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ABSTRACT 

    Many disaster warning and response systems can improve their surveillance 
coverage of the threatened area by supplementing in-situ and remote sensor data with 
crowdsourced human sensor data captured and sent by people in the area. This revised 
version of a 2012 technical report also presents fusion methods which enable a 
crowdsourcing enhanced system to use human sensor data and physical sensor data 
synergistically to improve its sensor coverage and the quality of its decisions. The 
methods are built on results of classical statistical detection and estimation theory and 
use value fusion and decision fusion of human sensor data and physical sensor data in a 
coherent way. They are building blocks of a central fusion unit in a crowdsourcing 
support system for disaster surveillance. In addition, this version contains a brief 
description of CROSS, a crowdsourcing support platform that can be used to enhance 
existing disaster surveillance systems, as well as performance data on relative merits of 
the detection method proposed here.  
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1  INTRODUCTION 

Experiences from recent major disasters have told us that in-situ and remote physical 
sensors deployed by disaster surveillance and early warning systems often cannot provide 

adequate data for situation assessment purposes. When this happens, crowdsourcing human 

sensor data can be an effective solution. By a human sensor, we mean a person armed with one 

or more smart mobile devices and social networking services. By human sensor data, we mean 

observation (and measurement) data captured and contributed by human sensors. Today’s smart 

mobile devices equipped with cameras, temperature and vibration sensors, etc. and social 

networking services have made a wide spectrum of mobile applications and services more 

pervasive, location-aware and context-aware than feasible even a few short years ago [1-4]. 

Using them, increasingly more people are able to participate and contribute to diverse 

crowdsourced sensing systems and applications (e.g., [1, 5-8]) for purposes such as the 

generation of fine-grain maps of weather radar, noise level, air quality, snow depth, radiation 

level, traffic and road conditions, litters in parks, and so on. 

The platform CROSS (a CROwdsouring Support system for disaster Surveillance) [9] was 

built to support the exploitation of human sensor data and physical sensor data synergistically 

for disaster surveillance and decision support purposes. When physical sensor coverage is 

inadequate, the system starts a crowdsourcing data collection (CDC) process by broadcasting a 

call for participation to a crowd of human sensors. During the process, participating human 

sensors make observation(s) at and around locations as requested by the system and send the 

data thus captured back to the system. The process completes when the system has acquired 

sufficient data to give it situation awareness and support its decisions and operations.  

The interactions and collaborations between the system and participants can be either 

crowd-driven or system-driven [10]. When the system uses a crowd-driven strategy, it does 

nothing other than collecting and processing reports from participants, relying solely on 

mobility and interactions of individual participants for coverage of the threatened area. Working 

in this way, the system is similar to many crowdsourced sensing systems and applications 

mentioned above. 

For the purpose of collecting data to supplement physical sensor data prior to or during an 

emergency, the crowd-driven approach is not ideal, however: Oftentimes, the system should use 

as few participants as needed for each CDC process for many reasons including availability and 

costs of qualified participants. Without well-planned routes for participants to follow during a 
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process, some locations may be visited by more participants than necessary while other 

locations are visited by too few. Consequently, the response time (i.e., the length of time from 

the start to the end of the process) of the process may be prolonged. In cases of emergencies 

such as wildfires and floods, the system also needs to help participants stay away from 

dangerous locations.  

System-driven strategies were motivated by these considerations. In this case, the system 

provides each participant with an exploration path for him/her to follow during the current 

process and issues directives as needed to alter the path. In addition to capabilities needed to 

communicate and interact with the participants prior and during CDC processes, CROSS also 

provides the emergency manager with tools for selecting participants from human sensors who 

responded to its call for participation based on the cost and benefit associated with each of them 

and planning for each selected participant a path. Section 3 will present an overview of the 

CROSS prototype and its approaches to participant selection and path planning [9-11]. 

This paper focuses on the data fusion and processing methods which a system like CROSS 

can use to determine whether a CDC process needs to be launched and during a CDC process 

whether sufficient human sensor data has been collected and hence the process can be 

terminated. The underlying problem that the system must solve is how to use human sensor data 

and physical sensor data synergistically to improve sensor coverage and the quality of the 

decision based on sensor data. We call this problem the symbiotic data fusion and processing
(SDFP) problem. We focus primarily on statistical detection formulations and solutions [12-17] 

of the problem, rather than estimations of parameters that define the state of the threatened area. 

A reason is that for many likely scenarios, the system aims to detect based on sensor data taken 

within the threatened area the occurrences of events and conditions that warrant response 

actions. Examples of such conditions include “tag balls on beach” and “smoke visible” on a 

stretch of beach and a campsite threatened by oil spill and wildfire, respectively. Appropriate 

actions in response to the detection of such conditions include launching cleanup operation, 

closing the campsite, evacuating campers, and so on.  

The work described here makes two contributions: First, our work is among the first, if not 

the first, to characterize and treat data from both physical sensors and human sensors used for 

surveillance and monitoring purposes in a coherent way. Our abstract, yet realistic model of 

systems containing physical in-situ sensors and mobile human sensors captures all the 

characteristics of the sensors that are relevant to how to process the data from them. It enables 

us to build solutions of the problems in fusing physical and human sensor data on the rigorous 

foundation of classical stochastic detection and estimation theory. For many real-life scenarios, 
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the solutions provide the system with not only quantitative assessment of its decision quality 

but also control over tradeoffs between conflicting quality criteria.  

The second contribution is the design of a fusion unit for processing data collected from 

physical and human sensors and determining automatically and dynamically when to initiate 

and when to terminate CDC processes depending on whether the sensor coverage is sufficiently 

good. The design of this important component is built on the solutions presented here. We will 

make the fusion unit a part of CROSS and thus make CROSS a full-function crowdsourcing 

support platform suitable for enhancing many types of disaster surveillance systems.   

Following this introduction, Section 2 discusses related work. Section 3 first describes 

CROSS briefly and presents three representative scenarios to provide background and 

rationales for our discussions here. It then presents our assumptions on the surveillance system 

and its physical sensors and models of disaster threatened areas, participants of the CDC 

process, and physical and human sensors. Section 4 presents the design and implementation of a 

central fusion unit for processing sensor data, making decisions, and helping the system manage 

CDC processes. The section also presents the rationales for the structure of the fusion unit, its 

reliance on the well-known Neyman-Pearson criterion [17] (commonly called the N-P test in 

literatures), and this choice over other binary hypothesis testing techniques. Section 5 presents 

statistical detection and estimation formulations of the SDFP problem and the N-P test solution 

of the binary hypothesis testing variant of the problem. Section 6 discusses the performance of 

the solution. Section 7 summarizes the paper and discusses future work.  

2  RELATED WORK 

In recent years, platforms such as Sahana and Ushahidi [18, 19] have been used worldwide 

to support crowdsourcing the collection and dissemination of crisis management information 

during and after major disasters. In contrast, modern disaster surveillance (and early warning) 

systems typically do not incorporate crowdsourcing social reports as an integral part of their 

standard operating procedures. As stated earlier, a disaster surveillance systems needs to make 

critically important decisions: A decision such as to start oil cleanup operations, close a popular 

campsite, evacuate residents, and so on, carries the risk of crying wolf, hopefully with an 

acceptably small probability, but a failure to call for action when action is warranted may cause 

costly damages and loss of lives. Except for disasters that take days and months to develop, the 

system must be able to acquire situation awareness and make a decision within hours, even 

minutes. If the system is crowdsourcing enhanced, it must be able to process social reports in 

real-time automatically using relatively efficient rules and extract from the reports decision 
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support information of sufficiently good and quantifiable quality. The solutions presented in 

later sections aim to meet these needs.  

Our work was motivated by the fact that existing techniques and tools for processing social 

reports cannot meet these needs. Problems in processing social reports have been a focal point 

of intense efforts by many research communities. Prior work in this area targeted primarily 

crowdsourcing applications such as the ones mentioned above [1, 5-8, 18, 19]. A challenge 

shared by these diverse applications arises from their use of social reports contributed by mass, 

and often unknown, crowds. In addition to the problems in discovering, extracting, and refining 

information from a vast number of reports, these applications must also deal with unbounded 

uncertainty in the information extracted from the reports, hence, the problem of verifying 

veracity and assessing accuracy of the information. Numerous techniques and tools (e.g., 

[20-33]) based on a wide range of technologies, including machine learning, fuzzy systems, 

data mining, information retrieval and natural language processing, are now available. In 

addition, some heuristic combinations of technologies and semiautomatic processing tools (e.g., 

[28, 35]) were developed by open source software community for processing eyewitness 

reports and request messages from victims, responders and general public during the crises in 

days after 2010 Haiti and Chile earthquakes. By and large, common shortcomings of existing 

solutions include that they take manual efforts and processing time too high to be acceptable for 

our application and that they cannot provide the system with quantitative quality measures of 

the extracted information.  

Unlike previous efforts, our work makes two restrictive but realistic assumptions: First and 

foremost is that disaster surveillance and warning systems use only known participants, 

selected from registered volunteers whom have been recruited as a part of community-, region- 

and country-wide disaster preparedness efforts. In addition to having mobile devices and 

applications capable of communicating with the crowdsourcing support system, the volunteers 

have promised to never lie, make observations independently, and report observed data as 

requested. Second, as a part of the volunteer registration process, the system acquires the 

statistical characteristics of noises (and hence errors) in human sensor data, at least bounds to 

uncertainties in the data contributed by them. This is analogues to the fact that the system must 

have statistical distributions of noises in physical sensor data in order to process the data. The 

abstract model of symbiotic sensors in surveillance systems presented in Section 3 is based on 

these assumptions. As we stated earlier, the model characterizes data from human sensors and 

in-situ physical sensors in a consistent way and thus enables us to build a rigorous and efficient 

solutions needed by the fusion unit using techniques in classical stochastic detection and 

estimation in general and distributed multiple sensor fusion in particular [12-17]. 
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 In terms of objective, our problem resembles the problems of improving the coverage of 

physical sensors such as the one studied by Xing, et al. [12]: Like them, our system also wants 

to improve its coverage, except that our system uses human sensor data to reduce the limitations 

of physical sensor coverage. In subsequent discussions, we will use the term ( , )-coverage as 

in [12] to state the desired quality of sensor coverage precisely: In a process of trying to detect a 

specified condition of a disaster threatened area based on sensor data taken in the area, the 

system is said to have made a false alarm when it declares that the condition is true when the 

condition is in fact not true. It is said to have detected the condition when it declares the 

condition to be true when the condition is indeed true. We use F and D to denote the false alarm 
probability (i.e., the probability that the system makes a false alarm) and detection probability
(i.e., the probability that the system succeeds in detecting the condition), respectively. For given 

threshold false alarm probability  (0  < 0.5) and threshold detection probability (0.5 <

 1), the system is said to have achieved ( , )-coverage when its false alarm probability F is at 

most equal to  and its detection probability D is at least equal to . Sensor coverage is said to be 

sufficiently good when the system can achieve ( , )-coverage of the threatened area by 

processing available data in some way(s).  

The thresholds and  are application specific. Without loss of generality, we assume here 

that they are chosen by the emergency manager based on the costs and benefits of taking or not 

taking the response action associated with the detected condition: The manager wants the 

chance of taking the action unnecessarily to be at most equal to  and the chance of failing to 

take the action indicated by the condition to be at most equal to (1 - ). For our application, 

and (1 - ) are typically in the range from 0.1 to 0.01, while for typically sensor data processing 

and statistical communication applications such as the ones described in [12-16], they are 

typically in orders of 10-6, 10-7 and even smaller.  

Our approach resembles the one taken by Wang, et al. [34, 35] who are among the first to 

apply statistical estimation and hypothesis testing techniques to processing social sensor data in 

order to discover and assess the truth carried by the data. Unlike our model, their models do not 

capture the symbiotic nature of sensors used by crowdsourcing enhanced disaster surveillance 

systems: Wang, et al. demonstrated via a case study that the EM (Expectation Maximization) 

algorithm [36] can out-perform the Bayesian interpretation scheme and Truth Finder [33, 35] 

for fusing binary-valued observations. For our application, a shortcoming of these schemes is 

that they do not give the fusion unit control over tradeoffs between quality measures, such as 

false alarm and detection probabilities, that cannot be optimized at the same time. This is why 

we treat the SDFP problem as a detection problem and use the N-P test whenever appropriate. 

The test is not only optimal when a priori probabilities are unknown but also simpler to 
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implement than the EM algorithm. Moreover, as performance data presented in Section 6 will 

show, the performance of EM algorithm is at best comparable to that of the N-P-test. 

Finally, we note that recent studies (e.g., [3, 7-9]) on issues in integrating social sensing with 

pervasive and ubiquitous computing also consider fusion of data from mobile and ubiquitous 

physical sensors with data from social sensors. CROSS can be thought of as an 

application-specific infrastructure for integration of physical and human surveillance sensors. A 

difference between the SDFP problem and their fusion problems is that data provided to 

CROSS by physical and human sensors are of the same types, whereas they provide 

context-aware pervasive services and applications with data of complementary types. 

3  BACKGROUND, ASSUMPTIONS AND MODELS 

This section first presents an overview of CROSS and describes three representative 

scenarios in order to provide background and support the assumptions, rationales, models and 

problem formulations presented in later sections. It then presents the models of physical and 

human sensors and introduces the terms and notations used in later sections.  

3.1 System-Driven Crowdsourcing  

Again, CROSS is a system of tools designed to support system-driven crowdsourcing 

human sensor data collection by disaster surveillance and early warning systems. According 

to this strategy, the system directs participants of the current CDC process to locations where 

human sensor data are needed along exploration paths planned by the system for them. It is 

convenient to think that there is a virtual sensor at each of these locations: During a CDC 

process, each virtual sensor provides the system with human sensor data taken and sent by 

human sensors in a neighborhood of a specified size around the virtual sensor. Figure 2(a) 

shows the key components of CROSS needed to support this strategy. Currently, the central 

fusion unit, shown as a dashed rectangle, is not yet available. Without it, CDC processes are 

started and terminated manually, and data from human sensors are displayed at the command 

center, where CROSS executes, for the consumption of the emergency manager(s).  

The system requires each registered volunteer to be equipped with a smart phone that uses 

GPS or other means to locate itself. It has an “I am here” application for sending location 

information and geotagging short messages in conformance to a standard (e.g., Open 

GeoSMS standard [37]) and a web application built on Google maps API for displaying the 

exploration path planned by the system for him/her if and when the volunteer is selected to 

participate. As the last step of registration, the volunteer is asked to join a volunteer group in 

Facebook and is given by CROSS an account on the system. 
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Figure 1 CROSS components  

To start a CDC process, the emergency manager uses the broadcast manager to post on 

Facebook a call for participation, containing as a volunteer requirement the locations needing 

visits. A short message containing the requirement pops up on registered volunteers’ smart 

phones. If after viewing the message, a volunteer decides to participate, he or she signs in 

CROSS to report his/her identity and current location. Having thus volunteered, he/she waits 

for the path planned by the system for him/her or a message stating that his/her help is not 

needed at the current time. The broadcast manager then passes the locations of all the signed 

in volunteers to the participant selection and path planning modules, as well as the 

crowdsourcing map manager to have the locations displayed.   

For the purposes of selecting participants of a CDC process, the threatened area is divided 

into R (  1) regions, each of which has a value (> 0). Associated with each responded 

volunteer (say the j-th volunteer) are benefit bj,k (  0) and cost cj,k (  0) if he/she is selected 
and assigned to visit virtual sensors in the k-th region, for k = 1, 2, … R. The variant of 

participant selection problem currently in use can be stated in general as follows: Given as 

input parameters, R regions, each of which is defined by its value and locations of virtual 

sensors in it; K responded volunteers, each of whom is defined by R benefit and cost factors; 

and a total budget available to spend on all selected participants. The objective is to select 

participants from volunteers and assign them each to a region in such a way that the total 

benefit achieved by all selected participants is maximized subject to the constraints that for 

every region, the total benefit of all participants assigned to the region is no greater than the 

value of the region and the total costs of all selected participants does not exceed the total 

budget. This problem is an extended special case of generalized assignment problem [38], 

which is known to be NP-hard. CROSS solves the problem heuristically, using efficient 

algorithms such as the one described in [11].  

We note that the system can choose to make values of regions and benefits/costs of 
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participants represent different things. In particular, the system can make the benefit of a 

participant assigned to a region equal to the number of virtual sensors in the region and the 

value of the region equal to the total number of virtual sensors in it times the number of 

human sensors required to visit each virtual sensor. The data on the quality of sensor coverage 

as a function of the number of human sensors per virtual sensor presented in Section 6 will 

enable this choice of input parameters. Similarly, the cost cj,k (  0) can be set based on the 
travel time from the initial position of participant j to the k-th region, or simply the amount of 

reward to be given to the participant for his/her help. 

After participants are chosen and assigned, the path planning module computes for all the 

participants assigned to each region a set of exploration paths, a path for each participant. The 

constraints are that the path of each participant starts and ends at his/her initial location and 

visit each virtual sensor in the region at most once. For this computation, the path planning 

module characterizes the region by a directed graph in which nodes represent virtual sensors 

and lengths of edges represent minimum travel times between virtual sensors. Given the graph 

and initial locations of participants, path planning module computes all the paths satisfying 

the above mentioned constraints. The objective is either to maximize the visited virtual 

sensors by all participants within a specified length of time or to have every virtual sensors 

visited by a specified number of participants in minimum time. The problems are new variants 

of the well-known multiple traveling salesman problem [39]. The formal definition of the 

problem and the heuristic algorithm currently used by the module can be found in [9]. 

From time to time, the system needs to redirect some participants. This is done by 

providing them with new paths. For example, Figure 2(b) shows four paths displayed on a 

monitor within the command center. The figure also shows a segment of a participant’s path 

displayed on his/her smart phone. In addition to providing the command center whereabouts 

and progresses of all participants, the crowdsourced map manager integrates the messages 

received from them and displays them on a map. Participants may find blocked road, building 

fires, falling trees and victims along their routes. They may also be trapped by incidents 

during their exploration. CROSS provides them with an emergency communication function 

to report the incidents and communicates with participants nearby.  

3.2 Representative Scenarios   

Figure 2 shows three representative scenarios [10, 11]. Only part (a) shows physical 

sensors: They are surveillance cameras in this scenario. Physical sensors in other parts are 

omitted in order to keep the figure simple. Small circles in the figure labeled by symbols S1,
S2, … Sk and so on represent virtual sensors. The exact locations of the sensors depend on the 
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type of disaster, the condition of interest, and physical sensors used to monitor the condition, 

and so on. In all scenarios considered here, data from all sensors, physical and virtual, within 

a disaster threatened area are used together to detect a specified condition. The fusion unit 

assumes that all sensors are well placed but does not use their locations as an input.  

(c) Human sensor data: water level in centimeters

S i

S k

Oil

S 1

S 2

S 3

S 4 S 5

Crowd

(a) Human sensor data: presence/absence of tar balls

Ocean

Physical
sensor

Coastline

Physical
sensor

Road

S 1

S 7

S 5

S 4

S 3

S 6

S 2

(b) Human sensor data: {wind direction & speed, temperature, humidity}

Figure 2 Representative scenarios 

In the oil spill scenario, the area threatened by an oil spill is the stretch of beach delimited by 

two high resolution surveillance cameras on the beach. Periodically, each camera scans and 

captures images of the beach. The bandwidth required to send captured images to the system 

being prohibitive, the camera processes the images locally to decide whether the images 

indicate the presence of tar balls and sends its local decision to the surveillance system. 

Crowdsourcing human sensor data is used when visibility hampers the coverage of the cameras 
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and degrades the quality of their decisions. Similar to the litters-in-park case study presented in 

[35, 36], each human sensor is asked to report a binary value indicating the presence or absence 

of tar balls at his/her location. Based on values in their reports and local decisions of the 

cameras, the system decides whether the stretch of the beach monitored by the sensors is 

threatened by oil spill and preventive clean up operations should be launched. Using the terms 

from [15, 16], we say that the system does decision fusion (i.e., working with local decisions of 

individual sensors) for physical sensors, but does value fusion (i.e., working with values of 

sensor data) for all human sensors or human sensors assigned to each virtual sensor.  

The park scenario in Figure 2(b) assumes that physical sensors in the few weather stations 

scattered in a national park routinely measure local wind speed and direction, temperature and 

humidity. When a raging wildfire is threatening the park, the surveillance system asks human 

sensors camping in the park to report values of these same types of data observed by them at 

their locations. In the scenario shown in Figure 2(c), human sensors along several city blocks 

threatened by flood during an unexpectedly heavy downpour may be asked to report the depth 

of water on roadway(s) in front of them. In these cases, human sensor data have arbitrary 

values, similar to physical sensors. The system can, in principle, do value fusion, making its 

determination of whether the campsite is in danger of the wildfire or the streets will soon 

become impassable, and hence should be closed immediately, based on the data.  

Value fusion of arbitrary valued human sensor data can be problematic, however. We will 

discuss technical factors that complicate the fusion process in Section 5. A practical problem 

is that human sensors may not have tools to measure wind direction, water level, etc. and must 

rely on their own estimations. Consequently, considerable effort is required to collect and 

validate the statistical characteristics of noise in arbitrary valued human sensor data. So, in 

practice, the system is likely to request from human sensors binary valued reports such as 

whether “wind in the direction of fire” and “water level rising” is true or false. In essence, the 

system is collecting from human sensors binary decisions based on their individual 

observation on wind direction and water level. Rather than fusing such binary valued human 

sensor data with arbitrary valued physical sensor data, the fusion unit may first process data 

from each physical sensor to make a local binary decision regarding whether wind is in 

direction of fire or water level is rising and then fuse decisions of physical sensors with the 

human sensor data. This is the design choice of the simple and general centralized fusion unit 

described in the next section, along with tradeoffs of the design.  

3.3 Models of Physical and Human Sensors 

Our models of the symbiotic sensors (i.e., physical sensors and human sensors) in a disaster 
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surveillance system make the five types of assumptions. First, the command center uses data 

from all sensors to monitor and detect alarming phenomena or conditions that may occur in the 

disaster threatened area and support its decisions on preparedness and response actions upon the 

detection of the conditions. For sake of discussion in this paper, it suffices for us to focus on 

sensors and sensor data processing for the monitoring and detection of a single condition of 

interest, and we indeed do so throughout the paper.   

Second, all the physical sensors used to monitor and detect of the condition of interest are 

functionally identical: In general, each of them provides the system with the same n ( 1) types 
of data. For example, in the scenario in Figure 2(b), the physical sensor in every weather station 

provides 4 types of data: wind speed, wind direction, temperature and humidity. Sensors are 

read at discrete instants of time. Without loss of generality, we assume that physical sensors are 

read immediately before each CDC process starts. Because of ever-presence of random noise, 

the values obtained by reading any physical sensor Si is a sample xi = (xi,1, xi,2, … , xi,n) of a 

n-dimensional random variable Xi  = (Xi,1, Xi,2, … , Xi,n).  

Third, the surveillance system aims to provide the command center with a comprehensive 

view of a disaster threatened area. Ideally, the system would have a sufficient number of 

physical sensors of the right kind and at the right locations to achieve a sufficient good coverage 

of the area. For reasons including deployment costs, damages and poor operating conditions, v
physical sensors are missing. When existing physical sensors cannot provide the command 

center with sufficiently good and complete coverage, it starts a CDC process in order to acquire 

human sensor data on conditions around the location of each missing physical sensor. We 

assume that the system (hence the command center) knows the identity and location of each 

missing sensor and has a virtual sensor at the location of the sensor. We use S1, S2 ,…, Sv to 

denote the virtual sensors, and denote existing physical sensors by Sv+1, Sv+2 ,…, S when the 

threatened area should be covered by a total of  sensors. 

The command center may solicit from human sensors data of the same types as that of the 

physical sensors. In this case, we denote the sample (i.e., data) reported by the k-th human 

sensor (participant) from locations around the virtual sensor Si during the current CDC process 

by the vector xi (k) = (xi,1(k), xi,2(k), …, xi,n (k)), for i = 1, 2, …, v. The fusion unit computes for 

each virtual sensor Si a sample xi for the virtual sensor based on samples xi (k)’s from all human 

sensors assigned to Si and statistical distributions of xi (k)’s. Figure 3 shows an abstract view of 

such a system of symbiotic sensors as seen by the command center and fusion unit.  

Fourth, the sample xi from every physical sensor Si , for i = v +1, v +2, … , , is the sum of a 

vector of noise-free values (i.e., true values of sensor readings) plus a vector of noise 
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components, the latter being a sample of random noise i = ( i,1, i,2,…, i,n) of the sensor. The 

noise i,j in the j-th component xi,,j of xi of all physical sensors (i.e., for all i = v+1, v+2, … , )

are assumed to be statistically independent, identically distributed. Consequently, the random 

variables Xi for all i = v+1, v+2, … ,  are statistically independent. This assumption is valid for 

functionally identical sensors that operate independently from either other under similar 

operating conditions. For every physical sensor Si, the noise components i,j and i,k  of i, and 

hence the component random variables Xi,j and Xi,k in Xi , for j, k = 1, 2, … n and j k, are also 
assumed to be statistically independent. This simplifying assumption is valid when the sensor 

does not have any systematic problem (e.g., power fluctuation) that introduces correlated noises 

to component values of its sample. It follows from these assumptions that the noise i in 

samples of all physical sensors can be characterized by distribution functions Aj(t) of i,,j (i.e., 

the probability of i,,j t) for j = 1, 2, … n, where t is from a scenario-specific set of values. The 

fusion unit knows these distribution functions. 

Physical sensors
Locations of missing 
physical sensorsHuman 

sensors
Virtual sensors

xi = (xi,1 , xi,2, … , xi,n ):  A sample of Xi , for i = 1, 2, …, 

xi (k) = (xi,1(k) , Xi,2(k),… , xi,n (k)): A sample reported by the k-th
human sensor of the virtual sensor Si, for i = 1, 2, …, 

Xi = (Xi,1 , Xi,2, … , Xi,n ): Reading of sensor Si , for i = 1, 2, …, 

Figure 3 An abstract view of symbiotic sensors 

The fifth and final type of assumption is on characterization of uncertainties in samples 

from human sensors. As stated in previous sections, the system uses only registered volunteers. 

The system knows each of them and knows that he/she will not lie and have promised to work 

independently of other participants. However, the person may lack the skills, training and tools 

to get such data as wind speed and water level accurately. Hence, the sample reported by 

him/her may contain errors. Specifically, the sample reported by the k-th human sensor at Si

contains an additive error component i (k) = ( i,1(k), i,2(k),…, i,n (k)) and that errors of 

different human sensors are statistically independent and identically distributed. Moreover, 

virtual sensors being functionally identical, i,,j (k), for each j = 1, 2, …, n, is a random variable 

with known distribution function Bj (t) for all human sensors. 

To keep notations used in subsequent discussions simple, we consider only the case of n = 1 
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except where is stated otherwise. In other words, every sensor provides only one type of data. 

Extension to the general case of n > 1 is straightforward when the assumptions of statistical 

independence of noise components stated above are valid. 

The model of human sensors can be further simplified when samples from them are binary 

values: In terminology of binary hypothesis testing, each human sensor is asked to report 

whether the hypothesis H1 (e.g., water level is rising) is true or the opposite hypothesis H0 is 

true. The sample x from the sensor is either equal to 1 or 0, indicating the answer from him/her 

being H1 or H0, respectively. A sample x = 1 (i.e., H1 is true) is a false alarm if in fact H1 is not 

true and is a detection if H1 is in fact true. Rather than a statistical distribution in general, the 

error and uncertainty in a binary valued sample can be characterized by the probabilities of the 

sample being a false alarm and detection. Subsequent sections use this characterization of 

binary valued sensors (i.e., sensors with binary valued samples). The quality of such a sensor is 

characterized in terms of a 2-tuple (f, d) of threshold probabilities f and d: The probability of a 

sample from a binary valued sensor of quality (f, d) being a false alarm is at most equal to f and 

the probability of the sample being a detection is at least equal to d.

In the subsequent section, we also use the 2-tuple (f, d) to denote the quality of binary 

decisions of individual sensors. A binary decision of quality (f, d) means that the decision has a 

false alarm probability no greater than f and detection probability no less than d.

4  FUSION AND DECISION PROCEDURE 

This section describes the procedure which the central fusion unit such as the one shown in 

Figure 1 calls to determine whether a condition monitored by the surveillance system has 

occurred and explain some of the work a fusion center needs to do to fuse and process all sensor 

data during a CDC process. The procedure, called the centralized decision fusion (CDF)

procedure, is built on several principles, approaches and methods from literatures [12-16]. The 

next section will present the specifics on the techniques used by it. Hereafter, we refer to the 

fusion unit also as the system when there is no need to be specific.  

4.1 Design Choices and Rationales 

The version of the CDF procedure to be described shortly is for a central fusion unit that 

functions as a decision module: Its mission is to decide whether an object is present, a 

phenomenon has occurred, or a specified condition is true, and so on. The system takes action 

according to the decision. The procedure is presented in terms of binary hypothesis testing and 

uses ( , )-coverage as the desired quality measure. They can be easily replaced by other 

commonly used methods (e.g., maximum a posterior (MAP) and maximum likelihood (ML) 
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decisions and multiple hypothesis testing), and quality criteria (e.g., probability of error and 

Bayesian costs). A fusion unit in a disaster surveillance system that monitors diverse conditions 

for diverse purposes will need to have an extensible library of fusion methods, including codes 

that implement rules for multiple-hypothesis testing to minimize decision error and other 

optimization criteria.  

Alternatively, the surveillance system makes decisions on the basis of not only sensor data 

but also other information. In that case, the system wants to get from the fusion unit estimates of 

some parameters. Then, the unit needs to solve an estimation problem or a combined detection 

and estimation problem. The next section will present examples to illustrate when the capability 

to perform combined detection and estimation are essential, but leaves the treatments of these 

problems, as well as multiple-hypothesis testing, to a future paper.  

A major design choice of the CDF procedure is that it does decision fusion, making the 

overall decision on the basis of decisions of individual physical and virtual sensors, not value 

(data) fusion on the basis of samples (data) from the sensors. Pros and cons of decision fusion 

versus value fusion have been studied extensively. In general, when compared according to 

factors such as communication cost, energy consumption, fault tolerance, etc., the relative merit 

of decision fusion versus value fusion is application domain dependent. In many cases (e.g., 

[40-42]), decision fusion out performs value fusion. When compared solely on the basis of 

decision quality, intuition tells us that value fusion should perform better. There is no general 

proof. A case study on 4 binary sensors with Gaussian additive noise [15] and quality (f, d) = 

(0.05, 0.95) demonstrated that the best value fusion scheme can achieve a decision quality of (f,
d) = (0.001, 0.9998) while the quality achieved by the best decision fusion scheme is (f, d) = 

(0.014, 0.9995). For our application, even the poorer quality is acceptable, however.  

The CDF procedure uses decision fusion despite the apparent disadvantage in result quality. 

This design choice is made in favor of simplicity and general applicability of the central fusion 

unit. As stated in Section 3.2, limitation in communication bandwidth makes decision fusion the 

only option for sensors such as high-resolution camera, radar and so on that generate large 

volumes of data and have sufficient resources to perform value fusion locally.  

Decision fusion is used even for physical sensors (e.g., temperature sensors) that do not 

generate large volumes of data and do not have sufficient resources to perform fusion. For each 

of such sensors or a group of such sensors, the central fusion unit first computes a local decision 

based on values of samples from them using a fusion routine that comes with the sensor. 

Similarly, it computes a decision for human sensors assigned to each virtual sensor and then 

fuses the decision with decisions of other sensors. To explain the reason for doing so, we note 
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that noise statistics of physical sensors (e.g., Gaussian additive noise and Poison noise models) 

differ for different types of sensors and they differ significantly from characteristics of noise in 

human sensor data (e.g., uniformly distributed or beta distributed errors). Value fusion for all 

physical and human sensors together is doable in principle but requires fusion routines, each 

tailored to the signal and noise models of a specific type of physical sensors. Until such routines 

become available, decision fusion offers a way to build a simple central fusion unit that works 

for fusing inputs from diverse physical sensors and human sensors. 

The version of CDF procedure described below uses the N-P test (i.e., Neyman-Pearson 

criterion for binary hypothesis test [17]) in decision fusion steps, and whenever applicable, also 

for value fusion. The next section will describe the test. A reason for using the test is that it does 

not require a priori probability of each hypothesis. This is important since in almost all cases 

considered here, the a priori probability of whether a condition of interest is true is not known. 

Another reason is that the N-P test is optimal (i.e., the most powerful test) in the sense that it 

maximizes the detection probability for a given acceptable false alarm probability. The test 

provides the system with control over the tradeoff between these conflicting quality measures. 

This is an also an important advantage for our application. 

4.2 Centralize Decision Fusion Procedure.   

The CDF procedure is described by the pseudo code in Figure 4. Many terms used in the 

figure are not yet defined. They will be defined in the next section.  

The procedure is called by the central fusion unit whenever the surveillance and early 

warning system needs to update its information on a condition, renewal its situation awareness 

and make a decision. Before calling the procedure, the unit polls all physical sensors used to 

monitor the condition with the help of the communication manager: It acquires from sensors 

that perform value fusion locally their local decisions and decision qualities. It gets from 

sensors without value fusion capability their latest readings and computes from the readings the 

local decisions and decision qualities of these physical sensors. After updating the decisions and 

decision qualities of all physical sensors, the unit calls the CDF procedure. The fusion unit 

periodically pools all physical sensors in this way during crowdsourcing processes.  

In the pseudo code, as well as in subsequent discussions, lower case u, f and d are used to 

denote the local decision, upper bound to false alarm probability and lower bound to detection 

probability of individual sensors, respectively. For example, the local decision and decision 

quality of an individual sensor Si are ui and (fi, di), respectively. Capital U and (F, D) are used to 

denote overall decision and overall decision quality produced by system. Again, the desired 

decision quality is ( , ). In other words, the requirement is F and D for given  < 0.5
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and  > 0.5. The bounds are scenario and situation specific and are typically chosen by someone 

at the command center. 

Centralized Decision Fusion Procedure:
// Check whether existing physical sensors can achieve ( , )-coverage for given threshold probabilities and

1  do decision fusion for physical sensors using Neyman-Pearson hypothesis testing: 
a. for i = v+1, v+2, … , get local decision ui and decision quality (fi , di ) of sensor Si ;
b. generate likelihood ratio from ui, fi and di for all i = v +1, … ;
c. for an overall threshold false alarm probability F = , compute decision thresholds p *p ;
c. compute overall decision U and detection probability D;

2. if D , return decision U and decision quality (F, D) ; // Coverage sufficiently good, terminiate CDF procedure.
// Start a CDC process 
3. request broadcast manager to broadcast a Call-For-Participation; wait for responses;
4. wait for selection of participants from responded human sensors and their assignments to v virtual sensors;
5. wait for Mi or more samples xi(k), for k = 1, 2, … Mi …sent by human sensors assigned to vi , for all i = 1, 2, … v;

// Do fusions and then check whether coverage of all sensors is sufficiently good.
6. do value fusion to get local decisions of virtual sensors: for each virtual sensor Si, for i = 1, 2, … v, do the following

a. compute test statistics from samples xi(k), for k = 1, 2, … Mi …;
b. compute local decision ui and decision quality (fi , di ); 

7. get local decision ui and decision quality (fi , di ) for every physical sensor Si;
8. do decision fusion for all sensors using Neyman-Peason hypothesis testing

a. compute likelihood ratio from ui, fi and di , for all i = 1, 2, … ;
b. for threshold false alarm probability F= , set detection thresholds *;

c. compute overall decision U and detection probability D;,
9. if D < , request the system to send updated instructions to human sensors; goto step 5; // Current process continues.
10. terminate the current CDC process; return decision U and decision quality (F, D) ;  // Terminate CDF procedure

Figure 4 Centralized decision fusion (CDF) procedure 

Steps 1 and 2 in Figure 4 first check whether a decision of sufficiently good quality can be 

made based on physical sensor data alone. It requests the start of a CDC process only when the 

quality of the decision is not satisfactory. 

In Step 6, the system does for each virtual server value fusion of the samples reported by 

human sensors from a neighborhood around the sensor: The system makes a local decision on 

whether the specified condition is true based on the sample values. 

The system does decision fusion in Step 1 and 7. The system generates the overall decision 

U and assesses the overall decision quality (F, D) based on local decisions and decision 

qualities of physical sensors in Step 1 and of all sensors in Step 7. If after Step 7, the system is 

not satisfied with the quality of the overall decision, it continues to collect human sensor data, 

using additional participants and/or redirecting existing participants if necessary.  

The pseudo code is explicit about the use of the N-P test in Steps 1 and 7. When the system 

uses only human sensors selected from registered volunteers with known quality and asked 

them to send binary valued reports, the test can also be used for value fusion in Step 6. If and 

when the system must use unknown human sensors, the distributions of the noise components 

in their samples are unknown. Other methods, including the EM algorithm [36], are warranted 
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to iteratively estimate the model parameters and then make local decisions. Section 6 will 

discuss the relative performance of the algorithm and N-P test. 

5  SYMBIOTIC DATA FUSION AND PROCESSING 

To state the detection problem for both decision fusion and value fusion, we let the 

M-dimensional random vector Y = (Y1, Y2, …, YM) represent the inputs from M independent 

sensors. The fusion unit receives a sample y = (y1, y2, …, yM) of Y containing a sample yi of Yi for 
every i = 1, 2, …, M. In most cases of practical interest, yi’s are discrete valued. 

In the context of the CDF procedure, M is equal to the number  – v of physical sensors and 

the number  of all sensors in Steps 1 and 7, respectively. For these decision-fusion steps, yi’s 

are local decisions of the sensors that are independently made based on their samples. In Step 6, 

M is equal to the number of human sensors reporting from a virtual sensor. For each 

value-fusion step, yi’s are the samples reported by the human sensors.  

5.1 Binary Hypothesis Testing with Neyman-Pearson Criterion 

In case of binary hypothesis testing, the fusion unit decides whether a hypothesis H1 (e.g., 

tar balls on beach) is true or the alternative hypothesis H0 (e.g., no tar ball on beach) is true 

based on the received input y.

As stated earlier, a false alarm occurs when the unit decides in favor of H1 when in fact H0 is 

true, and the unit successes in detection of H1when it decides on H1 when H1 is indeed true. The

a priori probabilities of the hypotheses are unknown typically. The fusion unit works with the 

conditional probability mass functions, which give the conditional probabilities of seeing y
given H1 or H0 is true, respectively. These functions are known. 

P(y | H1) = P(y1, y2, …, yM | H1)  Pr [Y = y | H1] = 1 i M P(yi | H1)                    (1) 

P(y | H0) = P(y1, y2, …, yM | H0)  Pr [Y = y | H0] = 1 i M P(yi | H0)
The last equality in each line follows from the fact that Yi’s are statistically independent.  

The CDP procedure aims to maximize the probability of detection for a given threshold 

false alarm probability . It uses the N-P test for reasons stated earlier. The test statistics is the 

likelihood ratio L(y),  

L(y) = P(y1, y2, …, yM | H1) / P(y1, y2, …, yM | H0)

= 1 i M P(yi | H1) / P(yi | H0)                                                    (2) 

or equivalently, the log function of the likelihood ratio. 

The N-P test has two commonly used decision rules, a deterministic rule and a randomized 

rule [14]. To state these rules, we let denote the set of possible values of L(y) for all values of 
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y, and let  and * be two adjacent values in which are such that  > * and 

Pr [L(y)  | H0]                                                                   (3a) 

Pr [L(y) * | H0] >                                                                  (3b) 

Figure 5 illustrate the relationship between  and * as well as their relationship with other 

values in  for discrete valued y. The dotted and dashed curves are envelopes of conditional 

probabilities Pr [L(y) | H0] and Pr [L(y) | H1], respectively, for all values of L(y).  

L(y)

Pr [L(y) | H0] Pr [L(y) | H1]

*

Figure 5 An illustrative example 

Deterministic Rule: The deterministic rule uses  as the detection threshold and selects  

H1, if L(y)                                                                         (4) 

H0, if L(y)    
The false alarm probability F and detection probability D achieved by rule (4) and detection 

threshold  are given by  

F = Pr [L(y)  | H0 ] = (y)  P(y | H0)                                             (5a) 

D = Pr [L(y)  | H1] = (y)  P(y | H1)                                             (5b) 

As Figure 5 illustrates, F is equal to the sum of P(y | H0) over values of y for which L(y) is in the 

area marked with vertical lines under Pr [L(y) | H0]. D is equal to the sum of P(y | H1) over values 

of y for which L(y) is in the shaded area under Pr [L(y) | H1]. By definition of , F .

Randomized Rule The randomized rule uses  and * as detection thresholds together with 
a random selection probability p which is the solution of the equation

p Pr [L(y) * | H0 ] + (1 – p) Pr [L(y)  | H0 ] =                                    (6a) 
The randomized rule selects 

H1, if L(y)                                                                         (6b) 
H1 with probability p and H0 with probability 1 – p, if L(y) = *

H0, if L(y) *

The false alarm probability achieved by rule (6) is by definition of the rule. The detection 

probability is given by 

D = p Pr [L(y) * | H1 ] + (1 – p) Pr [L(y)  | H1 ]                                   (7) 
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Optimality It has been shown in [14] that the randomized rule (6) is optimal among all rules, 

including complex rules using more than two detection thresholds: It maximizes the detection 

probability under the constraint of F .

When y is continuous valued,  and * are equal. The deterministic rule (4) is same as the 

probabilistic rule and hence, is also optimal. It is not optimal when y and hence L(y) are discrete 

valued. The reason is that there may not be a value in the set of all possible values of L(y) for 

which the equality in (3a) holds. In that case, false alarm probability F achieved by rule (4) is 

less than , and the detection probability D may not be the maximum possible under the 

constraint F . No other deterministic rules out perform rule (4), however.   

5.2 Binary Hypothesis Testing Based on Binary Valued Inputs 

In the multiple sensor fusion problem treated in [15], local decisions of individual sensors 

and overall decision of the fusion center are all binary valued. This is assumed by the pseudo 

code in Figure 4. The special case of hypothesis testing based on binary-valued samples is also 

of practical importance. In scenarios similar to the one shown in Figure 2(a), samples are 

naturally binary valued. For practical reasons discussed earlier, the system may also request 

binary valued reports from human sensors instead of arbitrary valued ones in other scenarios.  

To state of the problem of fusing binary decisions formally, we let yi = 1 when the sensor Si

decides in favor of H1 and yi = 0 if it chooses H0. In addition to yi, the fusion unit also knows the 

decision quality (fi, di) of the sensor’s decision where   

fi = Pr [yi =1| H0],     di =Pr [yi =1| H1]                                                (8) 

for all i = 1, 2, …, M sensors.  

Similarly, we let yi = 1 and yi = 0 be the possible values of a sample Yi reported by the i-th 

human sensor and say that H1 is true if Yi = 1 and H0 is true if Yi = 0 and use the conditional 

probabilities fi and di defined in (8) as quality measures of the i-th human sensor. At risk of 

abusing the terms, we call them detection and false alarm probabilities, respectively, of the 

human sensor and call (fi, di) his/her quality. It is easy to see that the problem of fusing 

binary-valued samples from human sensors is the same as the problem of binary decision fusion 

when the quality (fi , di ) is known for every human sensor.  

A surveillance system is likely to use similar sensors. In addition to being functionally 

identical, similar sensors operate at the same quality level (f, d), meaning that they use the same 

threshold false alarm probability fi = f and achieve detection probability di d for all Si. In this 
case, it suffices for the fusion unit to compute the test statistics from the number K of 1’s among 

the M inputs yi’s. The probability mass functions of K conditional on H0 and H1 are the binomial 
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distributions B(M, f) and B(M, d), respectively. Let k be the sample value of K observed by the 

fusion unit. The likelihood ratio is given by  

L(k) = Pr [K = k | H1] / Pr [K = k | H0]

= d k(1 – d)M-k / f k(1 – f)M-k                                                        (9) 

By working with log L(k), the randomized rule of the N-P test simplifies to the following: Let t
be an integer in (0, M) which is such that   

Pr [ k t | H0] ,  Pr [ k t -1 | H0] >                                               (10a) 

The simplified randomized rule is: select   

H1, if k t                                                                          (10b) 
H1 with probability p and H0 with probability 1 – p, if k = t – 1  

H0, if k < t – 1 

where the selection probability p is given by p Pr [ k t – 1 | H0] + (1 – p) Pr [ k t | H0] = .

The following theorem states that the fusion center can conclude that it can achieve the 

desired ( , )-coverage if three or more sensors can achieve detection probability  or better 

with the threshold false alarm probability :

Theorem In a system containing M  3 similar sensors all of which operate with threshold 
false alarm probability , ( , )-coverage can be achieved using the randomized N-P-test 
when the detection probability of 3 or more sensors is equal to or higher than .

The theorem is based on the theorem and its proof in [15].  

5.3 Binary Decisions Based on Arbitrary-Valued Samples

It is straightforward to apply N-P test rules to make optimum binary decisions based on 

arbitrary-valued samples when their joint distributions are known under both hypotheses. This 

is especially so when samples are continuous valued, because the simple deterministic rule (4) 

is optimal. A special case of practical importance is when the data are jointly Gaussian under 

each hypothesis. This model has been widely used to characterize physical sensor data and has 

been treated extensively in literature, including [12-16].  

The problem of making decisions based on human sensor data of arbitrary values is made 

complicated by two factors. First, errors (e.g., additive noises) in samples from human sensors 

are typically not Gaussian. Uniform distribution and some beta distribution are closer models, 

especially for data from a few (e.g., <5) human sensors. These distributions of noise make 

application of optimal decision rules and evaluation of their performance complicated.  

Second, a more challenging complication is the fact that the system often does not know the 

values of noise-free components of samples from individual sensors and sometimes, not even 
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their distributions. In other words, each sample Yi = Vi + i from a human sensor is the sum of a 

random noise-free component Vi and a random additive noise i. The distribution of noise i is 

known for reasons stated in previous sections. The distribution of Vi may not be fully known 

under each of the hypotheses.  

We would encounter this case in scenarios shown in Figure 2(b) and (c) when human 

sensors are asked to report wind direction with respect to the direction of wildfire or water depth 

instead of reporting whether “wind-is-in-direction-of-fire” or “water-is-over-curb” is true or 

false. Due to the effect of microclimate, wind direction, ambient temperature, etc. at each 

virtual sensor may differ significantly from that of surrounding area. During a downpour, water 

may accumulate on some road segments due to poor local drainage but not elsewhere. In both 

cases, the system may not be able to compute the value of the “signal” Vi contained in the 

sample from samples from surrounding physical sensors and virtual sensors.  

 We can formulate the problem of fusing such samples as a joint binary hypothesis testing 

and estimation problem treated in [43]: We are given the conditional distribution of the samples 

Y from M sensors under each hypothesis P(y | H0) and P(y | H1, ), where is a random 
parameter with a known probability density (or mass) function. The solution of the problem 

gives us a rule to decide in favor of H0 or H1, and if the decision is in favor of H1, compute an 

estimate of . As an illustrative example, supposed that the human sensors in Figure 2(c) are 

asked to report water depth on a street in a small number of city blocks.  is the amount of local 

rainfall or actual water depth. Its probability density function can be derived or estimated from 

data on measured or forecast rainfall of the surrounding area and historical records. H0 is “no 

flooding danger” and H1 is “flooding possible” and the action to be taken by the system depends 

on the estimate of . We will apply and evaluate the schemes described in [43] to this and 

similar scenarios and report the result in a future paper.  

6  PERFORMANCE ISSUES 

This section first present data on how decision quality of a virtual sensor depends on the 

number and qualities of human sensors assigned to it. The participant selection module in 

Figure 1 can use this data as input.  The performance of the N-P test is then compared with the 

performance of EM algorithm [36] for fusing binary-valued human sensor data.  

6.1 Dependence of Minimum Required Human Sensors on Sensor Quality 

For our application, the acceptable false alarm probability is in order of 10% for some 

scenarios and 1 % for other scenarios. This quality criterion is not met by typical human sensors, 

and some physical sensors. It is well known that fusion center can improve the false alarm 
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probability and detection probability of the overall decision by using the N-P-test on samples 

from multiple sensors [14, 15]. A question of practical interest is how many sensors are required 

to get the overall false alarm probability F  and overall detection probability D as a 
function of the sensor quality (f, d) and required decision quality ( , ).

We can find answers to this question from the expressions of the overall quality measures F
and D in terms individual quality measures f and d of M similar sensors. To illustrate, suppose 

that the fusion center uses the simple deterministic rule (4) with a single detection threshold t.
Then, the overall F and D are given in closed form by 

F = t  k  M C (M, k) f k (1 – f)M-k                                                      (11) 

D = t  k  M C (M, k) d k (1 – d)M-k

where C(M, k) denotes the binomial coefficient M!/k!(M – k)!. We can obtain from the equations 

above the minimum number of sensors of quality (f, d) required to achieve the overall decision 

quality (F, D) by solving these equations when f < 0.5 and d > 0.5. 

    Figure 6 plots the minimum number of sensors of quality (f, d) required to achieved ( , )- 

coverage for several likely combinations of sensor quality (f , d) and required quality ( , )

when the optimal probabilistic rule (6) is used. The combinations in Figure 6 tell us what 

intuition tells us all along: It is better to use a relatively small number of high quality human 

sensors (e.g., people with (f, d) = (0.2, 0.8)) than a big crowd of poor human sensors (e.g., 

people with  (f, d) = (0.4, 0.6)). By being better, we mean that fewer human sensors are needed 

to achieve the specified overall quality.  

(f, d)

Figure 5 Required numbers of sensors of quality (f, d) to achieve ( , )-coverage

While the deterministic rule is not optimal, it does not lead to a larger number of sensors 

required to achieve the required quality for most of the combinations plotted in Figure 6. 

Exceptions are listed in Table 1: In these cases, one or two more sensors are required when the 

fusion center uses the simpler deterministic rule. Values of F and D in bold and red font give the 

overall decision quality (F, D) when a sufficient number of human sensors is used to meet the 
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required quality. In each case, the probability rule indeed enables the fusion center to achieve 

the required quality with fewer sensors. On the other hand, when the additional one or two 

sensors are used, the deterministic rule often overshoots the quality requirement. For this reason 

and because that the rule is simple to evaluate, we use the rule and equations (11) to compute the 

overall F and D achieved by the N-P test.   

Table 1 Performance Degradation by Using Deterministic Rules 

19
20

(0.2, 0.7) (0.01, 0.99) 0.01
0.01

0.00665766
0.00998177

0.98945884
0.99486184

0.99101102
0.99486501

17
18
19

(0.3, 0.6) (0.1, 0.9)
0.10
0.10
0.10

0.04027694
0.05958588
0.08391516

0.80106351
0.86528585
0.91152594

0.90038417
0.90369128
0.92026044

18
19(0.4, 0.7) (0.1, 0.9)

0.10
0.10

0.05764734
0.08847406

0.85931654
0.91608484

0.90388434
0.92214923

19
20(0.3, 0.8) (0.01, 0.99)

0.01
0.01

0.00282259
0.00513816

0.97672169
0.99001821

0.99217705
0.99300941

16
17(0.4, 0.8) (0.05, 0.95)

0.05
0.05

0.01914192
0.03481273

0.91831211
0.96233656

0.96165735
0.96944756

(0.2, 0.6) (0.05, 0.95)
0.01805881
0.02665733
0.03766344

0.90495259
0.94168106
0.96518727

0.05
0.05
0.05

0.95043136
0.95829903
0.96957856

15
16
17

Sensor 
quality 
(f, d)

Required
quality
( , )

No of 
sensors

Deterministic rule

F D

Probabilistic  rule

F D

6.2 N-P Test versus EM Algorithm  

In particular, we use the deterministic rule in a study to compare the N-P test and the EM 

algorithm [36]. The algorithm was used by Wang, et al. [34] for binary hypothesis testing based 

on binary valued human sensor data collected from unknown crowd. A distinct advantage of the 

EM algorithm over the N-P test is that it does not required knowledge of sensor quality. 

Assuming that human sensors are similar, the algorithm treats f and d as unknown model 

parameters. Starting from initial guesses of values f < 0.5 and d > 0.5, the algorithm iteratively 

computes estimates of these model parameters, uses the estimates to compute likelihood ratio, 

makes decision and computes new estimates of the parameters from the likelihood ratio, and so 

on. A major advantage of the N-P test is its simplicity, especially the deterministic rule for 

processing samples from similar sensors. In addition, it is optimal in the sense that it maximizes 

detection probability for given threshold false alarm probability.  

The goal of our comparison study is to quantify their relative merits in terms of quality of 

overall decision as a function number of sensors. Specifically, we compared the performance of 

N-P test and EM algorithm using a scenario similar to the one used in [34]: Human sensor data 

are binary valued. Hypotheses H1 and H0 are equal probable. Human sensors are similar with 
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the same quality (f, d). They report binary valued samples, indicating their choices in favor of 

H1 and H0 with a “1” or “0”, respectively.  

We simulated the scenario. During each simulation run, the number of sensors and their 

quality (f, d) are fixed. The value of the sample from each sensor is chosen at random with 

probability f being false alarm and d being detection. After collecting samples from all sensors, 

the N-P test computes numerically from the values of the samples, the achievable overall false 

alarm probability F and detection probability D with the given number of sensors using 

equations (11) for the deterministic rule. The EM algorithm estimates F and D iteratively 

starting from some initial guesses of f < 0.5 and d > 0.5. After repeating a sufficient number of 

runs to get a data point, we increased the number of sensors by 1 and repeated the runs to get 

another data point. This process was repeated until the overall decision quality (F, D) meets the 

desired overall quality of ( , ) = (0.01 and 0.99). Figure 7 shows the results thus obtained.  

(a) Sensor quality (f, d) = (0.2, 0.8)
Number of sensors

EM Detection Probability 

N-P False Alarm Probability 
EM False Alarm Probability 

N-P Detection Probability 

(b) Sensor quality (f, d) = (0.4, 0.6)
Number of sensors

EM Detection Probability 

N-P False Alarm Probability 
EM False Alarm Probability 

N-P Detection Probability 

Figure 7 Relative performance of N-P test and EM algorithm 

Specifically, Figure 7 shows how the average overall false alarm probability and detection 
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probability achieved by the schemes depend on the number of sensors. The value plotted at each 

point is the average of the values obtained in 100 simulation runs. The plots in part (a) were 

obtained from simulation of good sensors with quality (0.2, 0.8), while sensors simulated to 

generate plots in part (b) have quality (0.4, 0.6).  

We found that the results produced by the EM algorithm are not sensitive to the initial 

guesses of f and d, provided that f < 0.5 and d > 0.5; otherwise, its estimates of F and D do not 

converge to the desired quality as the number of sensors increases.  

From these plots, one can see that except for where there are only a few human sensors (say 

< 10), the performance of N-P test and EM algorithm are comparable. When only sensors of 

known quality are used, the N-P test not only performs as well or better but also is much simpler 

to implement and efficient to run.  

Finally, we note that because the deterministic rule of the N-P test is used, the overall false 

alarm probability F in the figure is not a constant  = 0.01. That would be the value achieved 

independent of number of sensors if the probabilistic rule were used, by definition of the rule. 

The non-monotonic behavior of false alarm and detection probabilities achieved by the N-P test 

as the number of sensors increases is due to variations in the degradation from the optimal 

suffered by the deterministic rule. Table 1 shows examples illustrating that the degradation is 

larger for some combinations of sensor quality and sensor number than other combinations.  

7  SUMMARY AND FUTURE WORK 

A crowdsourcing support system such as CROSS for disaster warning and response 

purposes not only provides mechanisms and tools for managing crowdsourcing human sensor 

data collection. It must also provide supports for fusion of data from physical and human 

sensors. We described in the previous sections the work done by a central fusion unit to 

process and fuse inputs from physical surveillance sensors together with human sensor data 

collected from participants during a system-driven crowdsourcing process. It may use a 

combination of value fusion and decision fusion in ways exemplified by the CDF procedure. 

The goal is to reach a decision of some specified quality or better on action(s) to be taken by 

the system, and to do so with the fewer human sensor reports, the better.  

By taking into account realistic restrictions on how human sensors are used for collecting 

disaster surveillance data purposes and requiring the system to know bounds to their qualities as 

sensors, we are able to formulate the problems of fusing surveillance physical sensor data and 

crowdsourced human sensor data as classical statistical detection and estimation problems. By 

doing so, we are able exploit well established principles and techniques for fusion in multiple 
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physical sensor systems and focus our attention on incorporating the fusion of human sensor 

data within a coherent framework with fusion for physical sensors.  

In the immediate future, we will evaluate via numerical computations and simulation 

experiments alternative solutions based on this approach, including the ones described in the 

previous sections, for the types of physical and human sensors that are likely to be used in 

different disaster scenarios, including the ones used in scenarios shown in Figure 2. We will add 

to CROSS a prototype central fusion unit using the CDF procedure and an extensible library of 

fusion methods as a starting point. .  

Thus far, our effort has been focused on binary hypothesis testing. A natural next step is to 

provide the fusion unit with code that applies the maximum a posteriori (MAP) rule for 

multiple-hypothesis testing to minimize probability of error and rules for computing parameter 

estimates according to specified optimization criteria.  

It is also urgent to provide the system with the capability of making decisions and estimates 

based on data with incomplete models because the system does not know either the noise-free 

values in the samples or the distributions of noises. The former arises in scenarios such as the 

ones in Figure 2(b) and (c) for reasons discussed in Section 5.3. We will exploit the optimum 

tests (e.g., combining N-P test and ML estimation) for joint detection and estimation proposed 

recently by Moustakides, et.al., [43] to build solutions for these scenarios. We have the latter 

case in scenarios when the system has no choice but to use unknown participants with unknown 

noise characteristics. Other methods, including the EM algorithm [36], are warranted to 

estimate model parameters and make local decisions or estimations.  
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