

TR-IIS-11-002

Workflow Architecture for Model-Based
Development of User-Centric Automation
and Assistive Devices

 T. Y. Chen, Y. C. Huang, C. S. Shih, T. W. Kuo and J. W. S. Liu

Mar. 24, 2011 || Technical Report No. TR-IIS-11-002

http://www.iis.sinica.edu.tw/page/library/TechReport/tr2011/tr11.html

To be presented at Workshop on Architectures for Cyber-Physical Systems, CPSWeek, April 2011

 1

Workflow Architecture for Model-Based
Development of User-Centric Automation and

Assistive Devices

T. Y. Chen
Department of Computer Science
National Tsing-Hua University

Hsinchu, Taiwan
yen@iis.sinica.edu.tw

C. S. Shih and T. W. Kuo
Dept. of Comp. Sc. & Info. Eng.

National Taiwan University
Taipei, Taiwan

{cshih, ktw}@csie.ntu.edu.tw

Y. C. Huang and J. W. S. Liu
Institute of Information Science

Academia Sinica
Taipei, Taiwan

{ginger, janeliu}@iis.sinica.edu.tw

Abstract—This paper describes an on-going effort in building
user-centric automation and assistive devices from workflows.
Advantages of this approach include that workflow-based devices
and systems are naturally componentized and easily configurable.
Models of a new device, user actions and users defined in terms of
activities and workflows are executable. We can use them to
simulate the device and its interactions with the user for
requirement capture and design purposes. Later on in the
development process, programs and other resources required by
the device workflows become available. By using them, the
workflow model of the device becomes its implementation. The
workflows used to model user actions define the use scenarios
and scripts for testing and evaluation.

Keywords-workflow-based model and design, user models
executable behavior specification

I. INTRODUCTION
This paper provides an overview of our work [1-4] on the

workflow approach to model, design, implement and evaluate
UCAADS (user-centric automation and assistive devices and
systems). Examples of UCAADS can be found in [5-14]. Some
of these devices aim to improve the quality of life and self-
reliance of their users, including elderly or functionally limited
individuals. Other UCAADS are automation tools designed to
help care-providing institutions improve their quality of care
and reduce the cost of care delivery.

UCAADS share two important requirements: They must be
flexible and safe to use. By a device or system being flexible,
we mean that it can be easily configured and customized to rely
on different infrastructures, support different processes, enforce
different rules and policies, suite difference users and cater to
each individual user’s needs and preferences. By it being safe,
we mean that it never does any harm even when misused, and
critical erroneous operations are recoverable.

A. Workflow Architecture for Flexibility
Flexibility is one of the factors that motivated us to build

UCAADS on workflow architecture. The basic building blocks
of a workflow-based application are called activities. A
software activity is done by executing a software procedure on
a CPU. An external activity may be an operation by a hardware

device, a network, and so on. Activities are composed into
module-level components called workflows. The order and
conditions under which activities in a workflow are executed
and the resources needed for their execution are defined by the
developer of the workflow. The definition can be in terms of a
programming language (e.g., C# in [15]), a process definition
language (e.g., WfMC standard XPDL, XML Process
Definition Language [16, 17]), or an execution language (e.g.,
BPEL, Business Process Execution Language [18]).
Workflows can also be defined graphically [11, 19]: In a
workflow graph, nodes represent activities in (or states of)
workflows and directed edges between nodes represent
transitions between activities (or states).

A key component of a platform for workflow-based
applications is a workflow manager/engine. The middleware
manages the life cycles of workflows at runtime, allocates
resources to their activities, sequences and schedules the
activities in them, and supports their communication and
interactions. It also provides and executes built-in activities
(e.g., start, stop, wait-for, if-else, while) that control the flow
and timing of execution paths of workflows, in addition to
executing software activities. In this way, the workflow engine
enables the control and information flows between components
to be separated from the actual execution of code of the
underlying components. This separation is the primary reason
that components in a workflow-based device can be easily
rearrange and changed even at runtime and the resultant device
is easily configurable and customizable.

Today, there are a wide spectrum of matured engines and
tools for defining, building and executing workflows (e.g., [15-
22]). They are primarily for applications that automate business
processes on enterprise computers and mobile devices,
however. EMWF (Embedded Workflow Framework) [3] to be
presented later in the paper is a workflow management system
designed specifically for UCAADS and embedded devices in
general. Typical UCAADS are not as severely power and size
constrained as cell phones and other mobile devices and do not
have challengingly stringent timing requirements. We take
advantage of these characteristics of UCAADS in the design of
the applications and the middleware to tradeoff between
flexibility and other figures of merit, such as memory footprint
and runtime overhead.

This work was partially supported by Academia Sinica Project SISARL.

To be presented at Workshop on Architectures for Cyber-Physical Systems, CPSWeek, April 2011

 2

B. Workflows as Device and User Models
While working on the design and implementation of

workflow-based UCAADS, we came to appreciate the merit of
using workflows as models and a basis of tools for ensuring
that the devices are safe. Within the framework of UCAADS
model [1, 4], we represent jobs and tasks done by the device as
software and external activities and workflows (called device
activities and workflows). Many UCAADS are semi-automatic.
We model actions taken and tasks done by human user(s) by
user activities and workflows and device-user interactions by
services for workflow to workflow communication. We also
use workflow definitions of GOMS (Goals, Objectives,
Methods and Selections) and MHP (Model Human Processor)
[23, 24] model elements to characterize human users with
different attributes and skills.

Throughout the development process, a device or system is
defined by its behavior specification (called operational
specification in [1]) and resource specification. The behavior
specification is the workflow model of the device and, hence, is
defined in terms of definitions of device workflows. The
definitions also specify the resources (e.g., hardware and
firmware devices, sensors and actuators, dynamically linked
library functions and executables, and human users) required
by each activity. In the design phase before the actual resources
are available, the workflow definitions call for virtual resources
(i.e., device simulators/emulators, dummy code, user models,
etc.) as resource components. As the development process
progresses, the virtual resources are replaced by physical
devices and programs, and the device workflows modeling
module-level components become implementation of the
components. User workflows provide use scenarios and scripts
for testing purposes. The resource specification of a device
describes the dependencies and compatibilities between
versions of resources used by activities and workflows during
the development process. UCAADS resource specification are
defines of a nesC-like [24] resource description language.
Details on the language can be found in [1, 25].

An advantage of specifying operations of UCAADS and
modeling user(s) and user-device interactions in terms of
workflows is that such specifications and models are
executable. The developer of the new or modified device can
thus specify the device and model user(s) and device-user
interactions as soon as the requirements of the device have
been captured and a preliminary design is available. By
executing the models, the developer can assess the design,
usability and performance of the device at each stage of the
development process. Indeed, we have used UCAADS models
in simulation experiments to assess the flexibility of new
devices and to expose their design and implementation flaws
and unsafe user actions, in addition to assessing the
responsiveness of the devices [4]. The UCAADS Simulation
Environment (USE) [2, 3] is for this purpose.

The reminder of the paper is organized as follows. Section
2 describes the elements of the UCAADS model and illustrates
their use. Section 3 provides an overview of the USE and
describes how the UCAADS model and USE can be used to
support the development of UCAADS. Section 4 presents an

overview of EMWF. Section 5 summarizes the paper and
presents our future plans.

II. ELEMENTS OF UCAADS MODEL
As stated earlier, the UCAADS model of a device (or

system) and its user(s) captures the behavior of the device and
actions (operations) of its user(s) in terms of device and user
workflows. The model also incorporates elements of GOMS
and MHP [23, 24] as building blocks of user workflows and
thus enables the developer to model user actions more precisely.
Specifically, we define human operators (i.e., perceptual,
cognitive, and motor operators) in terms of workflows so that
they can be executed during simulation for the purpose of
estimating execution times of user actions for different users
and for each individual user under different conditions.

A. Workflow Elements
There are two types of workflows, sequential workflow and

state machine workflow. A sequential workflow consists of a
fixed sequence of activities. The execution path may branch, or
loop, etc. but has a workflow-wide starting point and ending
point. A state machine workflow defines a set of states and
possible transitions between states. Each state may have one or
more activities that are executed prior to a transition to another
state. The executions of all or most activities, and hence state
transitions, are triggered by external events. We use both types
of workflows in behavior specifications of devices and models
of users and their actions.

As an illustrative example, Figure 1 shows the load-pantry
part of the behavior specification of a smart pantry that
identifies objects stored in it by their bar-code ids [8]. The user
workflow in left side of the figure is sequential. The activities
in it model user actions in the load-pantry process during which
the user puts objects into the pantry. The workflow in the right
side of the figure is also sequential. It is the LoadPantry device
workflow that specifies device behavior and service in response
to the user actions.

Timeout
event

User Workflow LoadPantry Device Workflow

While there are other kinds
of supplies to put into pantry

Push the “LOAD” button
Turn on bar-code scanner & display

“Please scan bar-code.”

Scan the bar-code
of a kind of supply

Store bar-code

Put away the supply into
an empty compartment

Get compartment id & Store
compartment-id-bar-code association

Go to Wait for bar-code

Wait for bar-code

Sensing compartment state change,
get compartment id

start

stop

exceptionwait-for

Figure 1. LoadPantry operation, an example

A user starts a load-pantry process by pushing the LOAD
button on the pantry. The button triggers the pantry to turn on
the bar-code scanner and then returns to wait for the user to
scan the bar-code id of an object to be put into an empty
compartment. After the user scans the bar-code and puts the

To be presented at Workshop on Architectures for Cyber-Physical Systems, CPSWeek, April 2011

 3

object into the compartment, the pantry stores the association
between the bar-code id of the object and id of the
compartment. The load-pantry process (i.e., the workflows)
stops after the user puts all the objects into the pantry and the
pantry timeouts waiting for bar-code ids.

B. GOMS Elements
Oftentimes, the developer also wants to know the lengths of

time required to complete important operations. Take a
multiple-user medication station [11] as an example. Its users
are nurses. The station can operate semi-automatically and
collaborate with the users and their mobile tools to ensure that
right medications are retrieved by the right users for the right
patients. It is important to know the maximum number of
nurses the station should allow to retrieve medications stored in
it concurrently. The response time for each user depends not
only on the number of users and their interactions with the
system during the retrieval process, but also on the execution
times of user actions. By incorporating well-known GOMS
models of human behavior with the workflow models of user
actions, we can more precisely model the users and estimate
the execution times of their actions.

GOMS has been widely used for years in studies on human-
computer interactions. USE supports the NGOMSL and CPM-
GOMS variants of GOMS model. The hierarchical goal
structure of NGOMSL resembles the structure of workflow
(activity, composite activity, sub-workflow, and workflow).
We can easily translate a NGOMSL analysis into executable
and reusable workflows, sub-workflows and activities.

CPM-GOMS variant supports concurrent executions of
human operators. Among the variants of GOMS, it is most
compatible with workflows and more natural for modeling
many UCAADS user actions. To incorporate CPM-GOMS
model with workflows, we implemented basic and frequently
used human operators (e.g., perceptual, cognitive and motor
operators) as human-operator activities: The parameterized
functions executed by the activities implement the rules (e.g.
Fitt’s law for moving a hand) and parameters (e.g., start and
end positions of the mouse cursor) that define the operators and
the calculation of execution or learning times of users. A
developer can use these human-operator activities as
components of composite activities and sub-workflows that
represent simple user actions (e.g., push a button).

To illustrate, Figure 2 shows a fragment of CPM-GOMS
model of a user pressing the LOAD button on the pantry.
Except for precedence constraints indicated by edges in the
graph, operators can execute in parallel. Figure 3 shows a
workflow model fragment that “implements” the CPM-GOMS
fragment. For sake of simplicity, cognition and visual
perception operators are implemented by a single sub-
workflow, called cognition & vision sub-workflow. The actions
of eyes and hand are executed by eye sub-workflow and hand
sub-workflow, respectively. Similarly, each activity in the sub-
workflows has a function that estimates the execution time of
the user. The sub-workflows synchronize via the wait event
built-in activity. In this way, we capture in workflows the
precedence constraints in the CPM-GOMS fragment.

C. Local service for device-user interaction
The third element of UCAADS model is the USE interface

service. The service is provided by the simulation environment
for communication between user workflows and device
workflows in a behavior specification. It is built on the custom
data exchange services supported by WF. Figure 4 shows the
essence of the service.

Perception
Cognition

Right
Hand

Eyes

move hand

move
eyes

perceive
button

Verify button
position

initiate hand
movement

attend
button

initiate eye
movement

50

50 50 50

30

100 perceive
hand @button

down
finger

up
finger

530

100 100

100

50 50

verify
hand @button

initiate
press

Figure 2. CPM-GOMS model of “Push LOAD button”

initiate hand
movement

Cognition & Vision
sub-workflow

attend <LOAD>

init eye
movement

perceive <LOAD>

Eye sub-workflow Hand sub-workflow

move eye

move hand

verify <LOAD>
position

perceive hand @
<LOAD>

verify hand
@ <LOAD>

initiate press

down finger

up finger

trigger event

Figure 3. “Push LOAD button” CPM-GOMS template in workflow

USE
Local

Service

User
Workflows

Device
Workflows

O
pe

ra
te

D
ev

ic
e

O
pe

ra
te

D
ev

ic
eE

ve
nt

R
es

po
nd

To
U

se
r

R
es

po
nd

To
U

se
rE

ve
nt

Figure 4. USE local service

Specifically, USE local service enables workflow instances
to invoke each other via events. After a workflow instance is
created at the start of a simulation, it calls RegisterWorkflow()
method to register itself with USE local service so that the local
service can deliver events to it. A user workflow instance calls
OperateDevice() method to raise an OperateDeviceEvent event.
The event argument carries information on a user action (e.g.,
click, push, open, etc.), the target of the action (e.g., scanner,

To be presented at Workshop on Architectures for Cyber-Physical Systems, CPSWeek, April 2011

 4

LOAD button, drawer #8, etc.), and other information (e.g., bar-
code id, medication-id) associated with the action. The local
service delivers the event to the device workflow instance
specified by the deviceIdentifer argument. In response, the
device workflow instance calls RespondToUser() method to
raise a RespondToUserEvent event and have the local service
delivered the event to a user workflow. The event carries the
output type of the response and the message of the response

III. USE AND UCAADS DEVELOPMENT PROCESS
Figure 5 shows the structure of USE. Again, a developer

specifies the behavior of the device or system being evaluated
by device workflow(s) and user actions by user workflow(s).
The run-time environment takes them as inputs of simulation
experiments.

Simulation
Set up Tools

GUI

Environment
Settings

Run-Time
Setting

Report Analysis
Tools

Report
Generators

Evaluation
Tools Report

User Workflows Device Workflows

Run-time Environment

Scheduling Service Comm Services

Workflow Engine
Data Collector Model Generator

Development
Environment

Device model
Library

Resource
component

Library

User
Action

Library

Human
Model

Library

Figure 5. USE architecture

A. Model Libraries
As the figure shows, USE has four extensible libraries. The

device model library contains reusable activities and workflows
(e.g., load pantry workflow in Figure 1) for constructing device
workflows. The resource component library holds dynamically
linked library (DLL) functions, executable and other types of
resources required by activities in device workflows. As
examples, many UCAADS (e.g., medication dispenser [5],
iNuC (intelligent nursing cart) [11], and MUMS (Multi-User
Medication Station) [12]) have drawers, a sensor on each
drawer for detecting whether the drawer is open or closed, and,
an interlock mechanism which, when commanded, opens a
locked drawer specified by a bar-code id. Drawer, sensor and
actuator hardware and drivers are resource components
required by the device workflows that handle the event raised
when a drawer changes state and the user’s action of scanning a
bar-code id in order to open a locked drawer. Before the actual
hardware and drivers are available, the resource component
library contains simulators/emulators of these components.

User action library holds activities and workflows (e.g.,
human-operator activities and the push LOAD button CPM-
GOMS workflow) from which developers can construct user
workflows. Most of the resources required by user activities
and workflows are DLL functions.

The human model library contains human models. These
models allow the developer to take account of factors that
influence execution times of activities in user workflows.
Examples of factors are skills of users, ages of users, and

environments (e.g., dark room) etc. Some targeted users of
UCAADS are elderly individuals and staff members of care-
providing institution. We are collecting data to generate human
models for these users and store the models in XML format.

A developer can put frequently used activities and
workflows in the toolbox in the workflow editor provide by
WF, and later drag them from the toolbox to build new user
workflows. Figure 6 shows a part of the activities and
workflows in the toolbox for constructing CPM-GOMS models.
When an activity or workflow is dragged from the toolbox to
the workflow editor, the toolbox pops a picture of CPM-GOMS
PERT chart of the activity or workflow for the developer’s
information.

Figure 6. Human action models in toolbox

B. Evaluation Tools and Data Collector
It is well known that human errors may in fact be design

flaws and errors of devices. When a user operates a device,
he/she expects that the device to enter some state or delivers a
certain service. Discrepancy in the expectation and view of the
user and the actual state and behavior of the device is known to
have caused serious errors, accidents, and harm. To help the
developer identify and eliminate user-device interaction that
can cause this kind of problem, USE provides a tool with
which the developer can set pre-conditions and post-conditions
of individual activities. A pre-condition of an activity (or a sub-
workflow) defines an initial state of the workflow immediately
prior to the execution of the activity (or the sub-workflow). A
post-condition defines a final state after the activity completes.
The conditions are checked at runtime, and execution of the
workflow pauses for attention when any condition is violated.
By setting pre- and post-conditions, a developer can observe
whether the workflows execute as expected and whether the
simulated device behaves as expected.

As a part of the run-time environment, USE data collector
logs details on transitions of activities and changes in variables
and conditions during each simulation run. It also can capture
the events specified by the developer and interactions among
user and device workflows. The data are stored in a database
for off-line analysis and display. Figure 7 shows the part of
USE GUI for setting up a simulation run and displaying the
simulation results. The screenshot in part (a) shows a GUI tab

To be presented at Workshop on Architectures for Cyber-Physical Systems, CPSWeek, April 2011

 5

for a developer to load and remove workflows and complete
initial settings. The screenshot in part (b) shows another GUI
tab for displaying the logs and timelines generated from the
recorded simulation data by an open source timeline widget [26]
that is embedded in USE.

(a)

(b)

Figure 7. USE GUI

C. Model-Based Development
From [1, 4] and its name, one can see that our initial

intention was to use USE solely for simulation and evaluation
purposes. For workflow-based devices and systems (e.g., iNuC
version 1.5 and MeMDAD component systems [11, 12]) that
run on WF, the current version of USE is also an integrated
environment capable of supporting model-based design,
implementation and quality assurance of the devices/systems.

To be concrete without loss of generality, we suppose that
the goal of the first phase of the development process is to
capture the requirements and produce a design and behavior
specification of the new device. For many UCAADS (e.g.,
iNuC and MeMDAS), an effective way to accomplish this goal

is to use a mockup. The mockup is a virtual device that behaves
to the user as a real device. (Take the iNuC mockup as an
example. It gives the user the look and feel of a real iNuC
except for the absence of physical medication drawers with
interlock mechanism and real patient data and nurse personal
information.) We have found mockups effective as tools for
acquisition of accurate information on what the users want the
new device to do and how they want the device to interact with
them, etc. Moreover, through the evaluation process involving
actual users using a mockup, most if not all the inconsistencies
between views of the user and the system can be identified and
eliminated. USE and UCAADS model can help to reduce the
effort in producing a high-quality mockup of a new device.

 Specifically, within the framework of UCAADS model, a
mockup of a device is composed of state machine and
sequential workflows that depict the device behaviors,
including activities for handling events trigged by user actions.
They form the behavior specification of the device. Many
UCAADS (e.g., iNuC and MeMDAS) have complex GUI. At
least, a preliminary version of the GUI must be included in the
mockup to be evaluated by actual users. An advantage of
building the mockup from workflow models is that it can be
tested and evaluated before the GUI is ready using user
workflows to model actions of all kinds of users. Such tests
enable us to explore all the possible user scenarios and make
sure that the device handles these scenarios in correct manner.
In this step, device workflows and user workflows interact
through USE local service described above.

 In the implementation phase, more and more physical
devices and programs required by workflows in the behavior
specification of the device become available. The behavior
specification of the device becomes an implementation of the
device when all the device workflows switch from using virtual
resources to actual resources. While the GUI is still being
refined and remains unavailable for testing purpose, user
workflows can be used to trigger events that simulate events
from the GUI raised in response to user actions that operate the
interface. Similarly, user workflows can be used to trigger
events on USE local service to simulate user actions that are
not GUI related (e.g., open a drawer and scan a bar-code).

In the final phase of the development process, the new
device is almost completed. The test team can test the GUI,
device workflows and the local service supporting the GUI-
workflow communication as a whole. In particular, once the
GUI is completed, user workflows can be used to simulate GUI
operations by operating the GUI directly.

IV. EMBEDDED WORKFLOW FRAMEWORK
We chose to work with Microsoft .NET WF because the

tools and services available within WF can significantly
shorten our prototyping time. Unfortunately, the workflow
management system has many shortcomings for UCAADS.
Similar to workflow management systems running in J2EE
environment (e.g., [20]), WF requires large amounts of system
resources. Many capabilities and features provided by .NET
and WF are essential for general workflow applications but not
for workflow-based UCAADS. At the same time, it does not
provide the developer with sufficient control over scheduling

To be presented at Workshop on Architectures for Cyber-Physical Systems, CPSWeek, April 2011

 6

and resource management needed to ensure good real-time
performance. These shortcomings motivated us to develop the
embedded workflow management system EMWF [3] with the
goal of replacing WF as the middleware of choice for
UCAADS. All versions of EMWF are written in C in order to
keep the memory consumption and runtime overhead
introduced by the engine small. Both EMWF versions 1.0 and
2.0 run on Microsoft Windows Embedded Standard.

A. EMWF 1.0
Specifically, EMWF 1.0 is for relatively simple embedded

devices and system components that run on a processor. The
embedded workflow definition language supported by EMWF
1.0 is called SISARL-XPDL. It is composed of a subset of the
WfMC standard XPDL 2.0 [17] and an extension. The
extension includes built-ins activities needed for robot behavior
coordination, for message passing in distributed environments,
and by multi-mode embedded applications. It also includes
Period and ExtendedAttributes. These elements enable the
developer to specify which workflows are real-time, what their
execution rates are, and what custom scheduling policy is to be
used if the workflows are not to be scheduled by default on
rate-monotonic basis. The SISARL-XPDL parser first
translates extension elements into standard XPDL 2.0 elements
and then compiles XPDL 2.0 definitions into executable
workflow scripts. Workflow scripts are stored in .wfs files.

Figure 8 shows the general structure of workflow-based
devices running on EMWF 1.0 from the perspective of the
workflow engines. Specially, it shows the major components of
EMWF 1.0, including engine manager, workflow manager and
workflow processor.

Executables (.dll or .exe)

Workflow
Scheduler

D
ev

ic
e

D
riv

er
s

Configuration Interface

Workflow
loader

Engine Manager

Workflow
instances

Workflow variables,
resources & attributes

.wfs

Workflow Manager & Processor

Thread
Dispatcher

Figure 8. Major components of EMWF

The engine manager is responsible for handling user
requests and managing their accesses to workflow-related
definitions and optional contextual information. The developer
can tune the engine via the configuration interface.
Configuration parameters include the maximum numbers of
threads and priority levels and the finest resolution of timers.
During initialization, the engine manager initializes and
configures the engine. It then loads the .wfs files needed by all
the applications for all operation modes into memory.

EMWF 1.0 offers two different multi-threaded workflow
processors. They are the WLA (workflow-level assignment)
engine and the ALA (activity-level assignment) engine. Figure
8 shows the structure of the WLA engine: Each thread is

dedicated to execute a workflow instance. The workflow
manager attached a thread to each workflow instance and
schedules the thread to execute all activities in it at the priority
of the instance. An ALA engine uses worker threads to execute
activities as work items: The workflow manager maintains a
FIFO queue per priority for queuing work items and assigns at
least a thread to each queue. The thread (or threads) serving a
queue executes at the priority of the queue.

B. EMWF 2.0
To make EMWF better suited for distributed applications

(e.g., MeMDAS) and real-time applications (e.g., delivery
robots), EMWF 2.0 extended EMWF 1.0 in three ways: The
first is a general messaging passing mechanism [3] needed to
support push data and pull data built-in activities.

The second is a two-level scheduling mechanism for end-
to-end scheduling in distributed environments. Figure 9 shows
the structure of a ALA engine containing the two-level
scheduler. We note that the scheduler should be able to support
well-known end-to-end real-time scheduling schemes used in
statically configured systems. The workflow manager calls the
high-level end-to-end scheduler when a new workflow instance
becomes ready for execution. Currently, the only task
performed by the scheduler is to distribute the available end-to-
end slack time of each workflow (or chain of workflows) to
activities or chains of activities according to specified
algorithm(s). Both low-level schedulers (i.e., activity scheduler
for CPU scheduling and message scheduler for network traffic)
support fixed priority scheduling.

To CPU work queues

End-to-end
scheduler

Activity
dispatcher

General

Push data &
Pull data

Built-ins

Workflow
instances

Engine
Manager

Workflow Manager

Results

Message
buffers

Message
scheduler Activity

scheduler

To Send/Receive queues
Figure 9. Structure of two-level scheduler

The third extension in EMWF 2.0 is a service interface
designed to support workflow-to-workflow interactions and
their interactions with their host application. Figure 10 gives
an overview to illustrate ways workflow instances and non-
workflow components communication and interact, making use
of the service interface. Rectangular shapes represent service
interfaces, host application and non-workflow components.
Polygons represent workflow instances of the same type or
different type. Bold arrows represent callbacks, simple arrows
with solid lines represent interface function calls, and arrows
with dotted lines represent raises and deliveries of events.

EMWF service interfaces resemble closely to local services
of WF. The kind of assistance EMWF 2.0 will provide to

To be presented at Workshop on Architectures for Cyber-Physical Systems, CPSWeek, April 2011

 7

service interfaces is similar to what WF does for local services:
In particular, each service interface is identified by its type.
After the developer has declared a service interface type,
implemented a service interface of the type and have the
application created and registered the service interface with the
workflow management runtime during initialization time,
workflow instances in the application can query the workflow
manager for functions provided by the service and make use of
the functions for communication and invocation.

Event Interface
function call

Callback

Workflow
Instance

Service Interface(s)

Host Application

Non-workflow
components

Workflow
Instance

Figure 10. Interaction via serive interfaces

Specifically, workflow instances invoke each other and
deliver results to each other by raising events. In essence, the
system of service interfaces serves as a router, routing each
event raised by a workflow instance to one or more workflow
instances as specified by the parameters of the raise-event
interface function. In a distributed system, the workflow
manager tracks the locations of all workflow instances and thus
relieves the developer from the burden of this work.

In addition to events, workflow instances can communicate
with the host application and other non-workflow components
via callbacks. We note that when a caller raises an event to
invoke a workflow instance, the event handler is executed by
the thread dispatched to execute the instance. When the
workflow instance responds to a caller via a callback function,
the function is also executed by this thread. It is important to
follow the principle of this pattern when the caller must be
responsive.

V. SUMMARY AND FUTURE PLANS
We described here how the combination of workflow

model and GOMS model provides a flexible way to define
device operations and the user actions for the purpose of
evaluating UCAADS and their user-device interactions. The
UCAADS simulation environment provides libraries of
reusable model components for the construction of models and
behavior specifications of new and modified devices and
supports prioritized execution of workflows in the models.

The simulation results can help us in two aspects
throughout the UCAADS development process. The first is
refinements of the device design. As an example, in simulation
experiments on the medication dispenser described in [5, 6], we
examine the protocol between the controller and the scheduler

of the dispenser and make sure that the dispenser handle all
non-compliance events correctly. In experiments on the smart
pantry [8], we found that the smart pantry may fail and order
wrong supplies when the pantry is operated by multiple users.
By examining the recorded event sequence, we were able to
determine the cause of the bug and fix it. In the experiment
involving MUMS [12], we can improve the usability of the UI
of the mobile nursing cart and simplify the process of
medication retrieval. Also, we can implement a scheduler to
schedule the nurses in order to minimize their contentions for
MUMS compartments when they come to retrieve medications
from MUMS at the same time.

There are many works remain to be done to improved USE
as a modeling and evaluation tool. As examples, we want to
design a script language and exploit current GOMS automation
tools to automatically generate user workflows from the human
action library. We want to provide USE with the capability of
automatically generating GOMS models by simply
demonstrating tasks via a graphic user interface that are
implemented in Windows Form and Windows Presentation
Foundation in the future. We plan to improve the evaluation
and analysis tools to reduce developers’ efforts in finding
complicated error scenarios.

We were drawn to Microsoft .NET WF when choosing a
workflow management system for USE not because of the
workflow engine itself but for all the support tools it provides:
They indeed significantly reduce the efforts and times we took
to develop iNuC and MeMDAS, in addition to USE. In this
respect, EMWF 2.0 falls short as a development environment.

We have not yet explored the full potential of USE as a
model-based development environment of workflow-based
devices and systems. Rather, most part of our effort in this
direction has been directed to improving EMWF in an attempt
to make it the platform of choice for small embedded devices
as well as sizable systems such as MeMDAS and various forms
of service robots. Our ultimate goal is to replace WF by
EMWF 2.0. Currently, the real-time scheduling mechanism for
end-to-end scheduling is operational but the interface service
for workflow-to-workflow interaction is not yet implemented.

ACKNOWLEDGMENT
The authors wish to thank T. S. Chou for his contribution

on design and development of EMWF 1.0, and C. H. Chen and
C. W. Yu for their help in workflow implementation of CPM-
GOMS models and USE GUI.

REFERENCES
[1] T.Y. Chen, P. H. Tsai, T. S. Chou, C. S. Shih, T. W. Kuo, and J. W. S.

Liu, “Component Model and Architecture of Smart Devices for the
Elderly,” Proceedings of the 7th Working IEEE/IFIP Conference on
Software Architecture, pp. 51 – 60, February 2008.

[2] T. Y. Chen, C. H. Chen, C. S. Shih, J. W. S. Liu, “A Simulation
Environment for the Development of Smart Devices for the Elderly,”
Proceedings of IEEE International Conference on Systems, Man and
Cybernetics, October 2008.

[3] T. S. Chou, H. Y. Huang, Y. C. Wang, W. S. Chen, C. S. Shih, and J. W.
S. Liu, “EMWF: A Middleware for Flexible Automation and Assistive
Devices,” Proceedings of the 8th IFIP Workshop on Software

To be presented at Workshop on Architectures for Cyber-Physical Systems, CPSWeek, April 2011

 8

Technologies for Future Embedded and Ubiquitous Systems, October
2010.

[4] T. Y. Chen, P. H. Tsai, C. H. Chen, C. W. Yu, C.S. Shih and J. W. S.
Liu, “A Model and Simulation Environment for Symbiotic Automation
and Assistive Devices,” Technical Report No. TR-IIS-10-008, Institute
of Information Science, Academia Sinica, October 2010.

[5] P. H. Tsai, C. Y. Yu, W. Y. Wang, J. K. Zao, H. C. Yeh, C. S. Shih, and
J. W. S. Liu, “iMAT: Intelligent Medication Administration Tools,”
Proceedings of IEEE Healthcom, July 2010.

[6] P. H. Tsai, C. Y. Yu, C. S. Shih and J. W. S. Liu, “Smart Medication
Dispensers; Design, Architecture and Implementation,” IEEE Systems
Journal, March 2011.

[7] T. S. Chou and J. W. S. Liu, "Design and Implementation of RFID-
Based Object Locator," presented at the 2007 IEEE International
Conference on RFID, 2007.

[8] C. F. Hsu, et al., "Smart Pantries for Homes," Proceedings of IEEE
International Conference on Systems, Man, and Cybernetics, 2006.

[9] Y. Kaneshige, et al., "Development of New Mobility Assistive Robot for
Elderly People with Body Functional Control," Proceedings of the 1st
IEEE RAS-EMBS International Conference on Biomedical Robotics and
Biomechatronics, Vols 1-3, 2006, pp. 460-465.

[10] J. Forlizzi and C. DiSalvo, "Service Robots in Domestic Environment: A
Study of Roomba Vacuum in the Home," Proceedings of the 1st ACM
SIGCHI/SIGART conference on Human-robot interaction, 2006.

[11] P. H. Tsai, et al., "iNuC: An Intelligent Mobile Nursing Cart,"
Proceedings of the 2nd International Conference on Biomedical
Engineering and Informatics, Vols 1-4, 2009.

[12] J. W. S. Liu, et al., "MeMDAS: Medication Management, Dispensing
and Administration Systems," presented at mHealth Workfshop, IEEE
HealthCom2010, June 2010.

[13] SpeciMinder - hospital delivery robot, http://speciminder.com/
[14] TUG – automated robotic delivery system, http://www.aethon.com/
[15] B. Bukovics, Pro WF: Windows Workflow Foundation in .Net 4.0,

Apress 2009.
[16] WfMC: Workflow Management Coalition, http://www.wfmc.org/
[17] XPDL (XML Process Definition Language) Document,

http://www.wfmc.org/standards/docs/TC-1025_xpdl.2.2005-10-03.pdf,
October 2005

[18] BPEL (Business Process Execution Language),
http://en.wikipedia.org/wiki/BPEL

[19] Open Source Java XPDL editor,
[20] Enhydra Shark, http://forge.objectweb.org/projects/shark
[21] L. Pajunen, and S. Chande, “Developing workflow engine for mobile

devices,” Proc. of IEEE International Enterprise Distributed Object
Computing Conference, 2007.

[22] G. Hackmann, M. Haitjema, C. Gill, and G. C. Roman, “Silver: A BPEL
workflow process execution engine for mobile devices,” Proceedings of
International Conference on Service Oriented Computing, ICSOC 2006.

[23] B. E. John and D. E. Kieras, “The GOMS Family of User Interface
Analysis Techniques: Comparison and Contrast,” ACM Trans.
Computer-Human Interaction, vol. 3, pp. 320-351, 1996.

[24] S. K. Card, et al., The Psychology of Human-Computer Interaction:
Lawrence Erlbaum Associates, 1983.

[25] T. Y. Chen, et al., “Model-based design, implementation and evaluation
of UCAADS,” Technical Report No. TR-IIS-11-002, Institute of
Information Science, Academia Sinica, in preparation.

[26] SIMILE Widgets, Free, Opens-Source Data Visualization Web Widgets
and More, http://www.simile-widgets.org/

