
 TR-IIS-15-003

An Asymmetry-aware Energy-efficient

Hypervisor Scheduling Policy for Asymmetric

Multi-core

Ching-Chi Lin, You-Cheng Syu, Yi-Chung Chen, Jan-Jan Wu,

Pangfeng Liu, Po-Wen Cheng, and Wei-Te Hsu

Apr. 02, 2015 || Technical Report No. TR-IIS-15-003

http://www.iis.sinica.edu.tw/page/library/TechReport/tr2015/tr15.html

An Asymmetry-aware Energy-efficient
Hypervisor Scheduling Policy for Asymmetric

Multi-core

Ching-Chi Lin12, You-Cheng Syu1, Yi-Chung Chen12, Jan-Jan Wu2,
Pangfeng Liu1, Po-Wen Cheng3, and Wei-Te Hsu3

1 Department of Computer Science and Information Engineering
National Taiwan University

{deathsimon,arosusti,isaachen,pangfeng}@gmail.com
2 Institute of Information Science, Academia Sinica
{deathsimon,isaachen,wuj}@iis.sinica.edu.tw

3 Information and Communications Research Laboratories
Industrial Technology Research Institute

{sting,victor.hsu}@itri.org.tw

Abstract. Recently, asymmetric multi-core architecture have become
an important issue in CPU design, software scheduling, and virtualiza-
tion. In a virtualization environment, a hypervisor scheduler assigns vir-
tual cores to physical cores for task execution. However, a load-balancing
scheduling strategy for a symmetric multi-core platform (SMP) is un-
aware of core asymmetry. The deployment of such a strategy to an asym-
metric platform may cause performance degradation or energy waste.
To take full advantage of the improved power efficiency and perfor-
mance made possible by asymmetric multi-core platforms, we need a
new scheduling strategy. In this paper, we propose an energy-efficient,
asymmetry-aware scheduling mechanism for hypervisors on asymmetric
multi-core platforms. The goal is to generate an energy-efficient schedul-
ing plan with guaranteed performance.

Keywords: Energy-efficient, Scheduling, Asymmetric multi-core, Virtualization,
Hypervisor

1 Introduction

Recent trends have computing platforms moving from homogeneous multi-core
architectures toward heterogeneous and asymmetric multi-core structures. An
asymmetric multi-core platform consists of cores with the same ISA but differ-
ent computing capabilities and power characteristics. An asymmetric multi-core
platform seeks to achieve both high performance and low power consumption.
Several asymmetric multi-core hardware models, such as ARM big.LITTLE [1],
are already available and make into products.

The evolution of the multi-core platform has had an impact on task schedul-
ing design. Given that all cores on a homogeneous multi-core platform are identi-
cal (i.e., they have the same computing and power characteristics), the objective
of scheduling is “load balancing”, i.e., distributing the task workload evenly to all
cores [2]. “Load balancing” increases task throughput, minimizes task response
times, and avoids overloading individual cores.

Scheduling goals differ between homogeneous and asymmetric multi-core
platforms. On asymmetric multi-core platforms, the goal is to maximize power
efficiency with modest performance sacrifices. Since computing capabilities and
power characteristics differ with core type, asymmetric multi-core platforms re-
quire new scheduling strategies as traditional load-balancing scheduling strate-
gies may lead to performance degradation or energy waste due to the system
being unaware of and unable to compensate for core asymmetry.

The continuing evolution of multi-core platforms also affects the resource
scheduling in virtualization environments. Virtual machine monitor (VMM), or
hypervisor, provides a software virtualization environment in which a virtual
machine can run with the illusion of full access to the underlying system hard-
ware. A hypervisor scheduler assigns virtual cores in each virtual machine to
physical cores, where each virtual core has a workload. The scheduler also de-
termines the execution order and amount of time assigned to each virtual core
according to a scheduling policy and optionally the workload of the virtual cores.
For example, Xen uses a credit-based scheduler [3], and KVM uses completely
fair scheduler [4]. The conventional hypervisor scheduler design also follows the
idea of load-balancing, but this may lead to performance degradation or energy
waste on asymmetric multi-core platforms. An example is presented in Section 2
to illustrate these drawbacks.

In this paper, we develop an energy-efficient asymmetry-aware scheduling
mechanism for asymmetric multi-core platforms. The scheduling mechanism pe-
riodically generates a scheduling plan according to the requirement of each vir-
tual core. A scheduling plan has two parts. First it indicates the amount of time
each virtual core should run on each physical core, and secondly when a virtual
core will run on each physical core.

Formally we define a Virtual Core Scheduling Problem to address this schedul-
ing plan problem. We assume that the OS scheduler of a virtual machine is
asymmetry-aware, and the hypervisor scheduler will schedule virtual cores to
the asymmetric physical cores, so as to generate an energy-efficient scheduling
plan with performance guarantees.

A scheduling plan should satisfy the following three constraints. First, each
virtual core should run on each physical core for a certain amount of time to
satisfy the workload requirement. Second, a virtual core can run on a single
physical core at any time. Finally, the virtual core should not switch among
physical cores frequently, so as to reduce the overheads.

We propose a three-phase solution for the Virtual Core Scheduling Problem.
In the first phase, the scheduler determines the amount of time each virtual
core should run on each physical core. Given this information, the second phase

determines when a virtual core will run on each physical core, so that every
virtual core will run on each physical core for the given amount of time from
the first phase, and none of the virtual core will run on two physical cores
simultaneously. Finally the third phase adjusts the execution order of virtual
cores to reduce the number of core migration. Formally we define a Virtual
Core Migration Minimization Problem that, given all the time steps in executing
virtual cores, reorders these time steps to minimizes the number of physical core
migration in order to reduce overheads.

This paper has the following contributions. (1) We identify the problems
caused by using legacy scheduling algorithm on asymmetric multi-core plat-
form. (2) We formally define the Virtual Core Scheduling Problem and propose
a three-phase solution. (3) We build an asymmetry-aware hypervisor scheduler
based on Xen scheduling framework. (4) We conduct experiments on an asym-
metric multi-core ARM platform instead of simulations on SMP with DVFS. The
experimental results indicate that our energy-efficient asymmetry-aware hyper-
visor scheduler achieves energy savings with guaranteed performance.

The remainder of this paper is organized as follows. Section 2 discusses the
motivation and design challenge of the hypervisor scheduler for asymmetric
multi-core platforms. Section 3 defines our models and constraints in detail,
while Section 4 presents our solution. Experimental results are described in Sec-
tion 5. Related works are presented in Section 6. Section 7 draws conclusions.

2 Backgrounds

An asymmetric multi-core platform consists of cores with the same ISA but dif-
ferent computing capabilities and power characteristics. The scheduler should
take these differences of cores into consideration while assigning tasks to cores.
For example, tasks with higher computing resource requirements, such as de-
coding or compressing, should be scheduled to cores with higher computing
capabilities. On the other hand, other tasks such as downloading or music play-
ing should be scheduled to power-efficient cores to reduce power consumption.
Deploying the workloads evenly to all cores on asymmetric multi-core platform
may lead to performance degradation or energy waste, as shown in Fig. 1.

Fig. 1 depicts the scheduling results of a load-balancing hypervisor scheduler
and an asymmetry-aware hypervisor scheduler. Since the load-balancing hyper-
visor scheduler in Fig. 1(a) is not aware of the asymmetry between cores, it dis-
tributes the virtual cores evenly to the physical cores. In contrast, an asymmetry-
aware hypervisor scheduler as shown in Fig. 1(b) assigns only the core with high
resource requirements (vCore2) to a performance “big” core, and assigns the
other cores with low resource requirements to power-efficient “little” cores.

Although we expect that asymmetric multi-core platforms can provide both
energy-savings and performance, several design challenges need to be solved.
The first challenge is to design a new scheduling algorithm for the hypervisor
scheduler in order to take advantage of the asymmetric multi-core architecture.
Virtual cores should be deployed to physical cores for execution according to

Fig. 1. Example of scheduling results (a) load-balancing hypervisor scheduler (b)
asymmetry-aware hypervisor scheduler. vCore2 has high resource requirement, while
the other three have low resource requirement.

their resource requirements. The objective of the scheduler is to maximize power
efficiency while minimizing the impact on performance.

Asymmetry-aware hypervisor scheduler is different from OS level asymmetry-
aware scheduler. The scheduling unit is a process/thread from a program in OS
level, while the hypervisor scheduler assigns virtual cores from a virtual machine
to physical cores for execution. The behavior and workloads of a virtual core is
much more complicate and harder to predict compared to a process since there
are usually more than one process running on a virtual core. Directly applying
asymmetry-aware algorithm from OS level scheduler to hypervisor scheduler may
not be feasible. Therefore, we need to design a new asymmetry-aware scheduling
algorithm for the hypervisor scheduler.

The second challenge is that we need an asymmetry-aware OS scheduler in
the guest virtual machine. Even with an asymmetry-aware scheduler for the hy-
pervisors, the scheduling mechanism in the guest OS should also be asymmetry-
aware. However, conventional OS schedulers are not asymmetry-aware. Tasks
are evenly distributed among all virtual cores. From the hypervisor perspective,
the resource requirement of virtual cores from the same virtual machine are the
same. Therefore, the hypervisor scheduler cannot take advantage of the benefits
of the asymmetric multi-core architecture.

This paper focuses on the first challenge: developing an asymmetry-aware hy-
pervisor scheduler. We assume that the scheduling mechanism in the guest OS is
asymmetry-aware, i.e., tasks are scheduled to the corresponding cores according
to their specific characteristics and resource requirements. This assumption is
reasonable given the existence of other asymmetry-aware solutions for the OS
scheduler, such as Linaro [5, 6].

3 Virtual Core Scheduling Problem

To design an asymmetry-aware hypervisor scheduler, we define the Virtual Core
Scheduling Problem and derive our scheduling algorithm. First we introduce the
computation and power models in an asymmetric multi-core system. We then
define the problem based on the models, followed by the scheduling constraints.

3.1 Models

Our model includes two types of cores – virtual cores and physical cores. A
virtual core vCj is a tuple (vj , tj), where vj is the operating frequency of the
virtual core, and tj is the type of virtual core. In this work, we apply only two
types of cores, “big” for performance and “little” for power-saving. Core type
of a virtual core is determined by its operating frequency. For example, if the
frequency of a virtual core is greater than 800 MHz, then we classify it as “big”.
Otherwise the virtual core is “little”. Similarly, a physical core pCi is a tuple
(fi, ti), where fj is the frequency of the physical core, and ti is its actual type.
We assume that the hypervisor is aware of these core parameters.

To build our power model for a physical core, we first measure the power
consumption of a performance “big” core and a power-efficient “little” core on
a Juno ARMv8 development board [7] under different loads. The benchmark is
bzip2 from SPEC CPU2006. We apply a simple program, cpulimit, to limit the
percentage of CPU usage of the benchmark. From Fig. 2, we can observe that
the power consumption of a core is almost linear to the load. In addition, rates
of increase vary among cores with different frequencies. We conclude that power
consumption is related to core type, frequency, and load.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 20 40 60 80 100

P
ow

er
(W

at
t)

Load(%)

250 MHz
fit-250 HMz

600 MHz
fit-600 HMz

800 MHz
fit-800 HMz
1600 MHz

fit-1600 HMz

Fig. 2. Relationship between load and power of a performance core (800 & 1600 MHz)
and a power-efficient core (250 & 600 MHz) executing bzip2

The power model of a physical core is defined as follows. According to our pre-
liminary experiments, the power consumption of a physical core is a function of
three factors – core type, frequency, and load. Core load is defined as the percent-
age of time a core is engaged in executing virtual cores. The power consumption
increases almost linearly with core load. We define the power consumption of a
physical core as a function of core type, frequency, and load.

3.2 Problem Definition

The Virtual Core Scheduling Problem is defined as follows. For every time period,
the hypervisor scheduler is given a set of virtual machines, each of which has
a set of virtual cores. Given the operating frequency of each virtual core, the
scheduler will generate a scheduling plan, such that the power consumption is
minimized while performance is guaranteed.

A scheduling plan consists of two parts. First it indicates the amount of
time each virtual core should run on each physical core. We define ai,j as the
percentage of time virtual core j is on physical core i in a time interval, 0 ≤
ai,j ≤ 1. The second part of a scheduling plan is the execution order of the
virtual cores on each physical core.

The scheduler must guarantee the performance of the virtual cores. We de-
fine the performance of each virtual core as the ratio of the computing resource
assigned to the computing resource requested. The computing resource, or
number of CPU cycles, can be computed by multiplying the frequency by the
execution time. Since the execution time is fixed in each interval, the perfor-
mance is equivalent to the frequency ratio. For example, if a virtual core with a
frequency 800 MHz is scheduled to a physical core with a frequency 1200 MHz,
and the execution time is 60% of the time interval, then the performance of this
virtual core is 0.6 ∗ 1200/800 = 0.9.

Constraints There are several constraints on a feasible scheduling plan in the
Virtual Core Scheduling Problem. Assume there are m virtual cores and n phys-
ical cores in total. A virtual core cannot be executed by two or more physical
cores simultaneously, i.e. there can be no overlapping. Therefore the percentage
summation of a virtual core j in one time interval cannot be greater than 1. On
the other hand, a physical core can provide only a fixed amount of resources
each interval, therefore the loading of core i cannot be greater than 1.

As mentioned earlier, the scheduler should guarantee performance. We define
a scaling factor s, which equals to the ratio of the total resource requirement to
the amount of resources the physical cores can provide. The actual amount of
resources assigned to each virtual core is its resource requirement times s. The
scaling factor guarantees fairness, i.e. the performance of every virtual cores are
the same, thus neither virtual core is sacrificed for the other.

4 Three phase scheduling

In this section, we propose our solution for the Virtual Core Scheduling Problem.
The solution consists of three phases. In the first phase, the scheduler generates
a set of ai,j , i.e. the percentage of time virtual core j is on physical core i in a
time interval. In the second and the third phase, the scheduler determines the
execution order of each virtual core on a physical core.

The reason we separate our solution into three phases is that, with the in-
formation on the amount of time each virtual core should run on each physical

core, it is difficult to satisfy the following two constraints simultaneously – a
virtual core can only run on a single physical core at any time, and the virtual
core should not migrate among physical cores frequently. Instead we formulate
the first constraint as an edge coloring problem and solve it with an efficient
algorithm [8]. Then we adjust the solution from the edge coloring problem to
reduce the number of core migrations in order to satisfy the second constraint.

4.1 Phase 1

We formulate the first phase into an optimization problem according to our
computation and power model for asymmetric multi-core platforms. Assume
that there are n physical cores in total. The goal is to generate the amount of
time each virtual core should run on each physical core, such that the objective
function is minimized. The objective function is the summation of the power
consumption of physical cores, which is a function of core type, frequency, and
load. The output must satisfy some constraints, as mentioned in Section 3.2.

Given the objective function and these constraints, we can apply techniques
such as linear programing to generate the output . However, such output may
not be feasible in real world computing systems, thus we make some modifica-
tions to make the solution feasible to real world computers. The problem of the
output generated by linear programming is that it may be any arbitrary number
between 0 and 1. However, it is not possible to issue an interrupt at an arbitrary
time to migrate a virtual core. For example, assume the scheduling period is 1
second, ai,j = 12.34567% is not acceptable since the architecture cannot issue
an interrupt at a granularity of 0.0000567 second.

We make the following modifications to the original problem. We divide a
scheduling time interval into k “time slices”. In each time slice, a physical core
only executes tasks from one virtual core. The range of ai,j is changed from
an arbitrary number between 0 and 1 to an integer between 0 and k. With
this modification, the new goal is to generate the amount of “time slice” each
virtual core should run on each physical core, such that the objective function
is minimized while satisfying the constraints.

To solve the problem efficiently, we apply a greedy heuristic to generate the
amount of “time slices” for each virtual core. For every physical core, we compute
the “power-consuming” ratio γ, which equals to the power consumption per CPU
cycle of that core, under its current loading. The scheduler first sorts the virtual
core in ascending order of their operating frequency, and repeats the following
process until all virtual cores are assigned to physical cores. First, it assigns a
virtual core to the physical core with available computing resources and the least
γ. Then, it updates γ and load information of the physical core. If the physical
core cannot provide sufficient resource to the virtual core, the scheduler searches
for the next physical core that meets the requirement of the virtual core. Notice
that even if a virtual core is assigned to more than one physical core, the total
amount of “time slice” of this virtual core should not exceed k, which is the
amount of time slice in a scheduling interval, to avoid overlapping execution.

4.2 Phase 2

The scheduler decides the execution order of each virtual core on a physical core
in the second phase. In the first phase, the scheduler generates the amount of
time each virtual core should run on each physical core, where ai,j is an integer
indicating the amount of “time slices” for which virtual core j is on physical
core i in a time interval. With this information, the scheduler needs to decide
the execution order of virtual cores such that no two physical cores will be
simultaneously executing the same virtual core in the same time slice.

We can formulate the problem into the Open Shop Scheduling Problem
(OSSP) [8]. A set of jobs (virtual cores) must each be processed for a given
amount of time (time slices) at each of a given set of workstations (physical
cores),in an arbitrary order. The goal is to determine the time at which each
job is to be processed at each workstation. The OSSP is NP-hard if the number
of workstation is greater than three, and the number of jobs with varying pro-
cessing times is greater than three. Fortunately, in our problem the virtual cores
can preempt each other. With pre-emption, OSSP can be solved in polynomial
time. A detailed description of the algorithm can be found in [8].

Fig. 3. Example of a scheduling plan. Ti denotes virtual core i.

Fig. 3 is an example of a scheduling result. The “x” means that a core is idle
during the time slice. We define an execution slice as the virtual cores that are
executed simultaneously in a single time slice. Each physical core executes the
corresponding virtual core at each time slice according to the scheduling plan.

4.3 Phase 3

In practice, migrating virtual cores between cores incurs overhead, which affects
task performance on the virtual core. In a scheduling result, one can exchange
the order of any two execution slices, and the scheduling result is still feasible.
However, exchanging the order of execution slices will change the number of
virtual core migration between cores. Virtual core migration between cores incurs
overhead and thus needs to be minimized.

We define the Virtual Core Migration Minimization Problem as follows.
Given a scheduling plan, we want to find an order of the execution slice, such
that the cost is minimized. The cost is the overall number of virtual core migra-
tion between physical cores. This problem is NP-Complete, which can be proved
by reducing the Hamiltonian cycle problem. We propose a greedy heuristic to
find a solution.

Given a set of distinct execution slices, our greedy heuristic generates the
execution order of these slices in order to minimize the number of virtual core
migrations. The greedy heuristic works as follows: (1) It computes the cost of
every unselected execution slice. The cost is the number of migration increased
if inserting the slice into the queue; (2) It then chooses the execution slice with
the least cost, and inserts it into the queue. If there are several slices with the
same cost, choose the one with the least “residues cost”. “Residues cost” is the
summation of the number of migration between this slice and all the unselected
slices. The rational is to reduce the number of migrations between the slices
already in the queue and the other unselected slices. Repeat step (1) and (2)
until all the slices are in the queue. The pseudo code is in Algorithm 1.

Algorithm 1 Greedy heuristic for the Virtual Core Migration Minimization
Problem
Require: A set of distinct execution slices.
Ensure: The execution order of slices that minimize the number of core migrations.
1: Empty the queue of execution slice
2: repeat
3: for Every slices not in queue do
4: Compute the cost
5: end for
6: if More than one slice with the least cost then
7: Compute the residues cost of these slices.
8: Assign the slice with the least residues cost as candidate.
9: else

10: Assign the slice with the least cost as candidate.
11: end if
12: Insert the candidate slice into queue.
13: until All slices are in queue

5 Experimental Results

We build an asymmetry-aware scheduler to evaluate our algorithm. The sched-
uler is based on Xen scheduling framework. The scheduler is brought up by Xen
during the booting process, and works in the initial domain of Xen. Our scheduler
periodically generates a scheduling plan according to the three-phase algorithm,
and assigns virtual cores from the user domain to physical cores for execution.

Recall that a scheduling interval is divided into “time slices”, as mentioned in
Section 4.1. In our scheduler, we set a scheduling interval to be 1 second, with
40 “time slices” in an interval.

We compare the power consumption of our asymmetry-aware scheduler with
credit-based scheduler [3], a proportional fair share core scheduler used by the
Xen hypervisor. The experiment platform is a Juno ARM 64-bit (ARMv8) de-
velopment board [7]. There are two performance “big” A57 cores along with
four power-efficient “little” A53 cores on the board. ARM energy probe and DS-
5 are used to measure the power consumption of the two core clusters during
execution.

We boot three dual-core virtual machines in our experiment, one Dom0 and
two DomUs. Dom0(domain zero) is the initial domain started by the Xen hy-
pervisor, while DomU is the unprivileged domain started by user. Guest virtual
machine runs in DomU. We dedicate two power-efficient cores to Dom0, each
hosting one virtual core from Dom0. Our scheduler works on one of these vir-
tual cores, while the other one handles the processes from Xen. The workloads
from the two DomUs are executed on the other two performance cores and two
power-efficient cores.

The benchmark in our experiment is CoreMark [9]. CoreMark is an indus-
trial standard benchmark that aims to measure CPU performance in embedded
systems. Our experiments include two cases. In the first case, both guest vir-
tual machines are assigned with light-weight workload, coremark-1. We then
increase the workloads of guest 0 to medium (coremark-4), and guest 1 to heavy
(coremark-8) in the second case. We compare the power consumption of our
asymmetry-aware scheduling mechanism with the default credit-based scheduler
in Xen under the two cases.

Table 1. Performance and Power Consumption of the Two Cases

Energy(J) Time(Sec.) Saving

Case 1 Credit-based 9.817 25.2 1 - (4.948/9.817)
Asymmetry-aware 4.948 27 = 49.6%

Case 2 Credit-based 34.890 63 1 - (24.775/34.980)
Asymmetry-aware 24.775 71 = 29.2%

Table 1 summarizes the performance and power consumption results. Our
asymmetry-aware scheduler achieves power savings of 49.6% compared to the
credit-based scheduler in case 1, and 29.2% in case 2. The execution time of the
two cases increase less than 10% compared to the credit-based scheduler. The
energy saving comes from the fact that our scheduling mechanism only assigns
virtual cores to a performance core when necessary. In the first case, the two
light-weight virtual machines use only two power-efficient cores according to our
scheduling plan, while credit-based scheduler distributes the workloads to the
two performance cores and two power-efficient cores. In the second case, our
scheduling plan reduce the amount of workloads running on performance core,

Fig. 4. Power Consumption During the Execution of Benchmarks (measured with
ARM energy probe and DS-5)

thus using less energy. Fig. 4 is the power consumptions during execution. From
the results, we conclude that our asymmetry-aware scheduling mechanism has
better power efficiency and performance guarantee.

6 Related Works

Several studies have investigated asymmetric multi-core scheduling in virtual
environments. Kumar et al. [10] test and validate that scheduling the controlling
domain in a hypervisor on slower core saves power while only slightly affect-
ing guest domain performance. In our work, the scheduler not only schedules
the controlling domain on slower core, but also schedules the cores from guest
domain to achieve energy-efficiency while keeping performance. Kazempour et
al. [11] implement an asymmetry-aware scheduler for hypervisors that focus on
both energy-efficiency and fair sharing of physical fast cores among virtual cores.
However, their scheduler does not reduce the usage of fast but power-hunger
cores. On the other hand, our scheduler only assigns virtual cores with high
computing resource requirement to fast cores, thus saves more energy. Kwon et
al. [12] propose a scheduler that characterizes the efficiency of each virtual core
and map them to the most area-efficient physical core. They consider two im-
portant aspects, performance fairness among virtual machines, and performance
scalability for changing availability of fast and slow cores. Their scheduler aims
to increase the overall system throughput, while ours aims to reduce power
consumption. Wang et al. [13] present a method to dynamically estimate the
energy-efficiency factors of each virtual core, and map the virtual cores to het-
erogeneous cores. However, their method requires offline training and hardware
performance supports. In contrast, our scheduler only requires the frequency in-
formation of each core, which can be fetched from common driver such as cpufreq
in Linux. In addition to these differences, the evaluation environments of prior
efforts mentioned above are all simulated asymmetric multi-core environments,

in which DVFS/DCVS is applied to symmetric multi-core to emulate asymmetry
between cores. However, different types of cores may have different architectures,
such as pipeline, on actual asymmetric multi-core platform. In this paper, our
evaluation data is more convincing since we conducted the experiments on a real
asymmetric multi-core platform.

7 Conclusion

In this paper, we develop an energy-efficient asymmetry-aware scheduling mech-
anism along with a scheduler for asymmetric multi-core platforms. The goal is to
generate an energy-efficient scheduling plan with guaranteed performance. Our
solution contains three phases – indicates the amount of time each virtual core
should run on each physical core, when a virtual core will run on each physi-
cal core, and reduce the number of core migrations. The experimental results
show that the asymmetry-aware strategy results in a potential energy savings of
up to 49.6% against the credit-based method, while still providing guaranteed
performance.

References

[1] Greenhalgh, P.: Big. little processing with arm cortex-a15 & cortex-a7. ARM
White Paper (2011)

[2] Shirazi, B.A., Kavi, K.M., Hurson, A.R., eds.: Scheduling and Load Balancing in
Parallel and Distributed Systems. IEEE Computer Society Press, Los Alamitos,
CA, USA (1995)

[3] Cherkasova, L., Gupta, D., Vahdat, A.: Comparison of the three cpu schedulers
in xen. SIGMETRICS Perform. Eval. Rev. 35(2) (September 2007) 42–51

[4] Pabla, C.S.: Completely fair scheduler. Linux J. 2009(184) (August 2009)
[5] Linaro: Research update on big.little mp scheduling (2012)
[6] Linaro: A solution to support arm’s big.little technology (2014)
[7] ARM: Juno arm development platform
[8] Gonzalez, T., Sahni, S.: Open shop scheduling to minimize finish time. J. ACM

23(4) (October 1976) 665–679
[9] EEMBC: Coremark

[10] Kumar, V., Fedorova, A.: Towards better performance per watt in virtual envi-
ronments on asymmetric single-isa multi-core systems. SIGOPS Oper. Syst. Rev.
43(3) (July 2009) 105–109

[11] Kazempour, V., Kamali, A., Fedorova, A.: Aash: An asymmetry-aware scheduler
for hypervisors. In: Proceedings of the 6th ACM SIGPLAN/SIGOPS International
Conference on Virtual Execution Environments. VEE ’10, New York, NY, USA,
ACM (2010) 85–96

[12] Kwon, Y., Kim, C., Maeng, S., Huh, J.: Virtualizing performance asymmetric
multi-core systems. In: Proceedings of the 38th Annual International Symposium
on Computer Architecture. ISCA ’11, New York, NY, USA, ACM (2011) 45–56

[13] Wang, Y., Wang, X., Chen, Y.: Energy-efficient virtual machine scheduling in
performance-asymmetric multi-core architectures. In: Network and service man-
agement (cnsm), 2012 8th international conference. (Oct 2012) 288–294

