) = d′, and η(p) = d where (p, α) =

ζ(p′).

Proof. By Lemma 9 and 10. 
�

We can now describe the linear constraints for non-linear terms. For term multiplication

t0 · t1, we first get the unsigned representation p′0 and p′1 of the semantic values of t0 and t1

respectively. This is done by the constraints p′0 = p0 + ma, 0 ≤ p′0 < m, p′1 = p1 + mb, and

0 ≤ p′1 < m where (p0, α0) = σ(t0) and (p1, α1) = σ(t1) respectively. Then we compute the

unsigned result p′ by χ(p′0, p
′
1). Finally, the result is converted to the signed representation

p by p′ − md = p and −m
2
≤ p < m

2
(Figure 9).

To compute the semantic value of t0 % t1, we first get the absolute values p′0 and p′1 of

the semantic values of t0 and t1 by ζ(p0) and ζ(p1) respectively. The constraints p′0 − r = p′

and 0 ≤ p′ < p′1 give p′ = |p0| mod |p1| where r is a multiple of |p1|. Suppose p0 ≥ 0. Then

a = 1 by the constraint m
2
(a − 1) ≤ p0 ≤ m

2
a − 1. Hence p = p′ = |p0| mod |p1| by the

constraint −2m(1− a) ≤ p− p′ ≤ m(1− a). On the other hand, p0 < 0 implies a = 0. Hence

p = p′1 − p′ = |p1| − (|p0| mod |p1|) by the constraint −ma ≤ p − p′1 + p′ ≤ 2ma (Figure 9).

Lemma 11. Let t be a non-linear term in modular arithmetic and (p, α) = σ(t). For any

valuation ρ, there is a valuation η such that

– η satisfies α;

– η(p) = [[t]]ρ; and

– η(x) = ρ(x) for any x appearing in t.

Proof. Let (p0, α0) = σ(t0) and (p1, α1) = σ(t1). There are valuations η0 and η1 such that

η0(p0) = [[t0]]ρ and η1(p1) = [[t1]]ρ by inductive hypothesis. Let η(y) = η0(y) for all y appearing

in α0 and η(y) = η1(y) for all y appearing in α1. Consider the following cases.

1. t0 · t1. Extend η as follows.



σ(t0 · t1)
�

=

0
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p,

α0

α1

α2

p′

0 = p0 + ma

0 ≤ p′

0 < m

p′

1 = p1 + mb

0 ≤ p′

1 < m

p′ − md = p

−m
2
≤ p < m

2

1
CCCCCCCCCCCCCCCCA

where

(p0, α0) = σ(t0)

(p1, α1) = σ(t1)

(p′, α2) = χ(p′

0, p
′

1)

σ(t0 % t1)
�

=

0
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p,

α0

α1

α2

α3

α4

p′

0 − r = p′

0 ≤ p′ < p′

1

0 ≤ a ≤ 1
m
2

(a − 1) ≤ p0 ≤ m
2

a − 1

−2m(1 − a) ≤ p − p′ ≤ m(1 − a)

−ma ≤ p − p′

1 + p′ ≤ 2ma

1
CCCCCCCCCCCCCCCCCCCCA

where

(p0, α0) = σ(t0)

(p1, α1) = σ(t1)

(p′

0, α2) = ζ(p0)

(p′

1, α3) = ζ(p1)

(r, α4) = χ(p′

1, p
′′)

Fig. 9. Linear Constraints for Non-linear Terms

– η(a) = 0 if 0 ≤ η(p0), η(a) = 1 otherwise;

– η(p′0) = mη(a) + η(p0);

– η(b) = 0 if 0 ≤ η(p1), η(b) = 1 otherwise; and

– η(p′1) = mη(b) + η(p1).

Then m > η(p′0), η(p′1) ≥ 0. Hence, there is a valuation η2 so that η2 satisfies α2 and

η2(p
′) = η(p′0)η(p′1) by Proposition 6. Now, define

– η(y) = η2(y) for all y appearing in α2;

– η(d) = η(p′) squo m;

– η(p) = η(p′) smod m

To show η(p) = [[t0 · t1]]ρ, observe that

η(p′) smod m = η(p′0)η(p′1) smod m = η(p0)η(p1) smod m.

Hence [[t0 · t1]]ρ = [[t0]]ρ[[t1]]ρ smod m = η(p0)η(p1) smod m = η(p′) smod m = η(p).

2. t0 % t1. By Proposition 7, there are valuations η2 and η3 such that η2 and η3 satisfy α2

and α3, η2(p
′
0) = |η(p0)| and η3(p

′
1) = |η(p1)| respectively. Now, define η(y) = η2(y) for

all y appearing in α2 and η(y) = η3(y) for all y appearing in α3. Let

– η(p′′) = |η(p0)| quo |η(p1)|;

– η(p′) = |η(p0)| mod |η(p1)|;

– η(a) = 1 if η(p0) ≥ 0, η(a) = 0 otherwise; and



– η(p) = η(p′) if η(p0) ≥ 0; η(p′1) − η(p′) otherwise.

Since m > η(p′1), η(p′′) ≥ 0, there is a valuation η3 such that η3 satisfies α3 and η3(r) =

η(p′1)η(p′′). Define η(y) = η3(y) for all y appearing in α3.

To show the constraints m
2
(a − 1) ≤ p0 ≤

m
2
a − 1, −2m(1 − a) ≤ p − p′ ≤ m(1 − a), and

−ma ≤ p − p′1 + p′ ≤ 2ma are satisfied. Consider the following cases.

If η(p0) ≥ 0, η(a) = 1 and η(p) = η(p′). Hence m
2
(η(a) − 1) = 0 ≤ η(p0) ≤ m

2
η(a) − 1.

Further, −2m(1− η(a)) = 0 = η(p)− η(p′) = m(1− η(a)). And −mη(a) = −m ≤ −η(p′1)

≤ η(p) − η(p′1) + η(p′) ≤ 2η(p′) ≤ 2m = 0 = 2mη(a).

If η(p0) < 0, η(a) = 0 and η(p) = η(p′1) − η(p′). Hence m
2
(η(a) − 1) = −m

2
≤ η(p0) ≤

−1 = m
2
η(a) − 1. Additionally, −2m(1 − η(a)) = −2m ≤ −2η(p′) ≤ η(p′1) − 2η(p′) =

η(p) − η(p′) ≤ η(p) ≤ m(1 − η(a)). And −mη(a) = 0 = η(p) − η(p′1) + η(p′) = 2mη(a).

To show η(p) = [[t0 % t1]]ρ, observe that η(p) = |η(p0)| mod |η(p1)| if η(p0) ≥ 0 and

|η(p1)| − (|η(p0)| mod |η(p1)|). 
�

Conversely, Figure 9 computes the semantic values of non-linear terms.

Lemma 12. Let t be a term in non-linear modular arithmetic and (p, α) = σ(t). For any

valuation ρ satisfying α, ρ(p) = [[t]]ρ.

Proof. We have −m
2
≤ ρ(p0) = [[t0]]ρ, ρ(p1) = [[t1]]ρ < m

2
by inductive hypothesis. Consider

the following two cases.

1. t0 · t1. Observe that ρ(p′0) and ρ(p′1) are the unsigned representations of [[t0]]ρ and [[t1]]ρ re-

spectively. Hence ρ(p′) = ρ(p′0)ρ(p′1) by Proposition 6. Thus, [[t0 · t1]]ρ = [[t0]]ρ[[t1]]ρ smod m

= ρ(p′0)ρ(p′1) smod m = ρ(p′) smod m = ρ(p).

2. t0 % t1. We have ρ(p′0) = |ρ(p0)| = |[[t0]]ρ| and ρ(p′1) = |[[t1]]ρ| by Proposition 7. Also, ρ(p′)

= ρ(p′0) mod ρ(p′1) = |[[t0]]ρ| mod |[[t1]]ρ|.

If ρ(a) = 1, ρ(p0) ≥ 0 by the constraint m
2
(a − 1) ≤ p0. And ρ(p) = ρ(p′) = |[[t0]]ρ| mod

|[[t1]]ρ| by the constraint −2m(1− a) ≤ p− p′ ≤ m(1− a). Hence [[t0 % t1]]ρ = |[[t0]]ρ| mod

|[[t1]]ρ| = ρ(p′) = ρ(p).

If ρ(a) = 0, ρ(p0) < 0 by the constraint p0 ≤ m
2
a − 1. And ρ(p) = ρ(p′1) − ρ(p′) =

|[[t1]]ρ| − (|[[t0]]ρ| mod |[[t1]]ρ|) by the constraint −ma ≤ p− p′1 + p′ ≤ 2ma. Thus, [[t0 % t1]]ρ

= |[[t1]]ρ| − (|[[t0]]ρ| mod |[[t1]]ρ|) = ρ(p′1) − ρ(p′) = ρ(p). 
�

Proposition 8. Let t be a non-linear term in modular arithmetic. The following statements

are equivalent.

– There is a valuation ρ such that [[t]]ρ = d.

– There is a valuation η such that η satisfies α and η(p) = d where (p, α) = σ(t).

Proof. By Lemma 11 and 12. 
�



Theorem 3. Given a formula f in modular arithmetic over Zm where m = 2ω, the satis-

fiability problem can be solved by an instance of the integer programming problem with the

number of constraints and variables linear in ω|f |.

Proof. For each term multiplication, 6ω + 12 constraints and 2ω + 7 variables are added.

For each modulo operation of terms, 6ω + 26 constraints and 2ω + 7 variables are needed

(4 of the constraints and one variable in ζ(p0) are shared). Since there are at most |f |

term multiplications and modulo operations in f , the number of constraints and variables is

O(ω|f |). 
�

6 Applications

Since modular arithmetic is the default integral computation in conventional programming

languages, our decision procedure may be useful in software verification. For hardware ver-

ification, our reduction may work as a non-linear constraint solver which accepts control

signals from other decision procedures. Particularly, we find that the following areas may

benefit from our algorithm.

Modern proof assistants allow external decision procedures to discharge proof obliga-

tions [31, 16]. Although modular arithmetic is essential to many number theoretic and cryp-

tographic algorithms, there is no proof assistant which provides decision procedures for mod-

ular arithmetic to the best of our knowledge. Since it is rather tedious to deal with modular

arithmetic in each integral computation, verifiers simply assume the infinite-precision integer

model in program verification. Subsequently, algorithms certified by proof assistants are not

exactly the same as their implementations. Our procedure may help verifiers work in a more

realistic computational model.

If a proof assistant is used to determine the truth values of predicates, the abstract model

may be inadequate in predicate abstraction [10, 28] for the same reason. In the presence of

modular arithmetic, our integer programming-based procedure may be more efficient than,

say, SAT-based predicate abstraction [7, 8]. The new technique will refine the abstraction

and may perform better in such circumstances.

Another possible application of our algorithm is SAT-based model checking [4, 1, 32].

Our word-level decision procedure may be better for models with modular arithmetic, but it

does not seem to fare well on Boolean satisfiability. However, modern integer programming

packages support distributed computation. Thanks to the geometric interpretation, parallel

integer programming optimizer is now available [26]. Our approach gives a parallel SAT

solver indirectly.



7 Conclusion

Deciding the satisfiability of modular arithmetic formula is essential in software verification.

We have characterized the complexity of its satisfiability problem and provided an efficient

reduction to integer programming problem. Our result shows that it is more efficient to de-

velop specialized algorithms than apply a more general algorithm for Presburger arithmetic.

Additionally, the number of constraints and variables is linear in the length of the input for-

mula in our reduction. With heuristics like relaxation and rounding, the satisfiability problem

could be solved efficiently by modern integer programming packages in practice.

It would be interesting to compare our algorithm with other techniques [5, 29, 2], espe-

cially those with the binary encoding scheme. Since the satisfiability problem of modular

arithmetic formula is NP-complete, one could also build a decision procedure based on SAT

solvers. But the binary encoding would eliminate the mathematical nature of the problem.

It is unclear which approach will prevail in practice.
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