
 TR-IIS-12-006

 A Novel Approach for Efficient
Big Data Broadcasting

Chi-Jen Wu, Chin-Fu Ku, Jan-Ming Ho and Ming-Syan Chen

Sep. 24, 2012 || Technical Report No. TR-IIS-12-006

http://www.iis.sinica.edu.tw/page/library/TechReport/tr2012/tr12.html

IIS TECHNICAL REPORT-12-006 1

A Novel Approach for Efficient Big Data
Broadcasting

Chi-Jen Wu, Chin-Fu Ku, Jan-Ming Ho, IEEE Member, Ming-Syan Chen, IEEE Fellow

F

Abstract—Big-Data Computing is a new critical challenge for the ICT
industry. Engineers and researchers are dealing with data sets of
petabyte scale in the cloud computing paradigm. Thus the demand for
building a service stack to distribute, manage and process massive
data sets has risen drastically. In this paper, we investigate the Big
Data Broadcasting problem for a single source node to broadcast a
big chunk of data to a set of nodes with the objective of minimizing
the maximum completion time. These nodes may locate in the same
datacenter or across geo-distributed datacenters. This problem is one
of the fundamental problems in distributed computing and is known to
be NP-hard in heterogeneous environments. We model the Big-data
broadcasting problem into a LockStep Broadcast Tree (LSBT) problem.
The main idea of the LSBT model is to define a basic unit of upload
bandwidth, r, such that a node with capacity c broadcasts data to a
set of ⌊c/r⌋ children at the rate r. Note that r is a parameter to be
optimized as part of the LSBT problem. We further divide the broadcast
data into m chunks. These data chunks can then be broadcast down
the LSBT in a pipeline manner. In a homogeneous network environment
in which each node has the same upload capacity c, we show that the
optimal uplink rate r∗ of LSBT is either c/2 or c/3, whichever gives the
smaller maximum completion time. For heterogeneous environments,
we present an O(nlog2n) algorithm to select an optimal uplink rate
r∗ and to construct an optimal LSBT. Numerical results show that our
approach performs well with less maximum completion time and lower
computational complexity than other efficient solutions in literature.

1 INTRODUCTION

Big-Data Computing is a new critical challenge that has
sparked major research efforts to reshape ICT industry and
scientific computing in the past few years [1]. The rapid
advances in ICT technologies, such as computation, commu-
nication and storage have resulted in enormous data sets in

• Chi-Jen Wu is with the Department of Electrical Engineering, National
Taiwan University, Taiwan and also with the Institute of Information
Science, Academia Sinica, Taiwan.
E-mail: cjwu@arbor.ee.ntu.edu.tw

• Dr. Chin-Fu Ku is with the Research Center of Information Technology
Innovation, Academia Sinica, Taiwan.
chinfu@citi.sinica.edu.tw

• Dr. Jan-Ming Ho is with the Institute of Information Science, Academia
Sinica, Taiwan. and also with the Research Center of Information Tech-
nology Innovation, Academia Sinica, Taiwan
E-mail: hoho@iis.sinica.edu.tw

• Dr. Ming-Syan Chen is with the Research Center of Information Technology
Innovation, Academia Sinica, Taiwan and also with the Department of
Electrical Engineering, National Taiwan University, Taiwan.
E-mail: mschen@cc.ee.ntu.edu.tw

business, science and society being generated and analyzed to
explore the value of those data. Currently, both ICT industry
engineers and scientific researchers are dealing with petabytes
of data sets in the cloud computing paradigm [2]. For instance,
in industry, Google, Yahoo!, and Amazon collect huge amount
of data every day for providing information services freely to
people in useful ways. In science, the Large Hadron Collider
(LHC) can generate about fifteen petabytes of data annually,
and thousands of scientists around the world need to access
and analyze this big data sets [3]. Thus the demand for
building a distributed service stack to efficiently distribute,
manage and to process massive data sets has risen drastically.

In the past decade, several efficient techniques are pro-
posed to manipulate huge amount of data, ranging from
terabytes to petabytes, on as many as tens of thousands
of machines. For example, Google presented a distributed
computing framework, namely MapReduce [4], to process
large-scale data effectively, and also proposed Bigtable [5]
for storing structured data on thousands of machines. These
techniques allows users to realize data-parallelism [6]. There
are many of significant issues in developing MapReduce
applications, such as, designing the effective strategy for data
decomposition, load balancing, and exchanging data among a
large set of nodes [7]. In particular, for big-data computing,
data transmission overhead is a significant factor of the job
completion time. For instance, it is shown that the total amount
of data transmission time occupies approximately one-third
of the jobs’ running time in the Hadoop tracing logs of
Facebook [8].

In this paper, we focus on the big data broadcasting
operation that is one of the most essential communication
mechanisms in distributed systems. There are a lot of ap-
plication domains that widely apply broadcasting operations,
such as scientific data distributions [9], database transaction
logs backups, the latest security patches, multimedia streaming
applications, and data replica or virtual appliance deploy-
ment [10] among distributed data centers. Since the size of data
becomes so enormous, the impact of broadcasting operation
also becomes increasingly significant.

We consider the big data broadcasting problem in a hetero-
geneous network where nodes may have different uploading
capacities. The big data broadcasting problem is about how the
nodes may obtain a given big data cooperatively in a minimum
amount of total transmission time. We assume that there are n

WU et al., IIS TECHNICAL REPORT-12-006 2

nodes in a heterogeneous network system, denoted by n1, n2,
n3,. . . , nn, where the broadcasting source is node n1 and the
n nodes have upload capacities c1, c2, c3,. . . , cn, measured in
kilobyte per second (KBps). We also assume that the source
has the data item that is divided into m chunks of equal size,
to disseminate to all the other nodes. We also assume that the
downloading capacity of each node is larger than or equal to
its uploading capacity.

Specifically, we focus on investigating the following ques-
tions: What is the relation between a single overlay tree with
a fixed uplink rate and the broadcast operation itself, and how
to construct a single overlay tree that minimizes the maximum
completion time in heterogeneous networks? We introduce the
novel LockStep Broadcast Tree (LSBT) to model the Big
Data broadcast problem [11], [12]. LSBT is a broadcast tree
where data chunks can be sent in a pipelined fashion with a
good throughput. The main idea is to define a basic unit of
upload bandwidth, r, such that the upload link of each node
is divide into several connections each being allocated with
the bandwidth r in broadcasting. In so doing, the number of
upload connections is proportion to the capacity of a node.
Furthermore, we also divide the broadcast data into m chunks.
These data chunks are then broadcast down the tree by the
nodes in a pipeline manner. We show that based on the LSBT
model, the maximum number of rounds required to complete
the broadcast of entire data chunks is O(m + logn) steps,
where n is the number of nodes. In a homogeneous network
environment in which each node has the same uploading
capacity c, we show that the optimal uplink rate r∗ of LSBT is
either c/2 or c/3. For heterogeneous networks, we present an
O(nlog2n) algorithm to select an optimal uplink rate r∗ and
to construct an optimal LSBT. Numerical results show that the
maximum completion time of our LSBT approximates to the
optimum of the big data broadcast problem.

The main contributions of this paper are as follows.
1) Propose the LockStep Broadcast Tree (LSBT) to solve

the big-data broadcasting problem over heterogenous networks
by constructing an efficient pipeline broadcasting tree. We
contribute to the understanding and investigation of how to
design a scalable and practical algorithm to compute an LSBT
such that its maximum completion time is minimized.

2) Design a novel polynomial-time algorithm to select the
optimal uplink rate r∗ for building an optimal LSBT. To the
best of our knowledge, this work is the first study to investigate
the relation between a single overlay tree (with a fixed uplink
rate r∗) and the broadcast operation based on uplink sharing
model. Unlike the previous works [13], [14] in which the
criteria is to maximize system throughput, to the best of our
knowledge, this is the first to study the problem of designing
a tree overlay network aiming at minimizing the maximum
completion time.

3) Introduce several original applications based on the LSBT
model. Specifically, given a data delivery deadline, one can
estimate whether a delivery job through a specific network
could meet its deadline based on the LSBT model. Developers
may take advantage of this property to can maximize the per-
formance of collaborative applications in datacenter networks.

The rest of this paper is organized as follows. In the

Fig. 1. Scope of our contributions

Section 2, we give background of the big data broadcasting
problem. We state the general big data broadcasting problem
and introduce our LSBT model and its applications in the
Section 3. The detail of our optimal algorithm for LSBT
problem is presented in Section 4. Numerical evaluation are
presented in Section 5. The Section 6 describes the context
of related work. We conclude this paper and present ideas for
future research in Section 7.

2 BACKGROUND
Supposed that m data chunks of equal size are initially held
by a single source node in a network. The data broadcasting
problem is about disseminating these m chunks to a popu-
lation of n nodes in as less time as possible, subject to the
uploading link capacity constraints of nodes. This problem
has been studied in the context of many different network
scenarios, such as homogenous and heterogenous networks .
For interested readers, a comprehensive survey can be found in
the article [15]. In this paper we focus on big data broadcasting
problem in heterogenous networks. Figure 1 illustrates these
solutions to the big data broadcasting problem in heterogenous
networks along multiple dimensions.

For the centralized approach, we first look at the results
of the Non-Chunk based approach. Khuller and Kim [11]
showed that the problem of minimizing the completion time
for broadcasting a single chunk (a message) in heterogenous
networks in a NP-hard problem. The authors also showed the
Fastest-Node-First (FNF) heuristic method gets a performance
ratio of at most 1.5 and the FNF results in optimal solutions in
many cases for single chunk broadcast. In additional, Liu [16]
showed that the FNF heuristic method is optimal in only two
classes of nodes. However, the data broadcasting problem is
more complicated when the data consists of multiple chunks
and it is still an open problem: Can data broadcasting prob-
lem with multiple chunks be solved by a polynomial time
algorithm? [17].

Within the Chunk-based methods, the optimal solution has
been shown in the article [12]. The authors presented an
uplink-sharing model for the well-known data broadcasting
problem and formulated data broadcasting problem as a mixed
integer linear programming (MILP). However, as the numbers
of variables in the linear programming grows exponentially n
and m, this method is not practical for large n and m. Goetz-
mann et. al. [18] show that if peer capacities are heterogeneous

WU et al., IIS TECHNICAL REPORT-12-006 3

and symmetric, this problem becomes strongly NP-hard. A re-
cent result [19] presented two heuristic algorithms to schedule
data chunks transfer between nodes. The time complexity of
both two centralized algorithms is O(m× nlogn)2.

For the decentralized approach, many decentralized systems
have been proposed to disseminate chunks via an overlay
topology. With overlay-based approaches, nodes maintain a
set of overlay links to other nodes and exchange chunks
among neighboring nodes. BitTorrent [20], SplitSteam [21],
Bullet [22] and Bee [23] are some examples of the overlay-
based approach. In [23], the authors showed Bee can approach
lower bound of the maximum completion time in heterogenous
networks by simulations. In this paper, we retain the interest
in the centralized approaches, thus interested readers can find
a comprehensive survey of these decentralized systems in the
article [24].

3 PROBLEM STATEMENT

The assumption in our model is similar to the Uplink-Sharing
model proposed by J. Mundinger et al. [12]. Each node can
simultaneously connect to other nodes and the available upload
capacity of a link is shared equally amongst the uploading
connections. Based on the Uplink-Sharing model, we model
the nodes and data transfer networks as the nodes and edges
of a direct graph. We assume that there are n nodes in a
network system, denoted by n1, n2, n3,. . . , nn, where the
broadcasting source is node n1 and the n−1 nodes have upload
capacities c = {c1, c2, c3,. . . , cn}, measured in kilobyte per
second (KBps). Besides, we also assume that the source node,
n1, has the data item that is divided into m chunks of equal
size, to disseminate to all the other nodes, and c1 is larger
than or equal to that of other nodes. Finally, we assume that
the downloading capacity of each node is larger or equal to
its uploading capacity. This is true for virtually all existing
network access technologies, e.g., ADSL or cable modems.

3.1 LockStep Broadcast Tree (LSBT) problem

To reduce the complexity of the original data broadcasting
problem [11], [12], we model it as the LockStep Broadcast
Tree (LSBT) problem. By this we define a performance goal
for a single LSBT, that is achieving minimum completion
time by optimizing the basic bandwidth allocation, r, among
LSBT nodes. Different from original problem, we allow data
be divided into chunks and sent in a pipeline fashion. Formally,
given a set of n nodes N = {n1, . . . , nn}, each node ni

is connected to the network via an access link of upload
capacities ci and a size of chunks B. The LSBT problem
is to determine the upload bandwidth r∗ of each uplink to
build the LSBT t, in which node ni should allocate upload
bandwidth r∗ to each connection to its child nodes in order to
minimize the maximum completion time D for propagating a
data chunk. Note that it is possible to handle simultaneously
several connections and to fix the bandwidth allocated to each
connection [25]. In the following definition, we define the
number of edges k in each node for LSBT.

Fig. 2. The two examples of LSBT. The tree (a) presents
the optimal LSBT with r∗ = 1, the maximum completion
time D is 2 units of time and tree (b) requires 3 units of
time. Assume that the size of data chunk B = 1 and the
digits specify these node’s upload capacity.

Definition 1. For each LSBT node ni, the number of edges
(uploading connections) ki is depended on its upload capacity,
i.e., ki = ⌊ cir ⌋, for 1 ≤ i ≤ n and ∀ r ∈ R+.

The formal mathematic definition of the maximum comple-
tion time D is shown as follows.

r∗ = arg min
r∈R+

D(c, r) = arg min
r∈R+

h(t(c,r))∑ B

r
, (1)

where t(c,r) is the LSBT with the set of upload capacity c and
an upload bandwidth r, h(t(c,r)) describes the function that
returns the height of the LSBT t(c,r).

Note that this general Equation (1) removes restrictions on
the location of nodes in the network, it only calculates the
propagation delay of data chunks from the root to the leaves.
Moreover, LSBT model addresses the data broadcasting prob-
lem by building a single broadcast tree, in which nodes can
transmit data chunks in a pipeline manner. Thus the maximum
completion time D is the summation of the transmission time
of a data chunk (i.e., B

r) in each level of the LSBT t(c,r).
Example. Figure 2 shows the two examples. Given a set of

eleven nodes having upload capacities {3, 3, 2, 2, 2, 1, 1, 1, 1,
1, 1}, we can build at most 1111−2 different broadcasting trees
(by Cayley’s formula [26]). However, there exists an optimal
LSBT constructed by sorting the nodes according to their
number of edges in non-increasing order. We will show this
important property of LSBT in the next section (Theorem 3).
In Figure 2, the tree (a) presents the optimal LSBT ta with
upload bandwidth r∗ = 1. Here, we assume that the size of
data chunk B = 1. Since h(ta) = 2, the maximum completion
time D of tree ta should be 2 (i.e., 1

1 + 1
1 = 2) units of time

(by Equation 1). The other tree tb in Figure 2 is not an optimal
LSBT. The maximum completion time D of tree tb is 3 units
of time (i.e., 1

1.5 + 1
1.5 + 1

1.5 + 1 = 3). Note that in tree tb

these gray nodes in the 3th level only can provide one unit of
upload capacity to their child nodes even if r is specified as

WU et al., IIS TECHNICAL REPORT-12-006 4

1.5.

3.2 Potential Applications of LSBT
We envision that our LSBT could be well-suited for a host of
applications. There are at least three broad applications where
LSBT can be applied: 1) topology control in BitTorrent-like
systems; 2) data broadcasting in cloud computing software
stack; 3) energy conservation in peer-assisted content delivery
services. We consider these in the context of network systems
that are heterogenous network environments.

First, Our algorithm of LSBT could be useful in topology
control in BitTorrent-like systems [20]. BitTorrent is a peer-
to-peer application that aims to enable the fast and efficient
distribution of large files among a large group of nodes. In Bit-
Torrent, each peer maintains a constant number of concurrent
upload connections (usually five). Please see the article [20]
for more detailed descriptions. Recent studies [23], [27], [28]
show that the fixed upload connections limit is harmful to
uplink utilization and peer fairness in BitTorrent. However,
how to decide an appropriate number of concurrent uploads
in BitTorrent still is a challenge. The proposed algorithm for
LSBT may provide an insight into selecting the number of
concurrent uploads in BitTorrent-like systems.

Second, LSBT can be integrated into the cloud computing
software stack. For example, Apache Hadoop1 is a software
framework that allows for the distributed processing of large
data sets across clusters with thousands machines. Thus an
efficient and scalable way to disseminate a large volume of
data among machines is a significant challenge in Hadoop [8].
Another example is the delivery services of OpenStack2, it
is designed for virtual appliance deployment in datacenters.
Our LSBT can be integrated into the delivery services of
OpenStack software stack. A number of algorithms and pro-
tocols have been proposed, implemented, and studied [8],
[29]. For any data delivery job initiated by cloud computing
softwares, there is an associated deadline. The main advantage
of LSBT is to enable these cloud software stacks to predict
and schedule the associated deadline of a data delivery job.
Specifically, given a data delivery deadline, LSBT may be
possible to determine that can the network system meet the
deadline or what is the possible deadline for the delivery job.
This advantage can severely impact application performance
in datacenter networks.

Finally, Our algorithm for LSBT could be useful to answer
the question: what is the maximum streaming rate that can be
sustained for all receivers within a peer-assisted content deliv-
ery service provider. Many content delivery service providers,
such as PPLive3, Akamai4, that may rely on participating users
contributing uplink bandwidth to scale up delivery services
to hundreds of thousands of users. However, if the total con-
tributed bandwidth from the service provider and participating
users can not support to the demanded quality of services
(ex., H.2645/768kbps), the service provider should increase

1. http://hadoop.apache.org/
2. http://openstack.org/
3. http://www.pptv.com/
4. http://www.akamai.com/
5. http://en.wikipedia.org/wiki/H.264/MPEG-4 AVC

contributed bandwidth (servers) from server-side. For energy
conservation and environmental issues, it is an interesting and
significant issue to investigate how to dynamically increase
or decrease the number of servers in accordance with the
demanded QoS and the number of active users. Given a set
of node upload capacities c, our LSBT algorithm can roughly
sketch out the coarse-grained QoS level (i.e., r∗ Kbps) of the
current system and be used to regulate the energy consumption
in server-side. Thus, our LSBT model can be used for creating
a systematic approach that arranges server-side resources for
peer-assisted content delivery protocols. To the best of our
knowledge, little work [30] has been conducted on energy
conservation in peer-assisted content delivery services. In
future work, we aim to apply our LSBT algorithm to the
research direction.

4 OPTIMAL LOCKSTEP BROADCAST TREE

In this section, we present our LSBT algorithm that is also
a heuristic for the data broadcasting problem. Given a set of
node upload capacities c, we aim at finding an optimal LSBT,
that is a data broadcast tree where data chunks can be sent in
a pipelined manner. We provide a thorough analysis of LSBT
in both homogenous and heterogenous network systems. We
first clarify LSBT in homogenous networks cases and describe
the LSBT algorithm in heterogenous network cases later.

4.1 Homogenous Network Systems
We present the optimal solution of LSBT when the upload
capacities of nodes are identical. In general, we assume that
all nodes have upload capacity of c. Mundinger et al. [12] have
presented the optimal scheduling solution for broadcasting
multiple messages. The following Theorem 1 is proved in
the article [12]. If each round costs one units of time, then
the maximum completion time of the optimal solution is
m + ⌊log2 n⌋, where m is the number of chunks and n the
number of nodes. Note that each node can only upload one
data chunk to another node in each round. By contrast, each
node can send a data chunk to k other nodes simultaneously
in the LSBT model.

Theorem 1. In homogenous network systems, the minimum
number of rounds required to complete the broadcasting of
all data chunks is m + ⌊log2 n⌋, where m is the number of
data chunks and n is the number of nodes.

In our LSBT model, the maximum completion time D is
equal to Equation (1). However, due to the upload capacities
of all nodes are equal, it can be simply expressed as follows
(note that r = c

k).

D =
B

r
logk n

=
kB

c

lnn

ln k
,

where B is a size of data chunks.
Let G = B lnn

c , we have

D = G k

ln k
. (2)

WU et al., IIS TECHNICAL REPORT-12-006 5

2 4 6 8 10 12 14 16 18 20
10
15
20
25
30
35
40
45
50
55
60

Th
e

M
ax

im
um

 C
om

pl
et

io
n

Ti
m

e

The number of uploading connections k

Fig. 3. Numerical results of LSBT in homogenous net-
works. Assume that the number of nodes n = 100, the
size of data chunk B = 1, and the upload capacity of all
nodes c = 1.

Set dD
dk = 0,

dD

dk
=
G
ln k
− G

(ln k)2
= 0. (3)

The Equation (3) implies that

ln k = 1,

k = e. (4)

It can be shown that Equ. 2 is a convex function. Thus we
have the following theorem in discrete model.

Theorem 2. In homogenous network systems, the optimal
value r∗ for LSBT is either c/2 or c/3 that makes the LSBT
minimize the maximum completion time, where c is the upload
capacity of all nodes.

Figure 3 illustrates a simple numerical example of LSBT in
a homogenous network, in which we set n = 100, c = 1, and
B = 1. We then calculated the maximum completion time
D in Equation (2). In the results, all nodes have k upload
connections, the value of k depending on the considered
scenario. We can see that the numerical results significantly
depend on the value of k in homogenous network systems,
and the LSBT can minimize the maximum completion time
when k is equal to e as we shown in Equ. 4 in continuous
model.

4.2 Heterogenous Network Systems
We now consider the general LSTB model in which nodes’
upload capacities may be different. First, we present an
algorithm to construct an optimal LSBT for a given rate r.
We then give both the upper and lower bounds of the value of
r∗. Finally we present an O(n log2 n) algorithm to select the
optimal upload bandwidth r∗ of each uplink and to construct
the optimal LSBT.

We now present the algorithm GLSBT to construct an LSBT
t which is shown to be optimal for the given rate r. Given a
set of nodes N = {n1, n2, · · · , nn} with ci as the upload
capacity of node i, 1 ≤ i ≤ n, and a real number r to denote
the rate of the LSBT. We assume that the nodes are given in

Fig. 4. An illustration of building a LSBT

non-increasing order of their upload capacity, i.e., cj ≤ ci if
i < j.

Algorithm GLSBT(c, r)
BEGIN
1) Given r as the rate of the LSBT, the number of edges of

each node ni is given by ki = ⌊ci/r⌋.
2) Construct the LSBT t by assigning a node nq as the

parent of the node nl if and only if q is the smallest integer
such that l ≤ 1 +

∑q
i=1 ki, where 1 ≤ l ≤ n.

END
The following theorem shows that the algorithm GLSBT

gives an optimal LSBT for the given rate r.

Theorem 3. Given an uplink rate r∗, building the LSBT t
that is constructed in a way that any child node’s out-degree
is always less than or equal to its parent’s and providing that
t is optimal in terms of the maximum completion time D.

Proof: Suppose that we have a set of n nodes, and
k1, k2, k3, . . . , kn are the umber of edges of each node.
Then by Definition 1: ki = ⌊ cir ⌋, for 1 ≤ i ≤ n. Let
k1, k2, k3, . . . , kp be the edges of nodes in a LSBT as shown
as Figure 4, where p is the smallest integer such that

∑p
1 kp ≥

(n− 1). There are two cases impact on the height of LSBT.
Case I) Assume that an optimal LSBT t is constructed in

the order of (k1, k2, ki, . . . , kj , kp) and ki < kj , for 1 ≤ i <
j ≤ p. Let h be the height of t. If ni and nj are interchanged,
then there exists another optimal LSBT t′ with height h′ in
order by (k1, k2, kj , . . . , ki, kp). Let the subtree sti be rooted
by the node ni and the subtree stj be rooted by node nj . Since
kj > ki, these two subtree can swap ki child nodes and the
surplus child nodes (kj −ki) can be carried by node nj . Thus
h′ is less than or equal to h. Therefore t′ is an optimal LSBT
(i.e., Bh′

r∗ ≤
Bh
r∗).

Case II) Assume that an optimal LSBT t is created by the
order (k1, k2, ki, . . . , kp, kj) and ki < kj , for 1 ≤ i < j ≤ n.
Similar to Case I, we switch nj and ni, then we get the new
LSBT t′. Since kj > ki, the height of t′ is also less than or
equal to the height of t. Therefore t′ is an optimal LSBT.

Then we provide lower bound and upper bound of the value
of r∗ as follows.

Lemma 1. (Lower bound) In heterogenous network systems,
the lower bound of r∗ in the optimal LSBT is larger than or
equal to c1

n−1 , where c1 ≥ ci for 1 < i ≤ n.

Proof: If this is not true (i.e., r∗ < c1
n−1), then we have

the optimal LSBT t′ where r′ < c1
n−1 . There exists another

LSBT t, where h(t) = 1. The value of r∗ in t is equal to
c1

n−1 and the value of D in t is equal to B(n−1)
c1

. However, the

WU et al., IIS TECHNICAL REPORT-12-006 6

value of D in t′ is larger than B(n−1)
c1

. This contradicts the
assumption that r∗ < c1

n−1 .

Lemma 2. (Upper bound) In heterogenous network systems,
the upper bound of r∗ in the optimal LSBT is less than

∑
ci

n−1 ,
for 1 ≤ i ≤ n.

Proof: A tree has n vertices and n− 1 edges. It implies

r∗ × (n− 1) ≤
n∑

i=1

ci.

However, the leaf nodes in LSBT can not contributes their
upload capacities, thus

r∗ ≤
∑(n−l)

i=1 ci
n− 1

<

∑n
i=1 ci

n− 1
,

where l is the number of the leaf nodes in a LSBT.
Next, we give the details of the algorithm for the selection

of r∗. As described in Equation 1, r ∈ R+, so it means
the possible value of r is infinite, even both the upper and
lower bounds of the value of r∗ are given. Since the number
of r is infinite, an efficient discretization algorithm of r is
critical. In LSBT, we propose a simple division algorithm
to discretize the value of r. This algorithm comes from the
observation: the number of upload connection (i.e., k) in each
LSBT node is a positive integer and 1 ≤ k ≤ (n − 1). Thus
we enumerate all possible candidates of r∗ which make k an
integer. Algorithm 1 presents our solution to discretize the
value of r. Let CandidateSet denote the set of the possible
value of r∗, and the binary search will be performed on it.

In Algorithm 1, it first reduces the redundance of ci by
preforming an union operation (named UnionSet) of each
ci, for 1 ≤ i ≤ n and sorting the set (in line 4-7). Next,
the loop from line 8 to 18 is used to discretize the value
of r and to filter out the extreme r values restricted by the
upper and lower bounds. In the loop, it gets candidates of r
by computing u/k,∀ u ∈ UnionSet and 1 ≤ k ≤ (n − 1),
and puts those candidates into the CandidateSet. Note that
the number of candidates is O(n2) if each LSBT node has
an unique upload capacity. However, the filter scheme can
significantly reduce the number of candidates. We will show
the experimental results in the next section.

Before we present the binary search algorithm for selecting
the value of r∗, we first show the following lemma and
theorem which provide properties to derive the efficient binary
search algorithm on r∗.

Lemma 3. Given the discrete spectrum of r for building a
LSBT t, the value of r∗ occurs in one of the values that change
the height of t.

Proof: Suppose that the lemma is not true, there exists
an optimal LBST t̂ built with the value of r̂, its height is h,
and the next value of r̂ in the discrete spectrum (labeled as
r′ and r′ = r̂ + δ, δ > 0) does not increase the height of t̂.
According to Equation (1) and r′ > r̂, there is another LSBT
t′, its height is h, and the maximum completion time of t′ is
less than the one of t̂. This contradicts the assumption that t̂
is an optimal LSBT of height h.

Algorithm 1 A discretization algorithm for the candidateset
Input: a set of upload capacities c and the upper and lower

bounds of r∗

Output: CandidateSet
1: BEGIN
2: UnionSet← empty
3: CandidateSet← empty
4: for i← 1 to n do
5: UnionSet← UnionSet ∪ ci
6: end for
7: UnionSet← Sort(UnionSet)
8: for k ← 1 to n− 1 do
9: for all u in UnionSet do

10: r ← u/k
11: if r ≥ upper then
12: continue
13: else if r < lower then
14: break
15: end if
16: CandidateSet← CandidateSet ∪ r
17: end for
18: end for
19: return CandidateSet
20: END

Lemma 4. The height of any rooted tree with n nodes must
be less than log2 n if the out-degree of every internal node is
greater than 1.

Proof: We prove it by contradiction. Assume there exists
a tree, t, with n nodes having the height greater than log2n
while all internal nodes in t have out-degree greater than 1.
Given t’s height greater than log2n, we get

h > log2n⇒ n < 2h. (5)

We now count the number of nodes in each level of t. Because
every internal node has out-degree greater than 1, at level i
there are at least 2i nodes.

n ≥ 20 + 21 + 22 + · · ·+ 2h−1 + c

≥ 2h − 1 + c, (6)

where 1 ≤ c ≤ 2h. Please note that the root node is at level
0 and the c is the number of nodes at the last level. There is
no such n fitting both Eq. 5 and Eq. 6, so that no such tree t
exists.

Theorem 4. The height of any optimal Lock-Step Broadcast
Tree (LSBT) with n nodes is less than or equal to 2× log2n,
where n is the number of nodes.

Proof: We prove it by contradiction. We assume there is
a optimal LSBT, t, with n nodes and its height is greater than
2× log2n.
By the Lemma 4, we know that in t the out-degree of some
internal nodes must be equal to 1 (i.e., less than 2). We make
a tree, t′, by setting the rate r′ = r

2 , where r is the rate for t.
Since the out-degree of all internal nodes in t′ must be greater

WU et al., IIS TECHNICAL REPORT-12-006 7

Algorithm 2 The r∗ search algorithm for the optimal LSBT
Input: a set of upload capacities c and CandidateSet
Output: r∗ and D∗

1: BEGIN
2: CandidateSet← Sort(CandidateSet)
3: D∗ ←∞
4: r∗ ← empty
5: for h← 1 to 2(⌊log2 n⌋+ 1) do
6: right← 1
7: left← Sizeof(CandidateSet)
8: while right ≤ left do
9: mid← ⌊(right+ left)/2⌋

10: r ← CandidateSet[mid]
11: t← GLSBT (c, r)
12: if left− right = 1 and t.Height = h then
13: d← t.BroadcastingT ime
14: if d < D∗ then
15: r∗ ← r
16: D∗ ← d
17: end if
18: else
19: break
20: end if
21: if h ≤ t.Height then
22: right← mid
23: else
24: left← mid− 1
25: end if
26: end while
27: end for
28: return r∗ and D∗

29: END

than or equal to 2, the height of t′ must be less than log2n by
the Lemma 4.

The completion time for t′ will be

D(t′) =
h′

r′
≤ log2n

r
2

=
2× log2n

r
.

Given D(t) = h′

r′ > 2×log2n
r , we got D(t′) < D(t) which

contradicts that t is an optimal LSBT.
Algorithm 2 describes our scheme to search the value of

r∗ to build an optimal LSBT. Searching the r∗ is much like
searching a binary search tree, except that instead of searching
the value of r, it make a seeking condition both on the value
of r and the height of LSBT h. Algorithm 2 takes as input
a set of upload capacities c and CandidateSet obtained by
Algorithm 1. For each different height of LSBT (in line 5-
27), it searches the optimal value of r∗ and returned the best
r∗ and the maximum completion time (in line 28). The value
of h is restricted to 2(⌈log2n⌉ + 1) (in line 5) because of
Theorem 4. Thus we can only check the height of LSBT
from 1 to 2(⌊log2 n⌋ + 1). During the loop (in line 8-26),
Algorithm 2 performs a straightforward generalization of the
binary searching procedure. In line 11, GLSBT () is an O(n)
function for building a LSBT according to a specified r and
it returns the LSBT t. Lines 13-19 check to see if we have

Fig. 5. An illustration of the binary search algorithm for
selecting the value of r∗ in the LSBT of height h = 2

now discovered the value of r∗ for the specified h, and update
the best r∗ and D∗ if we have. Note that by Lemma 3, the
line 12 presents the successful condition for searching. The
line 19 terminates the search unsuccessfully, i.e., an optimal
LSBT of height h does not exist. Based on Algorithm 2, we
can easily prove the following theorem (the detailed proof is
omitted due to space limitation).

Theorem 5. The r∗ search algorithm for an optimal LSBT
can be made to run in O((nlog2n)) time on a set of upload
capacities c.

Example. Figure 5 shows the illustration of searching
results by applying Algorithm 2 to the example in Figure 2.
The numerals in these gray areas in Figure 5 mean the heights
of these LSBTs constructed by each different value of r.
Recall that the given set of eleven nodes come with a set of
upload capacities {3, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1} in Figure 2.
The numbered dashed lines specify the series of steps of the
searching operation. According to Lemma 1 and Lemma 2,
we can obtain the lower bound (i.e., 0.3) and upper bound
(i.e., 1.8) in the example of Figure 2. As shown in Figure 5,
the CandidateSet consists of ten elements that returned
by Algorithm 1. The points on horizontal axis presents the
spectrum of the possible value of r after the sorting operation,
and the topmost curve specifies the maximum completion
time D procured by individual values of r. In the running
example, we consider h = 2, i.e., selecting the value of
r∗ for the optimal LSBT with height 2. The bottom lines
in Figure 5 illustrates the variances of right, left and mid
in each step. The total number of step during the searching
operation is five and the searching operation is terminated
when mid = right = 8 and left = 9 (line 13 in Algorithm 2).

Finally, we show that the maximum number of rounds
required to complete the broadcast of entire data chunks in an
optimal LSBT is O(m+ logn) steps. The proof of Theorem 6
requires to combine Theorem 2 and Theorem 4.

Theorem 6. In an optimal LSBT, the minimum number of
steps required to complete the broadcast of entire data chunks
is O(m + logn), where m is the number of data chunks of
equal size and n presents the number of nodes in a network
system.

WU et al., IIS TECHNICAL REPORT-12-006 8

TABLE 1
Node Uplink Capacity Distribution

Uplink Distribution
Uplink Capacity (Kbps) 128 384 1000 5000
Fraction (%) 20 40 25 15

5 NUMERICAL EVALUATION
In this section, we analyze the performance of our LSBT
through numerical evaluations. The algorithm developed in
this paper can be embodied in the control plane of big
data service stacks to form node relationships that achieve
the capacity. In the numerical results, we have implemented
three approaches including FNF heuristic [11], DIM-Rank
heuristic [19] and our LSBT. All of above heuristic algorithms
are centralized, however in DIM-Rank, the cost of computing
the broadcast schedule is non-trivial. Note that DIM-Rank is
the best algorithm in [19] by comparing other state-of-the-
art algorithms. The node’ uplink capacities distribution is set
according to the actual Internet that is reported in [31] and their
respective fractions in the node population are summarized in
Table 1.

We first study the size of candidate set that derived from
the Algorithm 1. Figure 6 shows the effect when the total
number of nodes to be broadcasted is increased. Note that
the x-axis is also a log-scale (log10n). Algorithm 1 has a
clear superior performance over the naive approach. Moreover,
as the number of node is increased, the gap widens between
Algorithm 1 and the naive approach making it very desirable.
Intuitively, in the naive approach, the worst case of the size of
CandidateSet is the number of nodes multiplied by the size
of UnionSet. Thus, the solution of Algorithm 1 may give a
good heuristics for reducing the size of CandidateSet in a
large scale network.

We now show the maximum completion time of the three
algorithms under various scenarios. We consider networks with
n= 100, 1000, 10000 and 100000 nodes. The size of file is
100MB and the number of data chunks is 1000. Figure 7(a)
shows the total time each algorithm taking to broadcast the
file to all the nodes. Note that the x-axis is a log-scale
of number of nodes and thus a straight line indicates good
scalability, such as log-scale (log1 0n). Figure 7(b) shows the
computation time of each algorithm to schedule the broadcast
job. By the simulation results, LSBT performs the best while
FNF heuristics gives a poor performance, which is expected
because FNF does not take the advantage of the pipeline
manner. We notice that the computation time of DIM-Rank is
significant, and it is because the time complexity of DIM-Rank
is O(m× nlogn)2. In a n = 10000 network, the computation
time of DIM-Rank requires almost 15 hours (on a sever with
Intel Xeon 2.33GHz and 8GB RAM). Thus we do not plot the
result of n =100000 network.

Figure 8 plots the effect when the number of data chunks
(m) is increased. The size of file is 100MB and the number of
nodes is 100. We can see the result of FNF do not depend on
the value of m. Note that the x-axis is also a log-scale (log2m).
The maximum completion time of LSBT is significantly lower
(at least about 60%) than the one performed by the two

1k 10k 100k

0

100k

200k

300k

400k

Th
e

si
ze

 o
f c

an
di

da
te

 s
et

The number of nodes (n)

 A naive approach
 Our discretization algorithm

Fig. 6. The size of candidateset versus the number of
nodes n

100 1000 10000 100000
750

1500

2250

3000

3750

4500

5250

6000

Th
e

M
ax

im
um

 C
om

pl
et

io
n

tim
e

The number of nodes

 FNF
 DIM-Rank
 LSBT

(a) The Maximum Completion time

100 1000 10000 100000

0

10M

20M

30M

40M

50M

Th
e

C
om

pu
ta

tio
n

Ti
m

e
(m

ill
is

ec
on

ds
)

The number of nodes

 NFN
 DIM-Rank
 LSBT

(b) The Computation Time

Fig. 7. Performance comparison with increasing the
number of nodes

other algorithms. Another interesting remark is that DIM-Rank
performs worse than FNF when m = 2. It is because in the
concept of DIM-Rank algorithm, it prefers to let every node
obtain a data chunk first. Thus the low-capacity nodes may
slow down the maximum completion time.

6 RELATED WORK

The data broadcasting problem established by Edmonds [32]
since the 1970s and has been studied in many articles. The
broadcast problem is the core of every data distribution system,
especially in peer-to-peer (P2P) overlay fields, it is of great
interest to current efficient P2P data distribution systems,
based on a tree or mesh design [21]–[23]. While there is
much work on system design and measurement studies of
P2P data distribution systems [24], few papers work on
theoretical analysis and fundamental limitations of P2P data
distribution systems. Ezovski et al. [33] proposed an optimal

2 4 8 16 32 64 128 256 512 1024
1000

1500

2000

2500

3000

3500

4000

4500

5000

Th
e

M
ax

im
um

 C
om

pl
et

io
n

Ti
m

e

The number of Chunks (m)

 FNF
 DIM-Rank
 LSBT

Fig. 8. The number of chunks versus the maximum
completion time

WU et al., IIS TECHNICAL REPORT-12-006 9

network topology and the associated scheduling policy to
achieve the min-min times, by assuming that the file is broken
into infinitesimally small chunks such that there is almost
no forwarding delay. The authors claimed that the proposed
scheme which achieves min-min times can also achieve the
minimum average finish time. However, Chang et al. [34]
disproved the claim in [33]. In [13], the authors propose
several distributed algorithms to optimize the throughput of a
broadcasting operation. However, they do not consider degree
constraints in each node. In [14], Beaumont et al. consid-
ered the maximizing throughput problem of broadcasting a
large message in heterogenous networks. They introduced the
bounded degree multi-port model to model the capabilities
of the nodes and proved that the data broadcasting problem
of maximizing the overall throughput is NP-Complete. Liu et
al. [35] studied the maximum streaming rate problem of peer-
assisted streaming systems. They use a multi-tree formulation
and consider per-tree degree bounds. However, they assume
that the degrees of all nodes are equal, except for the source
node which has unbounded degree. The same authors consider
global per-node degree bounds in the article [36].

7 CONCLUSION

In this paper, we studied the classical data broadcasting
problem from an algorithmic point of view. We formalized
the problem into the LockStep tree (LSBT) model in which
we consider at the same time the design of such a single
overlay tree (with a fixed uplink rate) and the maximum
completion time of this model. To the best of our knowl-
edge, this work is the first study to investigate the relation
between a single overlay tree with a fixed uplink rate and the
maximum completion time both in heterogeneous networks.
In additional, We envisioned that our LSBT could be well-
suited for a host of applications. We also proposed a novel
polynomial-time algorithm to select the optimal uplink rate
r∗ for building an optimal LSBT. The time complexity of
our algorithm is O(n log2 n). Interesting future work involves
obtaining good heuristics to the data broadcasting problem.
A more challenging version of the problem is to demand a
multiple LSBTs, we leave it as an interesting future direction.

ACKNOWLEDGMENT

The work was supported in part by the National Science
Council of Taiwan, R.O.C., under Contracts NSC100-2219-
E-001-002. The authors would like to thank Prof. Kwei-Jay
Lin for comments on an earlier draft of this paper.

REFERENCES

[1] R. E. Bryant, R. H. Katz, and E. D. Lazowska, “Big-data computing:
Creating revolutionary break throughs in commerce, science, and soci-
ety,” In Computing Research Initiatives for the 21st Century., 2008.

[2] A. Szalay and J. Gray, “2020 computing: Science in an exponential
world,” Nature 440, 413-414, March, 2006.

[3] G. Brumfiel, “High-energy physics: Down the petabyte highway,” Nature
469, 282-283 January, 2011.

[4] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing on
large clusters,” Proc. of Operating Systems Design and Implementation
(OSDI), 2004.

[5] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Bur-
rows, T. Chandra, A. Fikes, , and R. E. Gruber, “Bigtable: A distributed
storage system for structured data,” Proc. of Operating Systems Design
and Implementation (OSDI), 2006.

[6] W. D. Hillis and G. L. Steele, Jr., “Data parallel algorithms,” Commu-
nications of the ACM, vol. 29, pp. 1170–1183, December 1986.

[7] U. Rencuzogullari and S. Dwarkadas, “Dynamic adaptation to available
resources for parallel computing in an autonomous network of worksta-
tions,” Proc. of ACM SIGPLAN PPoPP, 2001.

[8] M. Chowdhury, M. Zaharia, J. Ma, M. I. Jordan, and I. Stoica, “Man-
aging data transfers in computer clusters with orchestra,” Proc. of ACM
SIGCOMM, pp. 98–109, 2011.

[9] D. Nukarapu, B. Tang, L. Wang, and S. Lu, “Data replication in
data intensive scientific applications with performance guarantee,” IEEE
Transactions on Parallel and Distributed Systems, aug. 2011.

[10] C. Peng, M. Kim, Z. Zhang, and H. Lei, “Vdn: Virtual machine image
distribution network for cloud data centers,” Proc. of IEEE International
Conference on Computer Communications (INFOCOM), 2012.

[11] S. Khuller and Y.-A. Kim, “Broadcasting in heterogeneous networks,”
Algorithmica, vol. 48, no. 1, Mar. 2007.

[12] J. Mundinger, R. Weber, and G. Weiss, “Optimal scheduling of peer-to-
peer file dissemination,” Journal of Scheduling, vol. 11, no. 2, 2008.

[13] L. Massoulie, A. Twigg, C. Gkantsidis, and P. Rodriguez, “P2p stream-
ing capacity under node degree bound,” Proc. of IEEE International
Conference on Computer Communications (INFOCOM), 2007.

[14] O. Beaumont, L. Eyraud-Dubois, and S. K. Agrawal, “Broadcasting
on large scale heterogeneous platforms under the bounded multi-port
model,” Proc. of IEEE International Parallel and Distributed Processing
Symposium (IPDPS), 2011.

[15] S. M. Hedetniemi, S. T. Hedetniemi, and A. Liestman, “A survey
of gossiping and broadcasting in communication networks,” Networks,
1988.

[16] P. Liu, “Broadcast scheduling optimization for heterogeneous cluster
systems,” J. Algorithms, vol. 42, no. 1, Jan. 2002.

[17] K. Wang, J. Li, and L. Pan, “Fast file dissemination in peer-to-
peer networks with upstream bandwidth constraint,” Future Generation
Computer Systems, vol. 26, July 2010.

[18] K.-S. Goetzmann, T. Harks, M. Klimm, and K. Miller, “Optimal file
distribution in peer-to-peer networks,” Proc. of The 22nd International
Symposium on Algorithms and Computation (ISAAC), 2011.

[19] M. Deshpande, N. Venkatasubramanian, and S. Mehrotra, “Heuristics
for flash-dissemination in heterogenous networks,” Proc. of the 13th
international conference on High Performance Computing, 2006.

[20] B. Cohen, “Incentives build robustness in bittorrent,” Proc. of ACM
P2PECON, 2003.

[21] M. Castro, P. Druschel, A.-M. Kermarrec, A. Nandi, A. Rowstron,
and A. Singh, “Splitstream: High-bandwidth multicast in a cooperative
environment,” Proc. of ACM SOSP, 2003.

[22] D. Kosti, A. Rodriguez, J. Albrecht, and A. Vahdat, “Bullet: High
bandwidth data dissemination using an overlay mesh,” Proc. of ACM
SOSP, 2003.

[23] C.-J. Wu, C.-Y. Li, K.-H. Yang, J.-M. Ho, and M.-S. Chen, “Time-
critical data dissemination in cooperative peer-to-peer systems,” Proc.
of IEEE Global Telecommunications (GLOBECOM), 2009.

[24] A. Passarella, “A survey on content-centric technologies for the current
internet: Cdn and p2p solutions,” Computer Communications, 2012.

[25] M. A. Brown, “Traffic control howto. chapter 6. classless queuing
disciplines,” http://tldp.org/HOWTO/Traffic-Control-HOWTO/classless-
qdiscs.html, 2006.

[26] A. Cayley, “A theorem on trees,” Quarterly Journal of Mathematics,
1889.

[27] A. R. Bharambe, C. Herley, and V. N. Padmanabhan, “Analyzing and im-
proving a bittorrent networks performance mechanisms,” Proc. of IEEE
International Conference on Computer Communications (INFOCOM),
2006.

[28] R. Thommes and M. Coates, “Bittorrent fairness: Analysis and improve-
ments,” Proc. of WITSP, December 2005.

[29] Murder, “https://github.com/lg/murder.”
[30] S. ul Islam, K. Stamos, J.-M. Pierson, and A. Vakali, “Utilization-aware

redirection policy in cdn: A case for energy conservation,” Proc. of
Information and Communication on Technology for the Fight against
Global Warming, 2011.

[31] S. Saroiu, K. P. Gummadi, and S. D. Gribble, “A measurement study of
peer-to-peer file sharing systems,” Proc. of Multimedia Computing and
Networking (MMCN), 2002.

[32] J. Edmonds, “Edge-disjoint branchings, in combinatorial algorithms,”
Algorithmics Press, 1972.

WU et al., IIS TECHNICAL REPORT-12-006 10

[33] G. M. Ezovski, A. Tang, and L. L. H. Andrew, “Minimizing average
finish time in p2p networks,” Proc. of IEEE International Conference
on Computer Communications (INFOCOM), 2009.

[34] C. Chang, T. Ho, M. Effros, M. Medard, and B. Leong, “Issues in peer-
to-peer networking: a coding optimization approach,” Proc. of IEEE
International Symposium on Network Coding (NetCod), 2010.

[35] S. Liu, R. Zhang-Shen, W. Jiang, J. Rexford, and M. Chiang, “Perfor-

mance bounds for peer-assisted live streaming,” Proc. of ACM SIGMET-
RICS, 2008.

[36] S. Liu, M. Chen, S. Sengupta, M. Chiang, J. Li, and P. A. Chou, “P2p
streaming capacity under node degree bound,” Proc. of IEEE ICDCS,
2010.

