
TR-IIS-08-012 

 

 

A Scalable Peer-to-Peer Presence 

Directory 

 

 
 
 
 
 

 
 

 
 
 
 

 
 
 

 
 
 

Chi-Jen Wu, Jan-Ming Ho and Ming-Syan Chen 
 
 

 
 

 

 

 

 

 

 

 

 

 

 
 
 

 
 

 
 

November 25, 2008  ||  Technical Report No. TR-IIS-08-012 
http://www.iis.sinica.edu.tw/page/library/LIB/TechReport/tr2008/tr08.html 



A Scalable Peer-to-Peer Presence Directory
Chi-Jen Wu∗†, Jan-Ming Ho† and Ming-Syan Chen∗

∗Department of Electrical Engineering, National Taiwan University, Taiwan
†Institute of Information Science, Academia Sinica, Taiwan
{cjwu,hoho}@iis.sinica.edu.tw, mschen@cc.ee.ntu.edu.tw

Abstract—Instant Messaging (IM) has emerged as a popular
communication service over the Internet. One of the themes of IM
systems is to provide a presence directory that carries information
on user’s presence or absence to his/her friends. In this paper,
we present new presence directory architecture and give a
comparison of existing presence directories. We first introduce
the distributed buddy-list search problem. We then present P2Dir,
a distributed peer-to-peer presence directory protocol to address
this problem. For each newly arriving user, the protocol is used to
search for network presence of his/her buddies and also to notify
them on his/her presence. P2Dir organizes directory servers into
a 2-hop P2P overlay for efficient buddy searching. Moreover,
P2Dir leverages the breadth-first search algorithm and a one-
hop caching strategy to achieve small constant search latency
on average. We measure the performance of our P2Dir system,
in terms of search cost and search satisfaction, where search
cost is defined as total number of messages incurred among the
directories upon the arrival of a user, and search satisfaction
is defined as the time it takes to search for the newly arriving
user’s buddy list and to notify presence of the newly arriving user
to his/her buddies. We evaluate the performance of our P2Dir
system in terms of search cost and search satisfaction through
simulations, and compare it with a mesh-based presence protocol.
The results show that our P2Dir achieves performance gains in
search cost without sacrificing search satisfaction.

I. I NTRODUCTION

Social network applications, such as group communication
and Instant Messaging (IM), have emerged as an attractive
service over the Internet. In a social network application
such as IM systems, e.g., AOL Instant Messenger (AIM),
Microsoft MSN and Yahoo! Messenger, every user may easily
form a social network to real-time communicate with friends.
For example, a user may log into a system, and then start
sending and receiving instant messages to and from other
users. Nowadays, there are more than several millions of IM
users over the Internet [1]. Based on its growth momentum, it
is expected that the number of IM users to drastically increase
in the future.

Presence directory service is an essential component of
an IM system. It maintains an up-to-date list of presence
information of all the users. It also brokers user’s presence
or absence status to his/her friends whenever appropriate.
The presence directory service should include binding of a
user’s name to his/her current network location, and retrieving
and subscribing to changes in the presence information of
other users. In most IM systems, each user has a contact list,
typically called the buddy list that associates with whom a user
wants to communicate. The status of a user is advertised au-
tomatically to each online user on his/her buddy list whenever

he/she transits from one status to another. For example, when a
user logs in an IM system, the presence directory should search
and alert everyone in the buddy list of that user. In order to
maximize the search speed and to minimize the notification
time of a presence directory service, most IM systems use
server cluster technology [2], which allows an IM system to
scale to millions of users. To date, little has been documented
on presence directories used by existing IM systems.

In this paper, we give a brief discussion on the problems
of existing presence directories. We first present a simple
mathematical model of the communication cost in terms of the
number of messages of a distributed presence directory. Then
we introduce the buddy-list search problem in a distributed
presence directory. Thebuddy-list search problemrefers to the
scalability problem that a presence directory in general may
be deluged with torrential searching messages. Further details
will be given in the Section III.

We then present the design of P2Dir, a distributed peer-to-
peer (P2P) presence directory that can be used as a building
block of Internet IM systems. The intent of designing P2Dir
is to grip millions of users over thousands of directory servers
distributed across the wide Internet. The importance of our
method is that each directory server does not need to maintain
global information such as the set of all users, and therefore,
our protocol is adaptive for large scale IM systems. P2Dir
organizes the DS nodes into a 2-hop P2P overlay for effi-
cient buddy searching. Moreover, P2Dir leverages this 2-hop
overlay and the breadth-first search algorithm to achieve small
constant search latency in average, and resorts to an active
caching strategy to dramatically reduce the number of mes-
sages generated by each search for a list of buddies. Through
simulation, we evaluate the performance of our P2Dir system
in terms of the number of messages and search satisfaction
including search response time and search notification time.
We also compared P2Dir with a mesh-based algorithm similar
to Skype’s presence protocol. The results show that our P2Dir
achieves major performance gains in terms of the number of
messages without sacrificing search satisfaction.

The rest of this paper is organized as follows. In the
next section, we describe related works. In Section III, we
present the analytic model to compute the number of messages
generated in a buddy-search query on a distributed presence
directory and briefly discuss the buddy-list search problem.
In Section IV, we present the detailed design of the proposed
P2Dir protocol. Complexity analysis of P2Dir and the mesh-
based scheme are presented in Section V. In Section VI, we



2

start with introducing our performance evaluation methodol-
ogy and present performance results on P2Dir system and the
mesh-based scheme. In Sections VII and VIII, we discuss the
further consideration and conclude this paper with a summery
of the main research results from this study.

II. RELATED WORK

In this section, we describe previous research on IM sys-
tems, and survey the directory services of existing systems.
The concept of an IM system developed from the Internet
Relay Chat Protocol (IRC) [3], and it is now a widely used
in applications in like ICQ, AIM, Microsoft MSN, Yahoo!
Messenger, and Skype. Because of their enormous popularity
and user bases, most studies [1], [4], [5] of IM systems have
focused on understanding the network traffic generated by
IM applications. For example, in [5], which was an early
study of IM systems, the authors developed a methodology for
separating IM traffic from other Internet traffic. The analyses
in [1] represent a comprehensive study of interactive traffic
in the Microsoft MSN network. Similarly, the authors of [4]
analyzed the traffic of two popular IM systems, AIM and
Microsoft MSN. They found that most instant messaging
traffics are due to presence/keep alive activities, hints or other
extraneous traffic, not chat messages produced by users.

Well known commercial IM systems leverage some form of
centralized directory to provide a presence service. However,
little is known about the technical aspects of the directory
services used such systems [2], [6]. Jennings IIIet al. [2]
presented a taxonomy of different features and functions
supported by the three most popular IM systems, AIM,
Microsoft MSN and Yahoo! Messenger. The authors also
provided an overview of the system architectures and observed
that the systems use client-server-based protocols. Baset and
Schulzrinne [6] studied Skype, another popular application
that was launched in 2003 to support both instant messaging
and voice conferencing. Skype utilizes Global Index (GI)
technology [7] to provide a directory service for users. The GI
technology is an overlay network in which every node has full
presence knowledge about all available users. Skype claims
that GI technology is guaranteed to locate a user if he/she has
used the network in the previous 72 hours. However, since
Skype is not an open protocol, it is difficult to determine how
GI technology is used.

Recently, there is an increase amount of interest in how to
design a decentralized peer-to-peer SIP [8]. For example, the
P2P-SIP [9]–[12] has been proposed to remove the centralized
server, reduce maintenance costs, and prevent failures in
server-based SIP deployment. Like the IM system, the most
important feature of a SIP system is the registrar directory.
To maintain presence information, P2PSIP users/clients are
organized in a DHT system, rather than in a centralized server.
For small-company applications, the self-organizing aspects of
P2P make SIP systems easier to configure and manage. P2PSIP
is also being considered to support ad-hoc communication
environments or emergency responder networks.

Several IETF charters [13]–[15] have addressed closely
related topics, and many RFC documents on instant messaging
and presence services have been published, e.g., [16]–[18].
Jabber [19] is a well-known deployment of instant messaging
technologies based on related RFC documents. It captures
the distributed architecture of SMTP protocols so that any
Jabber server can communicate with any other Jabber server
that is accessible via the Internet. Since Jabber’s architecture
is distributed, the result is a flexible network of servers that
can be scaled much higher than the monolithic, centralized
services. However, thebuddy-list search problemwe defined
earlier can also affect such systems. Two articles [20], [21]
discuss related issues of the eXtensible Messaging and Pres-
ence Protocol (XMPP) [16] and the Session Initiation Protocol
for Instant Messaging and Presence Leveraging Extensions
(SIMPLE) [15], [17] protocols. Saint Andre [20] analyzes the
traffic generated as a result of presence information between
users of inter-domains that support the XMPP. Houriet al. [21]
show that the amount of presence traffic in SIMPLE can be ex-
tremely heavy, and they analyze the effect of a large presence
system on the memory and CPU loading. Currently, Professor
Schulzrinne and his group [22] are studying related problems
and developing an initial set of guidelines for optimizing inter-
domain presence traffic.

Compared with the above efforts, this work makes the
following contributions. First, we analysis scalability prob-
lems of the distributed directory protocols, and introduce a
new problem calledbuddy-list search problem. Although, our
mathematical model is simple, it is not hard to comprehend a
scalability problem in here. Second, we design a P2Dir system
that is the scalable protocol designing for the presence service
of IM systems. Our P2Dir can be easily integrated with any
open-source IM system, such as Jabber.

III. T HE MODEL AND PROBLEM STATEMENT

In this section, we describe the buddy-list search problem,
and define the system model. Distinct from traditional network
services, an IM system usually notifies its users on the online
status of one’s buddies as the basis of a real-time chatting
environment. Moreover, the IM service is characterized by
the frequent login/logoff behavior of its users. Thus, we may
expect to observe a large amount of messages generated to
search for buddies in an IM system. The presence directory
designed to deal search for buddies must be able to handle
these search messages. We refer to this problem as the buddy-
list search problem. A brief analysis on a primitive presence
directory architecture is presented below to illustrate the
amount of messages in such a system.

A presence directory may be regarded as an overlay network
which is defined as a directed graphG = (V,E), whereV
is the set ofn nodes each representing a Directory Server
(DS), andE is a collection of ordered pairs inV . An edge
(v1, v2) ∈ E, wherev1, v2 ∈ V , is called an outgoing edge
of v1 and an incoming edge ofv2. The overlay network
enables nodes to communicate with one another by forwarding
messages to and through other nodes in the overlay. In



3

addition, the users of an IM system comprise a set of processes
U = p1, p2, . . . , pm. Hereafter, the termsprocess, user and IM
client are used interchangeably. Then, we define thebuddy list
as follows.

Definition 1. buddy list, a buddy listgi of processpi ∈ U
is a subset ofU , i.e., gi ⊆ U where 1 ≤ i ≤ m. We also
define the buddy relation as a symmetric binary relation. That
is, if pi ∈ gj thenpj ∈ gi.

For example, if a user,A is in the buddy list of a user,B,
then the user,B will be also in A’s buddy list.

A new processpi randomly connects with a DS node and
search for locations of other existing processes in its buddy
list gi, and to request for notification of locations of other
processes ingi on their arrival. Note that we refer to binding
of user id and IP address of a processpi as pi’s location. A
processpi can then communicate with a processpj via pj ’s IP
address. Assume that each process and each DS node can join
or leave the network arbitrarily at any time, and a DS node
knows only those processes directly attached to it. We refer to
this architecture as the basic model. Note that for a DS node
to search for a process in the basic model, it has to send a
query to every DS node. Thus, the underlying IM system will
have to handle a large amount of messages in searching for
buddies of new processes.

In the following, we will give an analysis of the expected
rate of messages generated to search for buddies of newly
arriving processes in a IM system. A newly arriving process
pi of the IM system sends a message containing its buddy-list
gi to the DS node which it directly attaches to. Let’s denoteµ
as the average rate of processes arriving at the IM system. We
assume the probability for a process to attach to a DS node
to be uniform. In other words,u = µ

n is the average rate of
new processes attached to a DS node. The probability for each
processpj ∈ gi to attach to the same DS node is denoted as
h. And the probability for eachpj to attach to a specific DS
node is 1

n , thus,h equals ton−|gi|. The expected number of
search messages generated by this DS node per unit time is
then

(n− 1)× (1− h)× u.

Considering the expected numberM of messages generated
by then DS nodes per unit time, then we have

M = n× (n− 1)× (1− h)× u

≥ n× (n− 1)× u

2

≥ n2 × u

4
=

n× µ

4
.

Thus, the total communication cost and the total CPU
processing overhead of the system increase linearly as the
number of DS nodes increases. The above analysis shows
that supporting newly arriving users to search for buddies in
a distributed directory service system is rather expensive. In
this paper, we are going to present a new distributed directory
architecture which scales better than the previous basic model,

and compare its performance with the mesh-base architecture
which is used by some popular IM services.

IV. D ESIGN OFP2DIR

The performance of distributed presence directory systems
are affected by the large amount of messages in searching
for buddies of newly arriving users, which gets worse as
the size of the directory network increases. Our motivation
for designing P2Dir is twofold: 1) to develop a P2P-based
distributed directory system that can provide a fault tolerant
presence service for general IM systems; and 2) to reduce
buddy list search latency, and achieve high scalability. In the
following, we begin by explaining the rationale behind our
system design. We then present a overview of the P2Dir pro-
tocol, including details of the 2-hop DS overlay construction,
buddy list searching, and caching operations.

A. Design Rationale

Locating/searching for objects in distributed networks is not
a new problem, especially in P2P networks. Two recently
developed systems, Gnutella and Distributed Hash Tables
(DHT) [23], are designed to improve Internet-scale object
searching. In recent years, there has been a great deal of
research activity in this field, and many protocols and al-
gorithms have been proposed. Existing algorithms address
different aspects of the object search problem in distributed
systems. Compared to file-sharing, presence information is
more mutable; however, the above systems do not consider
the buddy-list search problem when designing protocols for
directory services.

Gnutella searches P2P file-sharing systems to locate files
that match all the keywords in a search query. In Gnutella,
the number of search recalls is the most important criterion. It
tries to find more desired files efficiently, rather than reduce the
response time for users. For thebuddy-list search problemwe
consider, Gnutella may take a long time to conduct searches.
Moreover, Gnutella’s search algorithm does not reach all
nodes, so it can not guarantee returning the required buddy list.
Although, several Gnutella-like protocols have been proposed
to improve the original Gnutella’s performance, they focus on
the scaling problems and search recall issues. In summary,
Gnutella is not suitable for designing presence directories.

DHT systems are another class of distributed networks de-
signed to locate objects. Most DHT systems provide efficient
lookup functions that operate inO(logN) overlay hops by
only maintainingO(logN) routing table entries. Generally,
DHTs are well-suited to large-scale distributed applications,
but they are less adept at buddy-list search. When using
DHT in directory systems, each peer is required to perform
O(logN) registering operations after login, and also conduct
O(logN) lookup operations for each buddy. Moreover, node
failure can cause churn in DHT systems, and most systems
needO(logN) repair operations after each failure to preserve
the correct and efficient lookup operations. Therefore, in DHT
systems, replicating lost data and handling churn increases
both the workload and the time complexity. Even though some



4

Fig. 1. An overview of a P2Dir system

DHT systems can address these problems, a search operation
that must visit a logarithmic number of nodes to reach the
buddy lists of users could be very slow. This is because each
hop involves sending a message to a host that may be on
the other side of the world, and some hosts may be heavily
loaded, or have slow connections. Thus, for latency-sensitive
applications, DHT systems may be unsuitable for presence
directory design due to their high lookup costs [24].

The P2Dir protocol is used to construct and maintain a
distributed directory and can be used to efficiently query the
directory for buddy list searches. The protocol consists of three
component protocols that are run on a set of directory servers.
The design of P2Dir refines the concept of P2P systems to
meet the particular needs of presence services. The three key
components of our design are summarized below:
• A 2-hop DS overlay construction algorithm that orga-

nizes Directory Servers in a fully distributed way, such
that the resulting DS overlay network has a balanced load
and a 2-hop diameter overlay withO(

√
n) node degree,

wheren is the number of nodes.
• A one-hop caching algorithmthat is used to reduce the

number of transmission messages and accelerate query
speeds. All directory servers maintain caches of the buddy
lists provided by their immediate neighbors.

• A buddy searching protocolthat is based on the breadth-
first search (BFS) algorithm. Since the 2-hop overlay
ensures a low-TTL search, it achieves a small constant
search latency on average.

B. P2Dir Overview

The P2Dir protocol is used to construct a distributed P2P-
based directory for presence services, and to efficiently search
desired buddy lists in the distributed directory. Figure 1
presents an overview of the P2Dir system. After a IM client
logs in with an authentication server (the P2Dir login server
in Figure 1), the client is randomly directed to one of the
Directory Servers in the DS overlay. Alternatively, it can
find the nearest DS node by using the sever selection tech-
nique [25]. The client opens a TCP connection to the DS node

for control message transmission, particularly for the presence
information. After establishing the control channel, the IM
client sends a request for a buddy list search to the connected
DS node. P2Dir then implements an efficient search operation
and returns the desired buddy list to the IM client. During the
search operation, the client’s buddies will be notified about its
presence. If the current DS node fails, the client can connect to
another one. We assume that, in practice, the instant messages
generated by users are transmitted by a direct TCP connection
between IM clients. The P2Dir system deals primarily with
the control and signal messages sent between DS nodes and
IM clients. Next, we discuss the three protocol components in
detail.

C. DS Overlay Construction

The DS overlay construction algorithm organizes the DS
nodes into a 2-hop P2P overlay. P2Dir uses Kelips [26] to form
a 2-hop DS overlay, the core component of the system, and
leverages it to maintain a cooperative buddy cache efficiently.
Kelips is designed for dynamic P2P networks in which nodes
can join and leave at any time. It provides a good low-diameter
overlay property. The low-diameter property ensures that a
node only needs 2 hops to reach any other nodes. For more
details about the join/leave properties of the Kelips system,
readers may refer to [26]. Here, we only introduce the core
design of the system. Kelips organizes nodes inton virtual
affinity groups, numbered0 to (

√
n−1), as shown as Figure 2.

In the Kelips system, each node maintains a list of peers of size
O(
√

n), wheren is the number of nodes in the DHT. When a
Kelips node joins the system, it attaches to an affinity group
determined by using a consistent hash function, such as SHA-
1, to map the node’s IP address to a integer interval between
[0,
√

n− 1]. Using the SHA-1 hash function [27] ensures that
each affinity group will contain close ton√

n
nodes with high

probability. The routing table of a node is comprised of two
lists: an Affinity Group View, which is a list of other nodes
in the same affinity group; and aContacts Group, which is
a list of the other affinity groups in the system, i.e., a set
(
√

n − 1 sized) of nodes lying in the foreign affinity groups.
Figure 2 illustrates the Kelips system, which clearly has the
2-hop diameter property.

Consequently, P2Dir has the 2-hop diameter property based
on the Kelips system, and DS nodes can join or leave P2Dir
freely. However, a new DS node needs to establish connections
with existing DS nodes when joining. When a DS node leaves,
the remaining DS nodes must establish new connections. Thus,
P2Dir contains a central element, called aroot server, which
maintains a cache of DS nodes at all times. The root server is
reachable by all DS nodes at all times. When a new DS node
joins, it first contacts the root server, which gives itk random
nodes from the cache to connect to. Thek value is determined
by the root server. We assume that a DS node knows when any
of its neighbors leaves the system. The root server is contacted
whenever a DS node needs to reconnect to the network, and
when a new DS node joins the network. The advantages of
our algorithm are that it is simple to implement, it is naturally



5

Fig. 2. A perspective of the Kelips system

robust to failures, and it has the 2-hop diameter property.

D. One-hop Caching

To improve the efficiency of the search operation, P2Dir
requires that the caching strategy can replicate the presence
information of users. To adapt to changes in the presence of
users, the caching strategy should be asynchronous and not
require expensive mechanisms for distribution. In P2Dir, each
DS node maintains a user list of presence information of the
current users, and it is responsible for caching the user list of
each of its neighbors; in other words, a DS node only replicates
the user list of nodes at most one hop away from itself. A DS
node updates the cache when neighbors establish connections
with it, and periodically updates its neighbors with the cache.
Therefore, when a DS node receives a query, it can respond
with matches from its own user list, and can also provide
matches from its cache of user lists provided by all of its
neighbors.

Our caching strategy does not incur a large overhead for
the presence consistency among the DS nodes. When a user
changes its presence information, either because it leaves the
IM system or the IM application’s failure, the responding DS
node can disseminate its new presence to neighboring DS
nodes, so that they can update the caches quickly. This one-hop
caching strategy ensures that the user’s presence information
remains up-to-date and consistent throughout the session time
of the users.

More specifically, each DS node creates roughly2
√

n × u
replicas of buddy information, since each DS node replicates
the user lists of nodes at most one hop away from itself.
Recall thatu denotes the average number of processes (IM
clients) attached to one DS node. Based on this one-hop cache
mechanism, a one-hop search operation can be conducted with
very high probability. By maintaining2

√
n × u replicas of

buddy information at each DS node and the simple 2-hop
overlay design, P2Dir has sufficient redundancy to maintain
an efficient buddy search service. Furthermore, the caching
mechanism significantly reduces the communication costs of
the searching. In the next section, we explain why the one-hop
cache mechanism reduces the cost of buddy searches in P2Dir.

E. Buddy List Searching

Minimizing the search response time is important to the
presence service of IM systems. Therefore, we combine
P2Dir’s buddy list search algorithm with the 2-hop DS overlay
and one-hop caching strategy to ensure that P2Dir can provide
swift responses for a large number of IM users. First, by
organizing DS nodes into a 2-hop overlay network, we can use
a smaller TTL value (i.e., 1) for queries and thereby reduce
the network traffic, without having a significant impact on the
search results. Second, by capitalizing on the one-hop caching
mechanism, which maintains the user lists of its neighbors, we
improve the response time by increasing the chances of finding
buddies. As mentioned previously, P2Dir does not require a
complex or specialized search algorithm. Instead, it adopts
the TTL (Time-To-Live)-limited flooding technique used in
Gnutella-like P2P file-sharing systems, and still improves the
search efficiency.

Next, we describe the P2Dir Buddy List Search algorithm in
detail. When a process (an IM client) logs into an IM system,
P2Dir searches for the client’s buddy list by performing a
Buddy List Search operation. The search message contains
all of the client’s buddy information and a TTL field set to
a constant value of 1. The DS nodes process the query by
searching their local user lists and the cached buddies. If a
DS node can respond to a buddy in the query, it returns
the response to the buddy and removes the buddy from the
query and decrements the TTL field by 1. If the resulting
value is greater than zero, it forwards the message; otherwise,
the message is not forwarded. Consequently, the buddy list
search algorithm combined with the above two mechanisms
can reduce the number of search messages sent by the flooding
algorithm used in Gnutella-like P2P file-sharing systems.

Note that buddy searches can be performed in a locality
aware manner. In the DS overlay construction, a joining
DS node, d, requires a list of existing DS nodes in the
P2Dir system. Nodes on the list are chosen randomly by the
root server without considering their localities. However, a
joining node can employ the well-known Proximity Neighbor
Selection scheme in the P2P routing systems [28] to improve
and maintain the network locality. The computation of a buddy
search is performed locally because each search operation
involves only the

√
n−1 closest DS nodes on theContacts list;

the DS nodes in theAffinity Group Vieware not involved with
the network locality. This results in at most2×√n messages
in a buddy list search operation.

V. COST ANALYSIS

In this section, we provide a complexity analysis of the
communication cost of P2Dir in terms of the number of
messages required to retrieve the buddy information ofa user.
The buddy-list searching problemcan be solved by a brute-
force search algorithm, which simply searches all the DS
nodes. In a mesh-based system, the algorithm replicates the
all user information at each DS node; hence its search cost,
denote bySm

cost, is only one message. In other words, the
system needsn − 1 messages to replicate a user’s presence



6

information to all DS nodes, wheren is the number of
DS nodes. The communication cost of retrieving buddies
and replicating presence information can be formulated as
Mcost = Sm

cost + Rm
cost, whereRm

cost is the cost of replicating
presence information to all DS nodes. Accordingly, we have
Mcost = O(n).

In the analysis of our P2Dir system, we assume that the
IM clients are distributed equally among all the DS nodes,
which is the worst case for improving the performance of the
P2Dir system. Here, the search cost of P2Dir is denoted by
Sp

cost, which is only2×√n messages for searching buddy lists
and replicating presence information. This is because we can
combine the search message and replica message of presence
information into one message. Moreover, each message may
have a reply message for cache hitting, so we should double
the cost of each DS node. It is straightforward to know that
the communication cost of retrieving buddies and replicating
presence information in a P2Dir system isPcost = 2× Sp

cost.
Thus, we havePcost = O(4

√
n).

However, in a P2Dir system, a DS node not only searches
a buddy list and replicates presence information, but also
notifies users of the buddy list about the new presence event.
Let b be the maximum number of buddies of an IM system
user. Thus, the worst case is when none of the buddies are
registered with the DS nodes reached by the search messages
and each user on the buddy list is located on a different
DS node. Since P2Dir must notify every user on the buddy
list individually, it is clear that extrab messages must be
transmitted in the worst case. When all users are distributed
equally among the DS nodes, which is considered to be the
worst case, thePcost is O(4

√
n + b). Consequently, we have

the following lemma.

lemma 1: In a buddy searching operation of P2Dir system,
the maximum communication cost of retrieving buddies and
replicating presence information isO(4

√
n + b).

Example. The following simple example illustrates the
efficiency of the P2Dir system. Assume there are 1,000 DS
nodes in the P2Dir system and the maximum number of
buddies is 20. When a user joins, the expected value of
the number of messages that a DS node sends is less than
148 (4×32+20). This means that our P2Dir system saves
85% (148/999) of the communication cost of the mesh-based
approach.

Next, we discuss the search complexity of the DHT-based
presence directory. We make the following assumptions to
simplify analysis: 1) user presence information is only stored
in one DS node (i.e. no replication); and 2) all users are
uniformly distributed in all DS nodes. Note that some replica
algorithms [29] have been proposed for DHT systems, but
they increase the complexity of DHT. Although our analysis
is based on the Chord [30] DHT, it can be extended to other
DHTs.

Let n be the total number of nodes in a Chord network,
in which a node can be either an IM Client or a DS node.

TABLE I
PRESENCEDIRECTORY COMPARISON

Mesh P2Dir DHT-based

Search O(n) O(4
√

n + b) O(b× log n + 2b)
Replicas O(|U |) O(2

√
n× u) O(u)

Latency one hop 2 hops log n hops

Chord nodes are mapped on a denominational cyclic identifier
space [0, . . . , 2m], and a node with an identifier in the cycle
of n nodes, maintainslogn neighbors,i.e. fingers, to provide a
O(logn) lookup operations. However, the lookup operation in
DHT systems is based on exact-matching, so it has difficulty
supporting complex queries like buddy list searches. Since
the buddies,b, must be searched one by one, the total search
complexity of DHT is equal toDcost = b × log n + 2b. The
2b messages consist of the reply messages and the notification
messages.

We summarize the comparison of different schemes in
Table I. The columns show the different schemes, while
the rows show different desired features. The ”Search” label
means the maximum number of messages sent by a DS node
when a user joins (including search and cache); the ”Replicas”
Label means the maximum number of buddy replicas in a DS
node; and the ”Latency” label means the buddy search latency,
we quantify this metric by the diameter of the overlay. This is
reasonable because, in general, the search latency is dominated
by the diameter of the overlay.

None of the schemes is a clear winner. The mesh-based
system achieves good search latency at the expense of the other
metrics. Our P2Dir approach yields a low communication cost
in a medium-size presence directory system(n < 10, 000)
and small search latency. Meanwhile, the DHT-based method
provides good features for low communication cost and low
replica load at the expense of increased search latency.

VI. PERFORMANCEEVALUATION

In contrast to studies that use high-level complexity analysis
to compare different presence directories, we demonstrate
the important properties of P2Dir through simulations. Our
implementation of the network simulator with the Mesh-
based scheme and P2Dir, is written in Java. The experiments
were preformed on an Intel 2.8GHz Pentium PC with a 4G
RAM. We describe our simulation setup in Section VI-A, and
discuss the three important criteria used in the evaluation in
Section VI-B. We conclude the section with a report on the
performance results of the two protocols.

A. Simulation Setup

The simulator allows us to perform tests on up to 10,000
IM clients and 1,000 DS nodes, after which the simulation
data no longer fits the RAM, so it is difficult to conduct the
experiments. Therefore, we set the number of IM clients at
10,000, unless otherwise specified. The simulator first goes
through a warm-up phase to reach the network size (both DS
nodes and IM clients), and the simulator starts the 3-hour test



7

Fig. 3. Round-trip latency distribution of King data set.

after the measurement protocol has stabilized (the stabilized
time is based on the network size). In each experiment, the
mean session time of IM clients is 30 minutes, which means
that a user stays in the system roughly 30 minutes. After a
session, the user departs and waits approximately 30 minutes
before rejoining the system. Note that the online sessions of
IM users are important parts of user behavior in an IM system;
however,, but we simplify this behavior in our experiments
because the performance of the presence directory is not
dominated by the online sessions of the IM user. The online
sessions of MSN and AIM users fit the Weibull distribution
approximately [4], so we will adapt our simulator for real IM
systems in the future.

The simulated topology places every DS node in a position
on the King data set [31]; the positions are chosen uniformly
at random. The King data set delay matrix is derived from In-
ternet measurements using techniques described by Gummadi
et al. [32]. Note that since our simulations involve networks
of less than 2,048 DS nodes, we use a pairwise latency matrix
derived by measuring the inter-DS node latencies. In addition,
since each IM client is uniformly attached to a random DS
node, the propagation delay between the IM client and the
DS node is randomly assigned in the range [1,20] (ms). In
Figure 3, we show the CDF of the King data set’s RTT. The
average delay is 77.4 milliseconds. In addition, we assume that
the DS nodes in the experiments do not fail. In this paper,
we focus on the presence directory’s performance metrics,
which we discuss in the next. The failure of DS nodes will be
addressed in a future work.

B. Performance Metrics

Within the context of the model, we measure the perfor-
mance of the presence directory using the three metrics:
• 1) Buddy Searching Messages:This metric represents

the total number of messages transmitted between the
query initiator and the other DS nodes. More specifically,
a buddy search message includes the search/reply buddy

list, the replicating user’s presence information, and noti-
fication for buddies about the presence messages. This is a
fundamental metric in our experiments, since it is widely
regarded as critical in the presence directory system we
discussed both in Section III and Section V. This metric
is also a critical metric for measuring the scalability of a
presence directory.

• 2) Buddy Searching Latency: This represents the maxi-
mum buddy search time of a joining user. We define the
maximum buddy searching time as follows. The notation
t(p) indicates the searching time for a buddy,p.
∀ p ∈ gi andp is online,
Buddy Searching latency =

max{t(p1), t(p2), . . . , t(pn)},
wheren ≤ the maximum number of buddies andgi is
the buddy list of an enquirer user,qi. Note that the status
of p should be online. We ignore the offline searching
time of p. This metric is a critical metric for measuring
the search satisfaction of a presence directory.

• 3) Buddy Notification Latency: This represents that
elapsed time for notifying the buddy. This metric, which
is dominated by the diameter of the DS overlay, is
also important for measuring the search satisfaction of
a presence directory.

In our simulations, we compare the performance of P2Dir
and a mesh-based presence directory in terms of buddy search
messages, buddy search latency and buddy notification latency.
For each simulation, we perform 20 tests.

C. Performance Results

We first evaluated and compared the two protocols side by
side by considering the buddy search messages metric. We
instantiated a network of 10,000 users in our simulator, and
ran a number of experiments to investigate the effect of the
scalability of DS nodes on the involved search messages. More
precisely, we varied the number of DS nodes from 100 to
1,000 to explore the relations between the number of DS nodes
and the buddy search messages. In this test, the maximum
number of buddies is set to 20. We list the experiment results
in Figure 4.

Figure 4(a) depicts the average number of buddies searching
messages per user joining. Figure 4(a) demonstrates two
different schemes, P2Dir and mesh-based, respectively. For
a given number of DS nodes, the average number of buddy
search messages increases as the number of DS nodes grows,
as shown in Figure 4(a). Moreover, for a given number of DS
nodes in the P2Dir system, increasing the number of DS nodes
moderately increases the average number of buddy search
messages, suggesting a good scalability with the number of
DS nodes in our P2Dir system. We also investigated how
the average number of buddy search messages grows with
the number of DS nodes in a mesh-based system. The search
complexity of buddy search messages in mesh-based systems
isO (n), which fits our analysis in Section V. The scalability
problem of mesh-based systems may prevent a system scaling



8

(a) (b)

Fig. 4. Expected total transmissions during searching a buddy list

(a) (b)

Fig. 5. Expected searching latency during searching a buddy list

a network with thousands of DS nodes; hence, compared to
P2Dir, a mesh-based system may not scalably support a very
large number of DS nodes.

To study the scalability of P2Dir’s overlay to the number of
users (IM clients), we ran experiments in which the number
of DS nodes was fixed at 1,000 and the maximum number of
buddies was set to 20. In these experiments, we increased the
number of users from 5,000 to 10,000. Figure 4(b) depicts
the average number of buddy search messages per joining
user for various numbers of online users. In the figure, the
upper and lower bars represent, respectively, the maximum
and minimum number of buddy search messages in the test.
Increasing the number of users results in a moderate increase
in the average number of buddy search messages, as shown
in Figure 4(b). This result suggests P2Dir achieves good
scalability with the number of users. Recall that the search
complexity of the P2Dir system isO(4

√
n + b). Based on

the analysis in Section V, we can calculate that the maximum
number of buddy search messages in this case is 148, which
does not exceed the analysis bound. Hence, the experiment
results verify our analysis. Figure 4(b) also shows that most
of the DS nodes transmit roughly the same number of search
messages when a user joins.

Next, we investigate the search satisfaction of P2Dir. We
used our simulator to study the buddy search latency of P2Dir

while varying the number of DS nodes. We ran experiments in
which the number of users was fixed at 10,000 and the maxi-
mum number of buddies was set to 20. Figure 5(a) shows the
buddy search latency as the number of DS nodes is increased
to 1,000. The upper bar in the figure represents the maximum
buddy search latency in the test,max t(p), and the point is
denoted as the average buddy search latency,

∑
p∈g t(pi)/|g|.

In the P2Dir system, the buddy search latency grows slowly
with the number of DS nodes. However, the buddy search
latency of the mesh-based protocol is significantly better than
that of P2Dir. The reason is that, by using the mesh-based
approach, every DS node can retrieve all the desired buddy
information in its current replica and send the information
to the user in a one-hop RTT. Note that the one-hop RTT
should be quite small in our assumption. Compared to the
P2Dir protocol, the mesh-based protocol can achieve a faster
buddy search time and a higher replica hit ratio, but it increases
the communication cost.

Although the buddy search latency is a critical metric for
measuring the search satisfaction of a presence directory, to
the best of our knowledge, there are no studies of buddy search
latency in presence directories of IM systems. In our literature
survey, we found that the average DNS lookup latency was
255.9 ms, as reported by Ramasubramanianet al. [33]. The
results were estimated in a large-scale DNS in Planet Lab.
The report could become basic reference material for user
satisfaction study. Compared to the DNS lookup results in the
article, the buddy search latency of P2Dir is tolerable.

The third metric is the buddy notification latency, which
is also an important criterion for search satisfaction. We
ran experiments in which the number of users was fixed at
10,000 and the maximum number of buddies was set at 20.
Figure 5(b) illustrates the average buddy notification latency as
the number of DS nodes is increased from 100 to 1,000. The
upper and lower bars represent, respectively, the maximum and
minimum buddy notification latency in the test. In both P2Dir
and the mesh-based system, the buddy notification latency
grows moderately with the number of DS nodes. However,
the latency of the mesh-based protocol is slightly better than
that of P2Dir. The reason is that, by using the mesh-based
approach, every DS node can notify all desired buddies in
one hop overlay routing, while a DS node in P2Dir needs
at least two hops to reach the DS nodes, which impacts on
the buddy notification latency. Clearly, there is a tradeoff.
The experiment results show that the mesh-based protocol
performs faster buddy searching and buddy notification latency
is smaller; however, communication cost is higher. In contrast,
P2Dir reduces the communication cost significantly without
sacrificing search satisfaction.

VII. D ISCUSSION

A number of issues require further consideration. Here, we
address security issues among the DS nodes, i.e, communi-
cation security and authentication. Here, we discuss possible
solutions to these problems. The distributed P2P directory may
make the IM system more prone to communication security



9

problems, such as malicious attacks and invasions of privacy.
Several approaches have been developed to address com-
munication security issues. For example, the Skype protocol
offers private key mechanisms for end-to-end encryption. In
P2Dir, the TCP connection between a DS node and users, or
another DS node, could be established over SSL to prevent
user impersonation and man-in-the-middle attacks. This end-
to-end encryption approach is also used in the XMPP/SIMPLE
protocol.

The directory authentication problem is another security
problem in distributed P2Dir systems. In centralized presence
directories, there is no directory authentication problem, since
IM clients only connect to an authenticated presence directory.
P2Dir, however, is a distributed protocol that assumes there is
no trust between DS nodes; thus, a P2Dir system may contain
malicious DS nodes. To address this authentication problem, a
simple approach is to apply a centralized authentication server.
Every DS node needs to register an authentication server, so
P2Dir could certify a DS node every time it joins to the
P2Dir system. An alternative solution is the PGP web in the
trust model, which is a decentralized approach. In this model,
a DS node wishing to join the system creates a certifying
authority and asks any existing DS node to validate the new
DS node’s certificate. However, such a certificate is only valid
to another DS node if the replying party recognizes the verifier
as a trusted introducer in the system. In principle, these two
mechanisms can address the directory authentication problem.

VIII. C ONCLUSION

In this paper, we have presented P2Dir, a P2P design for a
scalable directory system in support of presence service for IM
systems and have shown that it is feasible to use P2P systems
in a cooperative low search latency and high performance
presence directory. We discussed the scalability problem of
existing presence directories entirely and we introduced the
buddy-list search problemthat is a scalability problem in a
general distributed presence directory. Using a simple math-
ematical model, we showed that the number of total buddy
searching messages fatefully grows with the number of users
and the number of directories. Hence, we present the design
of P2Dir, a scalable P2P presence directory that leverages a 2-
hop overlay to achieve small buddy search latency and resorts
to an active one-hop caching strategy to reduce the search
messages significantly. We quantified the performance of our
P2Dir system through simulations, the experiment results show
that our P2Dir achieves major performance gains, in terms of
search cost and search satisfaction. Overall, P2Dir achieves
high search performance by decoupling communication cost
from the size of the system, it can be used as a building block
for implementing customized presence director for Internet IM
systems.

REFERENCES

[1] J. Leskovec and E. Horvitz, “Planetary-scale views on a large instant-
messaging network,”Proc. of WWW, 2008.

[2] R. B. Jennings, E. M. Nahum, D. P. Olshefski, D. Saha, Z.-Y. Shae, and
C. Waters, “A study of internet instant messaging and chat protocols,”
IEEE Network, 2006.

[3] J. Oikarinen and D. Reed, “Internet relay chat protocol,”RFC 1459,
1993.

[4] Z. Xiao, L. Guo, and J. Tracey, “Understanding instant messaging traffic
characteristics,”Proc. of IEEE ICDCS, 2007.

[5] C. Dewes, A. Wichmann, and A. Feldmann, “An analysis of internet
chat systems,”Proc. of ACM IMC, 2003.

[6] S. A. Baset and H. Schulzrinne, “An analysis of the skype peer-to-peer
internet telephony protocol,”Proc. of IEEE Infocom, 2006.

[7] “http://www.skype.com/skypep2pexplained.html.”
[8] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson,

R. Sparks, M. Handley, and E. Schooler, “Sip: Session initiation proto-
col,” RFC 3261, 2002.

[9] “Peer-to-peer session initiation protocol ietf working group.
http://www.ietf.org/html.charters/p2psip-charter.html.”

[10] K. Singh and H. Schulzrinne, “Peer-to-peer internet telephony using sip,”
Proc. of NOSSDVA, 2005.

[11] D. A. Bryan, B. B. Lowekamp, and C. Jennings, “Sosimple: A serverless,
standards-based, p2p sip communication system,”Proc. of AAA-IDEA,
2005.

[12] A. Johnston, “Sip, p2p, and internet communications,”RFC Internet-
Draft, 2005.

[13] “Instant messaging and presence protocol ietf working group.
http://www.ietf.org/html.charters/impp-charter.html.”

[14] “Extensible messaging and presence protocol ietf working group.
http://www.ietf.org/html.charters/xmpp-charter.html.”

[15] “Sip for instant messaging and presence leveraging extensions ietf
working group. http://www.ietf.org/html.charters/simple-charter.html.”

[16] P. Saint-Andre., “Extensible messaging and presence protocol (xmpp):
Instant messaging and presence describes instant messaging (im), the
most common application of xmpp,”RFC 3921, 2004.

[17] B. Campbell, J. Rosenberg, H. Schulzrinne, C. Huitema, and D. Gurle,
“Session initiation protocol (sip) extension for instant messaging,”RFC
3428, 2002.

[18] M. Day, S. Aggarwal, G. Mohr, and J. Vincent, “Instant messag-
ing/presence protocol requirements,”RFC 2779, 2000.

[19] “http://www.jabber.org/.”
[20] P. Saint-Andre, “Interdomain presence scaling analysis for the extensible

messaging and presence protocol (xmpp),”RFC Internet Draft, 2007.
[21] A. Houri, T. Rang, E. Aoki, V. Singh, and H. Schulzrinne, “Problem

statement for sip/simple,”RFC Internet-Draft, 2007.
[22] A. Houri, S. Parameswar, E. Aoki, V. Singh, and H. Schulzrinne,

“Scaling requirements for presence in sip/simple,”RFC Internet-Draft,
2007.

[23] H. Balakrishnan, M. F. Kaashoek, D. Karger, R. Morris, and I. Stoica,
“Looking up data in p2p systems,”Communications of the ACM, 2003.

[24] R. Cox, A. Muthitacharoen, and R. T. Morris, “Serving dns using a
peer-to-peer lookup service,”Proc. of IPTPS, 2002.

[25] A. Shaikh, R. Tewari, and M. Agrawal, “On the effectiveness of dns-
based server selection,”Proc. of IEEE INFOCOM, 2001.

[26] I. Gupta, K. Birman, P. Linga, A. Demers, and R. van Renesse, “Kelips:
Building an efficient and stable p2p dht through increased memory and
background overhead,”Proc. of IPTPS, 2003.

[27] D. Eastlake and P. Jones, “Us secure hash algorithm 1 (sha1),”RFC
3174, 2001.

[28] A. Rowstron and P. Druschel, “Pastry: Scalable, decentralized object
location and routing for large-scale peer-to-peer systems,”Proc. of
Middleware, 2001.

[29] X. Chen, S. Ren, H. Wang, and X. Zhang, “Scope: scalable consistency
maintenance in structured p2p systems,”Proc. of IEEE INFOCOM,
2005.

[30] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan,
“Chord: A scalable peer-to-peer lookup service for internet,”IEEE/ACM
Transactions on Networking, February 2003.

[31] “http://pdos.csail.mit.edu/p2psim/kingdata/.”
[32] K. P. Gummadi, S. Saroiu, and S. D. Gribble., “King: Estimating latency

between arbitrary internet end hosts,”Proc. of ACM IMW, 2002.
[33] V. Ramasubramanian and E. G. Sirer, “Beehive: 0(1) lookup perfor-

mance for power-law query distributions in peer-to-peer overlays,”Proc.
of USENIX NSDI, 2004.


