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Abstract—This paper describes an on-going effort in building 
user-centric automation and assistive devices from workflows. 
Advantages of this approach include that workflow-based devices 
and systems are naturally componentized and easily configurable. 
Models of a new device, user actions and users defined in terms of 
activities and workflows are executable. We can use them to 
simulate the device and its interactions with the user for 
requirement capture and design purposes. Later on in the 
development process, programs and other resources required by 
the device workflows become available. By using them, the 
workflow model of the device becomes its implementation. The 
workflows used to model user actions define the use scenarios 
and scripts for testing and evaluation. 

Keywords-workflow-based model and design, user models 
executable behavior specification 

I.  INTRODUCTION 
This paper provides an overview of our work [1-4] on the 

workflow approach to model, design, implement and evaluate 
UCAADS (user-centric automation and assistive devices and 
systems). Examples of UCAADS can be found in [5-14]. Some 
of these devices aim to improve the quality of life and self-
reliance of their users, including elderly or functionally limited 
individuals. Other UCAADS are automation tools designed to 
help care-providing institutions improve their quality of care 
and reduce the cost of care delivery.  

UCAADS share two important requirements: They must be 
flexible and safe to use. By a device or system being flexible, 
we mean that it can be easily configured and customized to rely 
on different infrastructures, support different processes, enforce 
different rules and policies, suite difference users and cater to 
each individual user’s needs and preferences. By it being safe, 
we mean that it never does any harm even when misused, and 
critical erroneous operations are recoverable. 

A. Workflow Architecture for Flexibility 
Flexibility is one of the factors that motivated us to build 

UCAADS on workflow architecture. The basic building blocks 
of a workflow-based application are called activities. A 
software activity is done by executing a software procedure on 
a CPU. An external activity may be an operation by a hardware 

device, a network, and so on. Activities are composed into 
module-level components called workflows. The order and 
conditions under which activities in a workflow are executed 
and the resources needed for their execution are defined by the 
developer of the workflow. The definition can be in terms of a 
programming language (e.g., C# in [15]), a process definition 
language (e.g., WfMC standard XPDL, XML Process 
Definition Language  [16, 17]), or an execution language (e.g., 
BPEL, Business Process Execution Language [18]). 
Workflows can also be defined graphically [11, 19]: In a 
workflow graph, nodes represent activities in (or states of) 
workflows and directed edges between nodes represent 
transitions between activities (or states).  

A key component of a platform for workflow-based 
applications is a workflow manager/engine. The middleware 
manages the life cycles of workflows at runtime, allocates 
resources to their activities, sequences and schedules the 
activities in them, and supports their communication and 
interactions. It also provides and executes built-in activities 
(e.g., start, stop, wait-for, if-else, while) that control the flow 
and timing of execution paths of workflows, in addition to 
executing software activities. In this way, the workflow engine 
enables the control and information flows between components 
to be separated from the actual execution of code of the 
underlying components. This separation is the primary reason 
that components in a workflow-based device can be easily 
rearrange and changed even at runtime and the resultant device 
is easily configurable and customizable. 

Today, there are a wide spectrum of matured engines and 
tools for defining, building and executing workflows (e.g., [15-
22]). They are primarily for applications that automate business 
processes on enterprise computers and mobile devices, 
however. EMWF (Embedded Workflow Framework) [3] to be 
presented later in the paper is a workflow management system 
designed specifically for UCAADS and embedded devices in 
general. Typical UCAADS are not as severely power and size 
constrained as cell phones and other mobile devices and do not 
have challengingly stringent timing requirements. We take 
advantage of these characteristics of UCAADS in the design of 
the applications and the middleware to tradeoff between 
flexibility and other figures of merit, such as memory footprint 
and runtime overhead.  

This work was partially supported by Academia Sinica Project SISARL. 
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B. Workflows as Device and User Models 
While working on the design and implementation of 

workflow-based UCAADS, we came to appreciate the merit of 
using workflows as models and a basis of tools for ensuring 
that the devices are safe. Within the framework of UCAADS 
model [1, 4], we represent jobs and tasks done by the device as 
software and external activities and workflows (called device 
activities and workflows). Many UCAADS are semi-automatic. 
We model actions taken and tasks done by human user(s) by 
user activities and workflows and device-user interactions by 
services for workflow to workflow communication. We also 
use workflow definitions of GOMS (Goals, Objectives, 
Methods and Selections) and MHP (Model Human Processor) 
[23, 24] model elements to characterize human users with 
different attributes and skills.  

Throughout the development process, a device or system is 
defined by its behavior specification (called operational 
specification in [1]) and resource specification. The behavior 
specification is the workflow model of the device and, hence, is 
defined in terms of definitions of device workflows. The 
definitions also specify the resources (e.g., hardware and 
firmware devices, sensors and actuators, dynamically linked 
library functions and executables, and human users) required 
by each activity. In the design phase before the actual resources 
are available, the workflow definitions call for virtual resources 
(i.e., device simulators/emulators, dummy code, user models, 
etc.) as resource components. As the development process 
progresses, the virtual resources are replaced by physical 
devices and programs, and the device workflows modeling 
module-level components become implementation of the 
components. User workflows provide use scenarios and scripts 
for testing purposes. The resource specification of a device 
describes the dependencies and compatibilities between 
versions of resources used by activities and workflows during 
the development process. UCAADS resource specification are 
defines of a nesC-like [24] resource description language. 
Details on the language can be found in [1, 25].  

An advantage of specifying operations of UCAADS and 
modeling user(s) and user-device interactions in terms of 
workflows is that such specifications and models are 
executable. The developer of the new or modified device can 
thus specify the device and model user(s) and device-user 
interactions as soon as the requirements of the device have 
been captured and a preliminary design is available. By 
executing the models, the developer can assess the design, 
usability and performance of the device at each stage of the 
development process. Indeed, we have used UCAADS models 
in simulation experiments to assess the flexibility of new 
devices and to expose their design and implementation flaws 
and unsafe user actions, in addition to assessing the 
responsiveness of the devices [4]. The UCAADS Simulation 
Environment (USE) [2, 3] is for this purpose.   

The reminder of the paper is organized as follows. Section 
2 describes the elements of the UCAADS model and illustrates 
their use. Section 3 provides an overview of the USE and 
describes how the UCAADS model and USE can be used to 
support the development of UCAADS. Section 4 presents an 

overview of EMWF. Section 5 summarizes the paper and 
presents our future plans. 

II. ELEMENTS OF UCAADS MODEL 
As stated earlier, the UCAADS model of a device (or 

system) and its user(s) captures the behavior of the device and 
actions (operations) of its user(s) in terms of device and user 
workflows. The model also incorporates elements of GOMS 
and MHP [23, 24] as building blocks of user workflows and 
thus enables the developer to model user actions more precisely. 
Specifically, we define human operators (i.e., perceptual, 
cognitive, and motor operators) in terms of workflows so that 
they can be executed during simulation for the purpose of 
estimating execution times of user actions for different users 
and for each individual user under different conditions. 

A. Workflow Elements 
There are two types of workflows, sequential workflow and 

state machine workflow. A sequential workflow consists of a 
fixed sequence of activities. The execution path may branch, or 
loop, etc. but has a workflow-wide starting point and ending 
point. A state machine workflow defines a set of states and 
possible transitions between states. Each state may have one or 
more activities that are executed prior to a transition to another 
state. The executions of all or most activities, and hence state 
transitions, are triggered by external events. We use both types 
of workflows in behavior specifications of devices and models 
of users and their actions.  

As an illustrative example, Figure 1 shows the load-pantry 
part of the behavior specification of a smart pantry that 
identifies objects stored in it by their bar-code ids [8]. The user 
workflow in left side of the figure is sequential. The activities 
in it model user actions in the load-pantry process during which 
the user puts objects into the pantry. The workflow in the right 
side of the figure is also sequential. It is the LoadPantry device 
workflow that specifies device behavior and service in response 
to the user actions. 

Timeout
event

User Workflow LoadPantry Device Workflow

While there are other kinds 
of supplies to put into pantry

Push the “LOAD” button
Turn on bar-code scanner  & display

“Please scan bar-code.”

Scan the bar-code
of a kind of supply

Store bar-code

Put away the supply into 
an empty compartment

Get compartment id & Store 
compartment-id-bar-code association

Go to Wait for bar-code

Wait for bar-code

Sensing compartment state change, 
get compartment id

start

stop

exceptionwait-for

 
Figure 1.  LoadPantry operation, an example 

A user starts a load-pantry process by pushing the LOAD 
button on the pantry. The button triggers the pantry to turn on 
the bar-code scanner and then returns to wait for the user to 
scan the bar-code id of an object to be put into an empty 
compartment. After the user scans the bar-code and puts the 
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object into the compartment, the pantry stores the association 
between the bar-code id of the object and id of the 
compartment. The load-pantry process (i.e., the workflows) 
stops after the user puts all the objects into the pantry and the 
pantry timeouts waiting for bar-code ids. 

B. GOMS Elements 
Oftentimes, the developer also wants to know the lengths of 

time required to complete important operations. Take a 
multiple-user medication station [11] as an example. Its users 
are nurses. The station can operate semi-automatically and 
collaborate with the users and their mobile tools to ensure that 
right medications are retrieved by the right users for the right 
patients. It is important to know the maximum number of 
nurses the station should allow to retrieve medications stored in 
it concurrently. The response time for each user depends not 
only on the number of users and their interactions with the 
system during the retrieval process, but also on the execution 
times of user actions. By incorporating well-known GOMS 
models of human behavior with the workflow models of user 
actions, we can more precisely model the users and estimate 
the execution times of their actions. 

GOMS has been widely used for years in studies on human-
computer interactions. USE supports the NGOMSL and CPM-
GOMS variants of GOMS model. The hierarchical goal 
structure of NGOMSL resembles the structure of workflow 
(activity, composite activity, sub-workflow, and workflow). 
We can easily translate a NGOMSL analysis into executable 
and reusable workflows, sub-workflows and activities.  

CPM-GOMS variant supports concurrent executions of 
human operators. Among the variants of GOMS, it is most 
compatible with workflows and more natural for modeling 
many UCAADS user actions. To incorporate CPM-GOMS 
model with workflows, we implemented basic and frequently 
used human operators (e.g., perceptual, cognitive and motor 
operators) as human-operator activities: The parameterized 
functions executed by the activities implement the rules (e.g. 
Fitt’s law for moving a hand) and parameters (e.g., start and 
end positions of the mouse cursor) that define the operators and 
the calculation of execution or learning times of users. A 
developer can use these human-operator activities as 
components of composite activities and sub-workflows that 
represent simple user actions (e.g., push a button). 

To illustrate, Figure 2 shows a fragment of CPM-GOMS 
model of a user pressing the LOAD button on the pantry.  
Except for precedence constraints indicated by edges in the 
graph, operators can execute in parallel. Figure 3 shows a 
workflow model fragment that “implements” the CPM-GOMS 
fragment. For sake of simplicity, cognition and visual 
perception operators are implemented by a single sub-
workflow, called cognition & vision sub-workflow. The actions 
of eyes and hand are executed by eye sub-workflow and hand 
sub-workflow, respectively. Similarly, each activity in the sub-
workflows has a function that estimates the execution time of 
the user. The sub-workflows synchronize via the wait event 
built-in activity. In this way, we capture in workflows the 
precedence constraints in the CPM-GOMS fragment. 

C. Local service for device-user interaction 
The third element of UCAADS model is the USE interface 

service. The service is provided by the simulation environment 
for communication between user workflows and device 
workflows in a behavior specification. It is built on the custom 
data exchange services supported by WF. Figure 4 shows the 
essence of the service.  
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Figure 2.  CPM-GOMS model of “Push LOAD button” 
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Figure 3.  “Push LOAD button” CPM-GOMS template in workflow 
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Figure 4.  USE local service 

Specifically, USE local service enables workflow instances 
to invoke each other via events. After a workflow instance is 
created at the start of a simulation, it calls RegisterWorkflow( ) 
method to register itself with USE local service so that the local 
service can deliver events to it. A user workflow instance calls 
OperateDevice( ) method to raise an OperateDeviceEvent event. 
The event argument carries information on a user action (e.g., 
click, push, open, etc.), the target of the action (e.g., scanner, 
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LOAD button, drawer #8, etc.), and other information (e.g., bar-
code id, medication-id) associated with the action. The local 
service delivers the event to the device workflow instance 
specified by the deviceIdentifer argument. In response, the 
device workflow instance calls RespondToUser( ) method to 
raise a RespondToUserEvent event and have the local service 
delivered the event to a user workflow. The event carries the 
output type of the response and the message of the response 

III. USE AND UCAADS DEVELOPMENT PROCESS 
Figure 5 shows the structure of USE. Again, a developer 

specifies the behavior of the device or system being evaluated 
by device workflow(s) and user actions by user workflow(s). 
The run-time environment takes them as inputs of simulation 
experiments. 

Simulation 
Set up Tools

GUI

Environment 
Settings

Run-Time 
Setting

Report Analysis 
Tools

Report 
Generators

Evaluation 
Tools Report

User Workflows Device Workflows

Run-time Environment

Scheduling Service Comm Services

Workflow Engine
Data Collector Model Generator

Development 
Environment

Device model 
Library 

Resource 
component

Library

User 
Action

Library 

Human 
Model

Library 

 

Figure 5.  USE architecture 

A. Model Libraries 
As the figure shows, USE has four extensible libraries. The 

device model library contains reusable activities and workflows 
(e.g., load pantry workflow in Figure 1) for constructing device 
workflows. The resource component library holds dynamically 
linked library (DLL) functions, executable and other types of 
resources required by activities in device workflows. As 
examples, many UCAADS (e.g., medication dispenser [5], 
iNuC (intelligent nursing cart) [11], and MUMS (Multi-User 
Medication Station) [12]) have drawers, a sensor on each 
drawer for detecting whether the drawer is open or closed, and, 
an interlock mechanism which, when commanded, opens a 
locked drawer specified by a bar-code id. Drawer, sensor and 
actuator hardware and drivers are resource components 
required by the device workflows that handle the event raised 
when a drawer changes state and the user’s action of scanning a 
bar-code id in order to open a locked drawer. Before the actual 
hardware and drivers are available, the resource component 
library contains simulators/emulators of these components.  

User action library holds activities and workflows (e.g., 
human-operator activities and the push LOAD button CPM-
GOMS workflow) from which developers can construct user 
workflows. Most of the resources required by user activities 
and workflows are DLL functions. 

The human model library contains human models. These 
models allow the developer to take account of factors that 
influence execution times of activities in user workflows. 
Examples of factors are skills of users, ages of users, and 

environments (e.g., dark room) etc. Some targeted users of 
UCAADS are elderly individuals and staff members of care-
providing institution. We are collecting data to generate human 
models for these users and store the models in XML format.  

A developer can put frequently used activities and 
workflows in the toolbox in the workflow editor provide by 
WF, and later drag them from the toolbox to build new user 
workflows. Figure 6 shows a part of the activities and 
workflows in the toolbox for constructing CPM-GOMS models. 
When an activity or workflow is dragged from the toolbox to 
the workflow editor, the toolbox pops a picture of CPM-GOMS 
PERT chart of the activity or workflow for the developer’s 
information. 

  

 

Figure 6.  Human action models  in toolbox 

B. Evaluation Tools and Data Collector 
It is well known that human errors may in fact be design 

flaws and errors of devices. When a user operates a device, 
he/she expects that the device to enter some state or delivers a 
certain service. Discrepancy in the expectation and view of the 
user and the actual state and behavior of the device is known to 
have caused serious errors, accidents, and harm. To help the 
developer identify and eliminate user-device interaction that 
can cause this kind of problem, USE provides a tool with 
which the developer can set pre-conditions and post-conditions 
of individual activities. A pre-condition of an activity (or a sub-
workflow) defines an initial state of the workflow immediately 
prior to the execution of the activity (or the sub-workflow). A 
post-condition defines a final state after the activity completes. 
The conditions are checked at runtime, and execution of the 
workflow pauses for attention when any condition is violated. 
By setting pre- and post-conditions, a developer can observe 
whether the workflows execute as expected and whether the 
simulated device behaves as expected. 

As a part of the run-time environment, USE data collector 
logs details on transitions of activities and changes in variables 
and conditions during each simulation run. It also can capture 
the events specified by the developer and interactions among 
user and device workflows. The data are stored in a database 
for off-line analysis and display. Figure 7 shows the part of 
USE GUI for setting up a simulation run and displaying the 
simulation results. The screenshot in part (a) shows a GUI tab 
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for a developer to load and remove workflows and complete 
initial settings. The screenshot in part (b) shows another GUI 
tab for displaying the logs and timelines generated from the 
recorded simulation data by an open source timeline widget [26] 
that is embedded in USE. 

 
(a) 

 

 
(b) 

Figure 7.  USE GUI 

C. Model-Based Development 
From [1, 4] and its name, one can see that our initial 

intention was to use USE solely for simulation and evaluation 
purposes. For workflow-based devices and systems (e.g., iNuC 
version 1.5 and MeMDAD component systems [11, 12]) that 
run on WF, the current version of USE is also an integrated 
environment capable of supporting model-based design, 
implementation and quality assurance of the devices/systems.  

To be concrete without loss of generality, we suppose that 
the goal of the first phase of the development process is to 
capture the requirements and produce a design and behavior 
specification of the new device. For many UCAADS (e.g., 
iNuC and MeMDAS), an effective way to accomplish this goal 

is to use a mockup. The mockup is a virtual device that behaves 
to the user as a real device. (Take the iNuC mockup as an 
example. It gives the user the look and feel of a real iNuC 
except for the absence of physical medication drawers with 
interlock mechanism and real patient data and nurse personal 
information.) We have found mockups effective as tools for 
acquisition of accurate information on what the users want the 
new device to do and how they want the device to interact with 
them, etc. Moreover, through the evaluation process involving 
actual users using a mockup, most if not all the inconsistencies 
between views of the user and the system can be identified and 
eliminated. USE and UCAADS model can help to reduce the 
effort in producing a high-quality mockup of a new device. 

 Specifically, within the framework of UCAADS model, a 
mockup of a device is composed of state machine and 
sequential workflows that depict the device behaviors, 
including activities for handling events trigged by user actions. 
They form the behavior specification of the device. Many 
UCAADS (e.g., iNuC and MeMDAS) have complex GUI. At 
least, a preliminary version of the GUI must be included in the 
mockup to be evaluated by actual users. An advantage of 
building the mockup from workflow models is that it can be 
tested and evaluated before the GUI is ready using user 
workflows to model actions of all kinds of users. Such tests 
enable us to explore all the possible user scenarios and make 
sure that the device handles these scenarios in correct manner. 
In this step, device workflows and user workflows interact 
through USE local service described above. 

 In the implementation phase, more and more physical 
devices and programs required by workflows in the behavior 
specification of the device become available. The behavior 
specification of the device becomes an implementation of the 
device when all the device workflows switch from using virtual 
resources to actual resources. While the GUI is still being 
refined and remains unavailable for testing purpose, user 
workflows can be used to trigger events that simulate events 
from the GUI raised in response to user actions that operate the 
interface. Similarly, user workflows can be used to trigger 
events on USE local service to simulate user actions that are 
not GUI related (e.g., open a drawer and scan a bar-code).  

In the final phase of the development process, the new 
device is almost completed. The test team can test the GUI, 
device workflows and the local service supporting the GUI-
workflow communication as a whole. In particular, once the 
GUI is completed, user workflows can be used to simulate GUI 
operations by operating the GUI directly.  

IV. EMBEDDED WORKFLOW FRAMEWORK 
We chose to work with Microsoft .NET WF because the 

tools and services available within WF can significantly 
shorten our prototyping time. Unfortunately, the workflow 
management system has many shortcomings for UCAADS. 
Similar to workflow management systems running in J2EE 
environment (e.g., [20]), WF requires large amounts of system 
resources. Many capabilities and features provided by .NET 
and WF are essential for general workflow applications but not 
for workflow-based UCAADS. At the same time, it does not 
provide the developer with sufficient control over scheduling 
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and resource management needed to ensure good real-time 
performance. These shortcomings motivated us to develop the 
embedded workflow management system EMWF [3] with the 
goal of replacing WF as the middleware of choice for 
UCAADS. All versions of EMWF are written in C in order to 
keep the memory consumption and runtime overhead 
introduced by the engine small. Both EMWF versions 1.0 and 
2.0 run on Microsoft Windows Embedded Standard. 

A. EMWF 1.0 
Specifically, EMWF 1.0 is for relatively simple embedded 

devices and system components that run on a processor. The 
embedded workflow definition language supported by EMWF 
1.0 is called SISARL-XPDL. It is composed of a subset of the 
WfMC standard XPDL 2.0 [17] and an extension. The 
extension includes built-ins activities needed for robot behavior 
coordination, for message passing in distributed environments, 
and by multi-mode embedded applications. It also includes 
Period and ExtendedAttributes. These elements enable the 
developer to specify which workflows are real-time, what their 
execution rates are, and what custom scheduling policy is to be 
used if the workflows are not to be scheduled by default on 
rate-monotonic basis. The SISARL-XPDL parser first 
translates extension elements into standard XPDL 2.0 elements 
and then compiles XPDL 2.0 definitions into executable 
workflow scripts. Workflow scripts are stored in .wfs files. 

Figure 8 shows the general structure of workflow-based 
devices running on EMWF 1.0 from the perspective of the 
workflow engines. Specially, it shows the major components of 
EMWF 1.0, including engine manager, workflow manager and 
workflow processor. 
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Figure 8.  Major components of EMWF  

The engine manager is responsible for handling user 
requests and managing their accesses to workflow-related 
definitions and optional contextual information. The developer 
can tune the engine via the configuration interface. 
Configuration parameters include the maximum numbers of 
threads and priority levels and the finest resolution of timers. 
During initialization, the engine manager initializes and 
configures the engine. It then loads the .wfs files needed by all 
the applications for all operation modes into memory.  

EMWF 1.0 offers two different multi-threaded workflow 
processors. They are the WLA (workflow-level assignment) 
engine and the ALA (activity-level assignment) engine. Figure 
8 shows the structure of the WLA engine: Each thread is 

dedicated to execute a workflow instance. The workflow 
manager attached a thread to each workflow instance and 
schedules the thread to execute all activities in it at the priority 
of the instance. An ALA engine uses worker threads to execute 
activities as work items: The workflow manager maintains a 
FIFO queue per priority for queuing work items and assigns at 
least a thread to each queue. The thread (or threads) serving a 
queue executes at the priority of the queue.  

B. EMWF 2.0 
To make EMWF better suited for distributed applications 

(e.g., MeMDAS) and real-time applications (e.g., delivery 
robots), EMWF 2.0 extended EMWF 1.0 in three ways: The 
first is a general messaging passing mechanism [3] needed to 
support push data and pull data built-in activities.  

The second is a two-level scheduling mechanism for end-
to-end scheduling in distributed environments. Figure 9 shows 
the structure of a ALA engine containing the two-level 
scheduler. We note that the scheduler should be able to support 
well-known end-to-end real-time scheduling schemes used in 
statically configured systems. The workflow manager calls the 
high-level end-to-end scheduler when a new workflow instance 
becomes ready for execution. Currently, the only task 
performed by the scheduler is to distribute the available end-to-
end slack time of each workflow (or chain of workflows) to 
activities or chains of activities according to specified 
algorithm(s). Both low-level schedulers (i.e., activity scheduler 
for CPU scheduling and message scheduler for network traffic) 
support fixed priority scheduling. 

To CPU work queues
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dispatcher
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scheduler

To Send/Receive queues  
Figure 9.  Structure of two-level scheduler  

The third extension in EMWF 2.0 is a service interface 
designed to support workflow-to-workflow interactions and 
their interactions with their host application.  Figure 10 gives 
an overview to illustrate ways workflow instances and non-
workflow components communication and interact, making use 
of the service interface. Rectangular shapes represent service 
interfaces, host application and non-workflow components. 
Polygons represent workflow instances of the same type or 
different type. Bold arrows represent callbacks, simple arrows 
with solid lines represent interface function calls, and arrows 
with dotted lines represent raises and deliveries of events. 

EMWF service interfaces resemble closely to local services 
of WF. The kind of assistance EMWF 2.0 will provide to 
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service interfaces is similar to what WF does for local services: 
In particular, each service interface is identified by its type. 
After the developer has declared a service interface type, 
implemented a service interface of the type and have the 
application created and registered the service interface with the 
workflow management runtime during initialization time, 
workflow instances in the application can query the workflow 
manager for functions provided by the service and make use of 
the functions for communication and invocation. 

Event Interface 
function call

Callback

Workflow
Instance

Service Interface(s)

Host Application

Non-workflow
components

Workflow
Instance  

Figure 10.  Interaction via serive interfaces 

Specifically, workflow instances invoke each other and 
deliver results to each other by raising events. In essence, the 
system of service interfaces serves as a router, routing each 
event raised by a workflow instance to one or more workflow 
instances as specified by the parameters of the raise-event 
interface function. In a distributed system, the workflow 
manager tracks the locations of all workflow instances and thus 
relieves the developer from the burden of this work.  

In addition to events, workflow instances can communicate 
with the host application and other non-workflow components 
via callbacks. We note that when a caller raises an event to 
invoke a workflow instance, the event handler is executed by 
the thread dispatched to execute the instance. When the 
workflow instance responds to a caller via a callback function, 
the function is also executed by this thread. It is important to 
follow the principle of this pattern when the caller must be 
responsive. 

V. SUMMARY AND FUTURE PLANS 
We described here how the combination of workflow 

model and GOMS model provides a flexible way to define 
device operations and the user actions for the purpose of 
evaluating UCAADS and their user-device interactions. The 
UCAADS simulation environment provides libraries of 
reusable model components for the construction of models and 
behavior specifications of new and modified devices and 
supports prioritized execution of workflows in the models. 

The simulation results can help us in two aspects 
throughout the UCAADS development process. The first is 
refinements of the device design. As an example, in simulation 
experiments on the medication dispenser described in [5, 6], we 
examine the protocol between the controller and the scheduler 

of the dispenser and make sure that the dispenser handle all 
non-compliance events correctly. In experiments on the smart 
pantry [8], we found that the smart pantry may fail and order 
wrong supplies when the pantry is operated by multiple users. 
By examining the recorded event sequence, we were able to 
determine the cause of the bug and fix it. In the experiment 
involving MUMS [12], we can improve the usability of the UI 
of the mobile nursing cart and simplify the process of 
medication retrieval. Also, we can implement a scheduler to 
schedule the nurses in order to minimize their contentions for 
MUMS compartments when they come to retrieve medications 
from MUMS at the same time.  

There are many works remain to be done to improved USE 
as a modeling and evaluation tool. As examples, we want to 
design a script language and exploit current GOMS automation 
tools to automatically generate user workflows from the human 
action library. We want to provide USE with the capability of 
automatically generating GOMS models by simply 
demonstrating tasks via a graphic user interface that are 
implemented in Windows Form and Windows Presentation 
Foundation in the future. We plan to improve the evaluation 
and analysis tools to reduce developers’ efforts in finding 
complicated error scenarios.  

We were drawn to Microsoft .NET WF when choosing a 
workflow management system for USE not because of the 
workflow engine itself but for all the support tools it provides: 
They indeed significantly reduce the efforts and times we took 
to develop iNuC and MeMDAS, in addition to USE. In this 
respect, EMWF 2.0 falls short as a development environment.  

We have not yet explored the full potential of USE as a 
model-based development environment of workflow-based 
devices and systems. Rather, most part of our effort in this 
direction has been directed to improving EMWF in an attempt 
to make it the platform of choice for small embedded devices 
as well as sizable systems such as MeMDAS and various forms 
of service robots. Our ultimate goal is to replace WF by 
EMWF 2.0. Currently, the real-time scheduling mechanism for 
end-to-end scheduling is operational but the interface service 
for workflow-to-workflow interaction is not yet implemented.  
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