

TR-IIS-20-001

 Methods for Determining Indoor

 Positions of Tracked Objects

 C. -Y. Lai, S.-Q. Zhou and J. W. S. Liu

May 19, 2020 || Technical Report No. TR-IIS-20-001

http://www.iis.sinica.edu.tw/page/library/TechReport/tr2020/tr20.html

Institute of Information Science, Academia Sinica

Technical Report TR-IIS-20-001

Methods for Determining Indoor Positions of

Tracked Objects

C. -Y. Lai, S.-Q. Zhou and J. W. S. Liu
Institute of Information Science, Academia Sinica

Taipei, Taiwan
{jimmylai, janeliu}@iis.sinica.edu.tw

Copyright @ May 2020

 2

Institute of Information Science, Academia Sinica

Technical Report TR-IIS-20-001

Methods for Determining Indoor Positions of

Tracked Objects

C. -Y. Lai, S.-Q. Zhou and J. W. S. Liu

Institute of Information Science, Academia Sinica

Taipei, Taiwan

{jimmylai, janeliu}@iis.sinica.edu.tw

Abstract

 Fingerprint lookup and proximity detection are positioning technologies commonly used by
indoor positioning and indoor object tracking systems (IOTS) to locate objects and track their
movements. Ideally, every fingerprint captured by every device is mapped to the cell
containing its current location, and the UUID of every tag is detected by the proximity
detector closest to its location. This enables the IOTS to return the correct location of the
device/tag. As long as the device/tag does not move, a graphical user interface (GUI) of the
IOTS shows it at the location. When the device/tag moves, the GUI shows its new correct
location after a short delay. In real-life operating environments, many factors, including the
presence of objects in signal paths, interferences from emitters nearby, natural fluctuations in
transmitted power, and so on, can cause unpredictable fluctuations in received signal strengths.
Consequently, the GUI may show the object moving sporadically even when the object is
standing still or moving haphazardly when it actually moves along a well defined trajectory.
Such apparent changes in object positions returned by an IOTS due to unpredictable and
sporadic changes in signal strengths is referred to as noisy movements or false movements.
Users are likely to find noisy/false movements annoying and the location information
confusing. The techniques described in this report aim to eliminate or reduce noisy/false
movements and improve the accuracy of locations returned by IOTS.

Keywords: Indoor object tracking; Location beacons; Indoor positioning; Proximity detection;

 fingerprint-based systems

 3

1. Background and Motivation

 Real-time indoor location-based services (RT-ILBS) in general, and indoor positioning and

indoor navigation (IPIN) and indoor object tracking applications and services (IOTS) in particular,

need to determine sufficiently accurately within buildings of all sizes and characteristics and under

various operating conditions locations of mobile devices, including smart phones, tablets, and

wireless tags. Systems that provide this function are called indoor positioning systems (IPS).

(A) Indoor Positioning Techniques

 Fingerprint-based and proximity-based techniques are often used by IPS for this purpose:

 Fingerprint-based schemes: A fingerprint is a set of location-specific values of signal strength

(i.e. a signal pattern). Types of fingerprints include patterns of WiFi, FM and Bluetooth signals,

acoustic echo patterns and background spectrum, and magnetic signatures of the building [1-6].

A fingerprint-based IPS has a database of fingerprints captured at different locations in the

building during setup and maintenance times and a location/fingerprint server. Figure 1(a)

illustrates a practical embodiment of such an IPS that uses magnetic signatures as fingerprints.

The indoor space is partitioned into cells. The database contains fingerprint-to-cell mappings.

To determine its own location, a mobile device sends the fingerprint captured by it at its location

to the server and relies on the server to find in the database the cell(s)/location(s) with matching

fingerprint(s). The location accuracy provided by such a system is the size of the cells.

 Proximity-based schemes: Proximity detection is also a common approach to indoor positioning.

Short-range transmitters such as RFID tags, ibeacons from Apple and Eddystones from Googles

may be used to provide mobile devices data (e.g., UUID of the beacons or tags or a URL

associated with each beacon) using which the devices may query for their locations. Figure 1(b)

illustrates an embodiment that uses location beacons (Lbeacons) [7, 8] for this purpose.

Lbeacons are low-cost Bluetooth devices with directional antennas. They are installed to

provide coverage throughout the building and networked together with a server. Each Lbeacon

stores its own 3-D coordinates and broadcasts its coordinates to devices under its coverage.

Location accuracy is determined by the angles of their conical radiation beams and thus the size

of their coverage areas. Indoor navigation applications running on mobile devices can generate

navigation instructions based on location data from Lbeacons.

 A system of Lbeacons can also support object tracking applications. Figure 1(b) illustrates how

a Bluetooth indoor object tracking system (IOTS) works. Each object to be tracked carries a

Bluetooth low-energy device, called tag. In addition to broadcasting, Lbeacons can capture the

MAC addresses of tags contained in the advertizing data packets broadcast by the tags. Each

Lbeacon timestamps every address its captures and forwards the time stamped address to the server

together with its own coordinates. Since the MAC address of every Bluetooth device is unique, a

system of Lbeacons can locate every tag, and thus the object (e.g., a person, or a wheel chair, or a

medical device) carrying the tag, and track the movement of the object over time as long as the tag

is under the coverage of some Lbeacon in the building.

 4

(a) (b)

(d) (c)

Figure 1 Examples of embodiments of IPS

(B) The Noisy/False Movement Problem and Objectives of Its Solutions

 Figure 1(a) and (b) show the ideal condition: Every fingerprint captured by every device is

mapped to the cell containing the current location of the device, and the advertizing packet

containing the MAC address of every tag is received by only one Lbeacon among all Lbeacons and

the current location of the tag is in the coverage area of the Lbeacon. This enables the IPS to return

the correct location of the device/tag: that is, the location of the matching cell center or a location

within the cell in case of a fingerprint-based system, or in case of a system of Lbeacons, a location

within the coverage area of the Lbeacon. As long as the tag does not move, a graphical user

interface (GUI) of the IOTS continues to show it at the location. When the tag moves, the GUI

shows its new correct location after a short delay.

 Under real-life operating conditions, the strength of a received signal depends not only on the

distance from the signal source. Many factors, including the presence of objects in the signal path,

interferences from emitters nearby, natural fluctuations in transmitted power, variations in time of

transmissions, and so on, can cause unpredictable fluctuations in received signal strength. Figure

1(c) illustrates the possibility that one or more nearby Lbeacons may also receive advertising

packets, and hence the MAC addresses, broadcast by tags located in the coverage areas of a

Lbeacon. Despite a longer signal path, their received signal strengths may be stronger. This is

especially likely to happen when Lbeacons are densely deployed as illustrated by Figure 1(d) where

 5

Lbeacons are placed closely to achieve bed-level location accuracy (< 3m) in an emergency room. –

Similarly, the cell returned by a fingerprint-based system in response to a device's query may

change when there are unpredictable variations in the fingerprints captured by the device. Based on

such data, the GUI of an IPS or an object tracking system may show the object moving around

sporadically every few seconds or a few tens of seconds even when the object is standing still or

show the object moving haphazardly when it actually moves along a well defined trajectory.

 Hereafter, the apparent changes in object positions returned by an indoor object tracking system

(IOTS) due to unpredictable and sporadic changes in signal strengths will be referred to as noisy

movements or false movements. Users are likely to find noisy/false movements displayed by a GUI

annoying. Worst yet, they may present the user with confusing and incorrect information. The

methods described here aims to address this problem. Specifically they aim to

1. Improves the accuracy of locations returned by the IPS and IOTS, and

2. Eliminate or reduce noisy/false movements of objects presented by GUI.

Following this introduction, Section 2 presents as a concrete example of IOTS implemented with

Lbeacons and uses it to illustrate the object location problem addressed here. Sections 3 and 4

describe alternative methods to determine the locations of objects tracked by such a system and

methods for elimination of false movements, respectively. Section 5 discusses how the solutions for

Lbeacon-based systems can be generalized and applied to fingerprint-based systems. Section 6

summarizes the report.

2. A Motivating Example Based on an Embodiment of IOTS

 To illustrate the problem and motivate the methods to be presented in subsequent sections, this

section first describes the characteristics of advertising data packets in a system of Lbeacons, using

data collected from the IOTS shown Figure 1(d) for illustration purpose. The system makes

decisions on the locations of objects based on these characteristics. This section describes how

decision support data used to determine locations of tracked object presented to users by the GUI

are generated from these characteristics.

(A) Illustrative examples of observed data

 The upper half of Figure 2 shows plots of observed RSSI (received signal strength indices) of

advertizing packets (or simply packets) broadcast by a tag at locations p11 and p12. The map is that

of the upper right hand corner of the room shown in Figure 1(d). A01, A02, … A10 and A11 are

names of Lbeacons around p11 and p12. Each dot in the plots for a location above the name of an

Lbeacon indicates the observed RSSI value of a packet captured by the Lbeacon when the tag is at

that location. The scattered plot was obtained by keeping a tag at each location and recording the

RSSI’s of its data packets received by each of the Lbeacons within a given observation window, i.e.,

the time interval during which packets from a tag was received and their RSSI’s was measured by

each Lbeacon. In other words, each vertical cluster of dots is a summary statistics [9] that describes

the RSSI’s of packets from a tag at a location as observed by a Lbeacon.

 6

Lbeacon RSSI scatter plots at

location p12,

location p11

Obervation window = 20 sec.

A01 A02 A03 A04 A09 A10 A11

-50

--55

-- 60

-- 65

-- 70

-- 75

-- 80

--85

--90

R
ss

ii
n

db

p12 p11

Ave rssi of packet with rssi >= -70

A01

50

40

30

20

10

0

A02 A03 A04 A09 A10 A11

p12 p11

18

28

14

29
A

ve
ra

ge
 r

ss
io

f
pa

ck
et

s
w

ith
 r

ss
ia

bo
ve

 -
70

-50

-55

-60

-65

-70

-75

N
um

be
r

of
 a

dv
er

tiz
in

g
pa

ck
et

s

-63
-65

p12 p11

21
-63

32

-63

39

46

-60 31

27

12

20

-68-68

26

44
48

35 35

-59

-62

17

29

44

-68

No of packets with rssi > =-65 No of packets with rssi >= -65

No of packets with rssi >= -70 No of packets with rssi >= -70 p12 p11

Ave rssi of packet with rssi >= -70

Figure 2 RSSI scatter plots and sample values - in densely deployed area

 7

Lbeacon RSSI scatter plots at

location p27

location p25

Observation window = 20 sec

B11
B12B09

B08 C03

-50

--55

-- 60

-- 65

-- 70

-- 75

-- 80

--85

--90

p26 p25

B13

p27 p25 p27 p25

N
o

da
ta

 o
n

B
1

1
an

d
B

08

p27 p25

N
o

da
ta

 o
n

C
03

B14

B13

50

40

30

20

10

0

B14 B8 B11 B09 B12 C03

p27 p25

A
ve

ra
g

e
rs

si
of

 a
ll

re
ce

iv
ed

 p
ac

ke
ts

-60

-65

-70

-75

-80

-85

N
u

m
be

r
of

 a
dv

er
tiz

in
g

pa
ck

et
s

p27 p25

No of packets with rssi >= -65 No of packets with rssi > =-65

No of packets with rssi >= -70 No of packets with rssi >= -70 p27 p25

Ave rssi of all received packets Ave rssi of all received packet

p27 p25 p27 p25

3
2

26

12

-68

-80 11

-71

26

11 -78

8

N
o

da
ta

 o
n

B
1

1
an

d
B

08

N
o

da
ta

 o
n

C
03

16

8

0
1

-75

-82

16 16

9

16

9

-77

-80

Figure 3 RSSI scatter plots and sample values - in sparsely deployed area

 8

Similarly, the upper half of Figure 3 shows the summary statistics of RSSI’s of packets received

by Lbeacons B13, B14, B09, and B12 that are around locations p25 and p27 when the tag is at these

locations. For both plots, the size of observation window is 120 seconds. The longer the window,

the more reliable is the observation, but the slower the response of the system.

(B) Test Statistics

The bottom halves of Figures 2 and 3 show examples of test statistics [10] that are computed

from the corresponding summary statistics. Decisions on locations of the tag are made on the basis

of these and other test statistics. Examples shown here include numbers of packets with RSSI’s

higher than specified thresholds (e.g., -65 db and -70db) received by a Lbeacon within an

observation window and average RSSI of all received data packets (in Figure 3) or of received

packets with RSSI higher than a threshold (e.g., -70 db in Figure 2). They are natural choices of test

statistics for this type of observation data.

Formally, these test statistics are denoted by

 N (T, W; L): Number N of packets with RSSI’s higher than the threshold T captured by

Lbeacon L within an observation window of length W

 R (T, W; L): Average value of RSSI’s of packets with RSSI higher than the threshold T

captured by Lbeacon L within an observation window of length W

In the special case where no threshold is chosen (i.e., T = - ∞), these notations become N (W; L) and

R (W; L), respectively, denoting the total number of packets and the average RSSI’s of all packets

captured by Lbeacon L within window W, or simply N and R when there is no need to be specific.

Table 1 lists sample values of these test statistics for the data shown in Figures 2 and 3.

Table 1 Sample values of test statistics

-68-632644A11

-59-624448A10

-68-683127A09

-60-634632A02

-65-632928A01

p11p12p11p12

N (-70, 120; Li) R (-70, 120; Li)

No dataC03

-80-771616B12

-75-82161B09

-78-711126B14

-80-68326B13

p25p27p25p27

N (-70, 120; Li) R (120; Li)

Li Li

 3. Decision and Estimation Rules of Determining Object Locations

 At any time, the IOTS makes a decision on the location, or computes an estimate of the location,

of a tag (i.e., the object affixed with the tag) based on the sample values of a test statistics according

to a decision/estimation rule. There are two types of rules: Location-ignorant rules and

location-aware rules. A location-ignorant rule decides on the location of an object based on

 9

available sample values of one or more test statistics without taking into account the locations of

Lbeacons that collected the samples. In contrast, a location-aware rule estimates the location of the

object based not only on sample values but also on locations of the Lbeacons.

 Location-ignorant decision rules Below are rules based on hypothesis testing:

 The tracked object is in the coverage area of Li if

 (1) max all k {N(T, Lk; W)} = N(T, Li; W) or

(2) max all k {R(T, Lk; W)} = R(T, Li; W)

According to rule (1), the decision is made on the basis of numbers of packets received by

individual Lbeacons: The system concludes that the tag is in the coverage area of Lbeacon Li if Li

received in the current observation window the largest number of packets with RSSI higher than T.

According to rule (2), the decision is based on the average RSSI values of all packets with RSSI

higher than T received by individual Lbeacons: The system concludes that the tag is the coverage

area of Lbeacon Li if the average RSSI of all packets received by Li is at least equal to that of all

other Lbeacons.

 To illustrate, one can see from the summary statistics on Lbeacons around location p11 and p12

in Figure 2, A03, A04 and A09 perform less well compared with other nearby Lbeacons. Sample

values from them are ignored. Based on sample values of N(-70, 120, Li), the system may decide

that the tag at p12 is located in the coverage area of A10 since N(-70, 120, A10) is the largest among

all samples. In this case, the system would make the same decision if it uses rule (2) since R(-70,

120, A10) = -62 is the highest average RSSI among that of all Lbeacons. Similarly, the system

decides that the tag at p11 is under the coverage of A02 and A10 according to rules (1) and (2),

respectively, leading to location errors of the same size.

In the example illustrated by Figure 3 and the right half of Table 1, the system would decide that

the tag at location p27 is in the coverage area of B13 according to both rules (1) and (2). It would

decide that the tag at location p25 is in the coverage area of B12 (or B09) according to rule (1) and

in coverage area of B09 according to rule (2).

These location-ignorant decisions are illustrated by the small maps in the left half of Figure 4.As

it turns out, the decisions are excellent ones: As one can see from the small map at the upper left

corner, A10 is indeed the Lbeacon closest to p12. The choices of A02 and A10 for tag at p11 are

also the best for the given locations of Lbeacons relative to the location of p11. Similarly, rules (1)

and (2) work as well as they can for tags at p27 and p25. The relatively large location errors are

results of sparse development of Lbeacons around these locations.

 Location-aware estimation rules A parameterized family of location aware rules compute an

estimate (Xt, Yt) of the tag location based on the locations of Lbeacons that contributed the best K

samples values of the chosen test statistics among samples from all Lbeacons. Let S (N, K) and S (R,

K) denote the sets of Lbeacons that have the K best sample values in the sets {n(T, Li; W)} and {r(T,

Li; W)} of sample values of test statistics {N(T, Li; W)} and {R(T, Li; W)}, respectively, in the

 10

current observation window W. Let xi and yi denote the horizontal coordinates of lbeacon Li.

Below are examples of location-aware rules:

Rules 1 and 2:
p12 tag is here

Rule 1: p11 tag is here

Rule 2: p11 tag is here

Rule 1 and 2: p27 tag is here

Rule 2:
p25 tag
is here

Rule 1:
p25 tag
is here

Rule 3: p11 tag is here
(average of locations
of A02 and A10) for
both test statiscs N & R

Rule 3: p12 tag is here
(average of locations
of A10 and A11) for
both test statiscs N & R

Rule 3: p27 tag is here (average of locations of
B13 and B14) for both test statistics N and R

Rule 3:
p25 tag
is here
(ave. of
loc. Of
B09 &
B12)
for both
N & R

Figure 4 Example illustrating the results of decision/estimation rules

 (3) Geographical centriod rule: The estimated coordinates (X, Y) of the tag is the average of the

coordinates of the K points in {(xi , yi) | Li  S (N, K)} when the test statistics is {N(T, Li; W)},

or the K points in {(xi , yi) | Li  S (R, K)) when {R(T, Li; W)} is the test statistics.

 (4) Weighted centriod rule: The estimated coordinates (X, Y) of the tag is the weighted average of

coordinates of the K points in {(xi, yi) | Li  S(N, K) } (or {(xi, yi) | Li  S (R, K)}) when the

test statistics is {N(T, Li; W)} (or {R(T, Li; W)}) where the weight wi of (xi , yi) is given by

wi = n(T, Li; W) /  Lj  S(N,K) n(T, Lj;W)) or

wi = r(T, Li; W) / ( Lj S(R,K) r(T, Lj;W))

 for test statistics {N(T, Li; W)} or {R(T, Li; W)}, respectively.

 The right half of Figure 4 illustrates rule (3): One can see that rule (3) provides the best location

estimate of the tag at p11 with near zero error, but a location estimate of the tag at p12 has a slightly

larger error than the choices of rules (1) and (2).

 Both examples support the conjecture stated below:

 Simple rules (1) and (2) works well enough in areas where Lbeacons are densely deployed,

especially when the distances between each Lbeacon and its nearest neighbors are within the

required location error for the area.

 11

 Rules such as (3) and (4) work better than rules (1) and (2) where Lbeacons are relative

sparsely deployed (e.g., when the coverage areas of individual Lbeacons no longer overlap

and the required location error is equal to or smaller than the size of their coverage areas.

4. False Movement Elimination Methods

Often, the best samples for a tag from nearby Lbeacons are close in values. Table 1 illustrates this

behavior: Some of the best sample values are either equal or differ by a small percentage. One can

easily see that in the presence of natural fluctuations in RSSI’s of data packets and hence variations

in sample values, the locations of a tag computed by the system according to the rules presented

above and displayed by the GUI may exhibit false movements. For example, the locations of the tag

displayed by GUI at consecutive update instants may differ, showing the tag moving even when the

tag is stationary. A false movement elimination (FaME) method aims to minimize or eliminate false

movements when it is applied after a decision/estimation rule or in combination with the rule to

determine the displayed location of each tag at each GUI update instant.

There are two types of FaME methods: Quantized sample value method and lowpass filtering

method. They all consider data and decisions in multiple observation windows and at multiple

update instants. To present their common approach, let t0 denotes the current update time instant,

and… t-1, t0, t1, ... denote the past and future instants. According to the rules described above, at t0,

the current location of each tag is computed based on the RSSI values of data packets collected

from the tag by all nearby Lbeacons in the current window (t0 – W, t0]. The GUI might exhibit false

movements if it would display the location thus computed directly, replacing the location displayed

starting at t-1. Rather than doing so, FaME extensions take into account also sample data collected

and or decisions made during one (or more) previous observation window(s) (t-1 – W, t-1], (t-2 – W,

t-2] and so on. (In practice, consecutive update instants are one or two seconds apart, while

observation windows are 5, 10 or 20 seconds in size.)

Quantized Sample Approach: Simply put, the quantized sample method considers two sample

values different only when their differences exceed the quantum Q. Quantum size Q is specified in

terms of either number of data packets or number of decibels (such as 2 packets or 2 decibels) for

test statistics N and R, respectively, or in terms of a percentage of a given sample value. Rules (1)

and (2) can be extended as follows: The extended rules are stated in terms of the notations below in

addition to quantum size Q:

 L-1 and L-0 denote the Lbeacon selected at the previous update instant t-1 and current update

instant t0 to be the location of the tracked tag whose current location is to be computed.

 W0, W-1 and W1 denote the current observation window (t0 – W, t0], the previous observation

window (t-1 – W, t-1], and the next observation window (t1 – W, t1], respectively.

 N-1 and N0 (or R-1 and R0) denotes the sample values based on RSSI’s of data packets from

the tag collected by L-1 in W-1 and L0 in W0, respectively

In essence, at the current update time, the FaME extended rules (1) and (2) continue to use the

 12

decision L-1 made at the previous update time t-1 if the best sample value N0 (or R0) at current time

collected by L0 differ from sample value from L-1 by no more than the quantization size Q. If the

difference exceeds Q, L0 is the decision. Below are formal definitions of the extended rules

(1E) FaME extended rule (1): The tracked tag is in the coverage area of Li if

 max all k {N(T, Lk; W0)} = N(T, Li; W0) >= N(T, L-1; W0) + Q

 Else the track object is in the coverage area of L-1

(2E) FaME extended rule (2): The tracked tag is in the coverage area of Li if

 max all k {R(T, Lk; W0)} = R(T, Li; W0) >= R(T, L-1; W0) + Q

 Else the track object is in the coverage area of L-1

 To illustrate using the data from Table 1, note that both rules (1) and (2) decide that the tag at

p12 is in the coverage area of A10 at t0 because the sample values of N = 48 (and R = -62) from the

Lbeacon are the best at the time. Suppose that Q is 2 packets (or 2 db). Moreover, suppose that at

the next update instant t1, A11 has the best sample values and they are N = 44 (and R = -63 db).

According to the FaME extended rules, the decision is that the tag at p12 is under the coverage of

A11 at t1, if at t1, the sample value N (or R) from A10 is less than 44-2 = 42 (or -63-2 = - 65db);

otherwise, the tag at p12 remains to be under the coverage of A10.

 Lowpass Filter FaME Method As its name implies, the lowpass filter FaME method aims to

filter out fast changes in location estimates that violate physical laws governing the movements of

tracked objects. It is applied after a location decision/estimation has been computed. To illustrate,

we note from the right half of Table 1 that rule (1) may decide that the tag at p27 is covered by B13

at the previous update instant and by B14 at the current update instant because these Lbeacons have

the best sample values for both test statistics. However, the separation between Lbeacons is about

10 meters, update instants are one second apart and people and equipment/devices pushed by people

move at 1 to1.5 meters per second. It is impossible for the tag to leap to B14 at current update

instant if it was at B13 at the previous update instant. If the speed limit were set at 1.5 m/s, then the

position of the tag at current update instant is at most 1.5 meter from B13 on the line connecting

locations of B13 and B14. This is the underlying approach of the lowpass filter method.

In case of this example and in general, the lowpass filter method is not needed when the tags are

stationary. The leap mentioned above can be easily eliminated by using FaME extended rules (1)

and (2) with Q set larger than zero (e.g., 2). Similarly, centriod rules (3) and (4) should conclude the

tag at p27 is in between B13 and B14.

The tag may be moving, however. A reasonable approach works as follows;

1. Compute coordinate estimate of the tag at each update instant using a centriod rule (3) or (4).

2. Plot the trajectory of the tag at the current update instant t0 by extending the trajectory

generated from past M (> 1) coordinate estimates (X-M, Y-M), ... (X-2, Y-2), (X-1, Y-1) of the tag to

include the current coordinate estimate (X0, Y0). Any of the well known curve-fitting methods

with a sufficiently large M can be used to produce a smooth trajectory.

 13

3. At each instant, the maximum speed of the tag is taking into account by constraining the

distance traveled between consecutive update instants. If necessary, re-plot the trajectory

generated at one or more previous update instants to satisfy the constraint.

5. Application to Fingerprint-based Systems

 Despite the vast differences between the systems, the indoor location decision/estimation and

false movement elimination techniques presented in previous sections for Lbeacon-based systems

can be easily modified and applied to fingerprint-based systems. As stated earlier, a fingerprint, also

frequently called a signature, is a set of location-specific observed sensor values. A fingerprint

based indoor positioning system typically partitions the indoor space into cells of a size roughly

equal to its required location accuracy. It maintains a database of signatures/fingerprints captured

for each and every cell during setup and maintenance times and uses a location/fingerprint server to

respond to each query for the cell with signature matching the signature provided by the user.

 This is where the similarity among the fingerprint-based systems ends. As example, the systems

described in papers cited above differ significantly in the types and characteristics of the signatures

used by them. A signature at a location and stored for the cell containing the location may be

- A vector of RSSI values of signals received at the location from σ WiFi sources [2, 3], or

- A vector of vectors, each of which contains RSSI value, SNR (signal-to-noise ratio), and

multipath indicator of the signal from each of the σ FM stations [3, 4], or

- A geomagnetic signal or σ lines in the FFT (Fast Fourier Transform) of the signal [1, 5], etc.

In the terms introduced in the previous sections, they are summary statistics.

 To determine its own location, a mobile device sends the signature Su captured by it at its location

to the server and relies on the server to find the cell with a matching fingerprint. The decision on

which cell k has the stored signature Sk that best matches the input signature Su from the user

device is often made on the basis of Manhattan distance or Euclidean distance between the stored

vector Sk and input vector Su. The chosen distance is the test statistics. For an input signature Su, and

the values of the distances DM (Sk, Su) or DE(Sk, Su) for all cells k are the sample values. A

decision/estimation of the location with the input signature Su can be made using any of the rules

(1) – (4) based on the sample values.

6. Summary

 This report describes several methods that can be used by a indoor object tracking system (IOTS)

to compute the locations of tracked objects at each update instant based on values of sensor data

available at that instant and previous update instants. The methods aim to minimize location errors

on the one hand, and to reduce or eliminate false movement on the other hand. The term noisy/false

movement refers to sporadic changes in object locations displayed by the GUI caused by

unpredictable fluctuations in sensor data. Users are likely to find such movements annoying and

location information confusing.

 14

 The methods are defined in terms of statistical decision and estimation rules. Once the test

statistics are chosen, it is straightforward to apply them. Specific details about the IOTS are not

important. For this reason, the methods can be applied by IOTS based on proximity detection as

well as systems based on fingerprints.

References

[1] “Indoor Atlas uses magnetic sensors to find places in the great indoors,”

https://venturebeat.com/2013/11/15/indoor-atlas-uses-magnetic-sensors-to-the-great-indoors/,

(Last retrieved: May 10, 2020) and "Magnetic Positioning, The Arrival of 'Indoor GPS',"

https://www.indooratlas.com/2014/06/01/magnetic-positioning-the-arrival-of-indoor-gps/,

(Last retrieved: May 2020), Opus Research, June 2014,

[2] A. Farshad, J. Li, M. K. Marina and F. J. Garcia “A microscopic look at WiFi fingerprinting

for indoor mobile phone localization in diverse environments,” Proceedings of International

Conference on Indoor Positioning and Indoor Navigation, October 2013.

[3] Y. Chen, D. Lymberopoulos, J. Liu, and B. Priyantha, "FM-based indoor localization,"

Proceedings of ACM MobiSys, 2012, pp. 169-182.

[4] A. Popleteev, "Indoor Positioning Using FM Radio Signals," PhD Dissertation. University of

Trento, Italy, 2011.

[5] Jaewoo Chung, Matt Donahoe, Chris Schmandt, Ig-Jae Kim, Pedram Razavai, and Micaela

Wiseman, "Indoor location sensing using geo-magnetism," Proceedings of ACM MobiSys'11,

2011.

[6] S.-H. Fang and T.-N. Lin., "Cooperative multi-radio localization in heterogeneous wireless

networks," IEEE Transactions on Wireless Communications, 9(5), 2010, pp. 1536-1276.

[7] C. C. Li, J. Su, E. T.-H. Chu, and J. W. S. Liu, “Building/environment Data/information

Enabled Location Specificity and Indoor Positioning,” IEEE Internet of Things Journal,

Volume: 4, Issue: 6, pp. 2116 – 2128, Dec. 2017

[8] J. W. S. Liu, L. J. Chen, J. Su, C. C. Li and E. T.H. Chu, "A Building/environment Data Based

Indoor Positioning Service," 2015 IEEE International Conference on Data Science and Data

Intensive Systems, December 2015.

[9] Summary Statistics, https://en.wikipedia.org/wiki/Summary_statistics, (Last retrieved: May

2020).

[10] Test Statistics, https://en.wikipedia.org/wiki/Test_statistic, (Last retrieved: May 2020).

