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The limitations of conventional systems in supporting database func-—

tions have prompted the design and development of specialized computer

PR

hardwererdirectly bfoﬁiding databese_eoblicafioﬁefi‘&he‘fﬁcctione'of'date '
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searchlng, sortlng, updatlng, securlty and 1ntecr1ty can, ” thus, be moved’ -

from the conventlonal processor to secondary storage thereby reduclng

et Ao .____»;E

ter - ative : :—!"".,7-’~'-.;—-
"thhe data—transfer'costs. The proce551ng tlme is decreased by the content

paper surveys Ttelational database machlnes, descrlbes the general a.rch:.tec—

ture and characteristics of dataoase machines u51n0 cellular—loglc concept
" and addresses. associative hardware techniques for lmplementlng select and
join operatioms. The limitatioms, issues and problems related to this

 type of machine are finally presented.’
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Problems with relational DBMS on conventional svstems

The relational model [7] has, more than any other data models durlng

the past decade, attracted and held great interest of the database re-

searchers and database management communlty. Its tabular represeutatlon -

of data is very sultable to ordlnary users and 1t'prov1des a powerful hlgh—

' level nonprocedural data language foriusers to interact with a database'and

structurally and behaV1orally far. removed from the storage organlzatlon R
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and pr1m1t1ve operators of ex1st1ng computer hardware. Thls means that
conventional‘eomputer hardware which is originally designed for supporting
scientific appiications.is very difficult to efficiently support relational
database applications. This is because maltiple levels of soPhistioatea
software are required to translate the high-levei model and the language
down to the low-level machine structures and codes. This can be seen from
the two development projects [l,26].

Oh the other hand, in'conventioﬁal systems data is stored in slow,
large-capacity secondary storage devicesa Rather limited processing capa-
bilities are incorporated into these devices. Therefore, data stored in
these devices must be staged in the main memory for processing.’ The data
altered in the main memory must then be moved back to replace the original
data in the secondary storage. = This movement of'data back and forth is not
only very time consuming, but it often ties up the important resources of
a computing system, such as communication lines, channels, and data buses.

Software techniques (access methods, indexes, hash tables, etc.) can reduce

lThe,model thus,~1s AR




-he amount of data to be staged, but they also introduce overhead and

ce of the indexes and tables.

iifficulty in the creation and maintenan

There is also a problem in keeping the contents of the indexes and tables

-onsistent with the original files after data update, insertion, and de-

letion.

Hardware sﬁppért for relatiomal DBMS applications

" The limitations of conventional. systems promptediﬂmadésignJgpd deve—
lopment of specialized hardware directly implementing the relational algebra

operators [8] (since they are received the most attention as a condidate for

nardware support.) This specialized hardware approach mainly takes

of recent developments in hardware and memory technology. The approach

alleviates the problem of moving data back and forth by distributing pro-

casssing logic over data. The data can then be searched and processed at

~he place where they are stored, and those data which are irrelevant to the

search command can be filtered out by the processing logic associated with

data. Processing efficiency is gained by content and/or context addressing

- of the data, and by parallel processing of the data in secondary storage

devices, such as disks, CCD's, or magnetic-bubble memories. Furthermore,

through the use of associative techniques (content and context searches,

tagging and marking data, etc.)-the data can be physically stored in a very

"simple'" structure —— i.e., no index or table/directory is needed, thereby

decreasing the complexity of modifying the data.

advantage
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'.ffwrlte mechanism of a- dlsk track or'a 1oop of electronlc—rotatln store, such

as CCD MBM (magnetlc—bubble memory), etc., aud (3) by conflguratlng dl‘ﬂl;ﬂﬂug;v

- design hardware for select, join, and project for database.applications.
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Approaches of distributing processing logic over data

The most effective way of distribution is to associative logic with
small amount of data. The maximizes the amount of parallel processing,

'thereby mlnlmlzlng total executlon tlme.- In general loglc can be dlS— PP

dtrlbuted over data in any of three ways H Cl) by integratlng both the loglc ; N

and data on a slngle YLST Chlp, 2y by assoclatlng ‘the logic w1th the read/
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tributed mlcroprocessor—based archltectures. -

The first approach holds little promise for relational database appli-

- cations, since MOS storage is too expensive for a large database typically

involved. The seéond and third approaches, however, have been used te

In the following we will survey relational database machines based on .rhese
approaches and then consider how each of these machine implements the"select,~
proﬁect, and 301n operations.

The concept of associating logic with the read/wrlte heads of rotating
storage devices was first proposed by Slotnlck [24] in the 1970's. Parker
{22], Parhami [21],and Healy [ll] refined this idea further. The same idea
was first applied in database management applications by Copeland et al. [9],
L1povsk1 [16], and Su and LlpOVSkl [30]. Ozkarehae et al.r[20], Lin et al.
[17], McGregor et al. {191, and Shuster et al. (23] have also proposed ways

to handle relational databases, while Edelberg [101, Chang {51, Chen (6],

and Todd ({32] have developed designs to exploit the new CCD and bubble




-echnologies. Su [27] has defined the class of cellular-logic {CL) cevicas

shich is more gemeral than the "logic-per'track" devices originally conceived
5y Slotnick [24}1, in which logic is associated with each track of a fixed-head

~otating device having no intercell communication facility. The general

architecture and characteristics of CL devices are briefly reviewed in the

spllowing. (se

devices specifically designed for database applications.)

A CL device is controlled by a main frame computer (MFC) (see Figure 1), _

wvhich translates the high-level queries or data manipulation statements into

aachine codes, transfers these codes to the CL device for executiomn, receives

iata transferred out of the device, and processes (or formats) and ocutputs

-he data to the user. A CL deviece consists of an array of cellular associa-

rive processors (ot cells) which is dreiven in parallel by a controller.

Tach cellular asscciative processor is composed of a processing element Pio

ind a circular (rotating) memory element Mi. Each Pi is a special purpose

Jicroprocessoxr (or simple logic) designmed to perrorm direct operations on
its associated Mi. Each‘Mi can be definéd by a triplet (TG, DT, SR); TG is
che storage space for tagging data items so that different data types such
1 character string, numberic value, delimiter, instruction, etc., can be

. .idistinguished; ot different data elements, such as records, files, etc., cén
;e delimited. DT is the storage space for the actual data as well as the
srogram instructions. Data and instructioms can be recorded in a fixed-word
iormat or a free format with delimiters and tags to separate Fhem. SR is
-he storage space for marking data items as a result of data searches. %

status field is gemerally associated with each data item. This field con-

I~

e [9,16,17,20,23,30]_for a detailea description of several CL
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tains status bits which are used for marking the data item for output,

"R

indicating the item that satisfies a matching condition, marking the in-

struction for execution and the location for insertion, etc.
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In Hong and Su [13,14], the status field is extended to include three -
additional status bits for database security and integrity'purposes. one

status bit, called the "no-access' bit, is used to mark the data item

il

" which is unauthorized for access. The data items with set no—access bits

LLIL I

- Wlll be recognlzed by the processing element and will be bypassed by the

-uhardware during search operatlons._ Since the bypassed data 1tems can never

i satlsfy any search commands, they cannot be accessed. Two ssatus bits are

used to mark the orlglnal and modlfled data ltems, respectlvely, for 1nte—f;lig

e s

:grlty valldatlon. The detalled descrlptlon of the use of these three bltS T,

“lS given in the papers mentloned above.

The tracks, or groups of tracks, of disks or drums have been used as
Mi's. CCD shift registers, megnetic bublie memories, oTr any other delaf,
line techmologies are potential candidates for the circular memory. The
contents of TG, DT, and SR in each Mi can be scanned repeatedly by Py

since memory is circular.

ORI ST P reTre Ty Y ~i‘u-i‘:«en wmb Billowi o

There are two basic types of searches contained in the search mecha-
nisn. In the content search, the deta value(s) to be searched is first
loaded into the eomparand registas of all Pi's. The data words stored in

.Mi's are fed, one at a time, into their associated buffer registers of Pi’s.
The mask control mechanisms of Pi's are set to select the subfield of the
fed data words for matching against the comparands. All Pi's carry out
the matching opetation simultanecusly. At the end of a complete scan of
memory elements, the SR storage corresponding to data elements —- such as

data items, records, or files —— that satisfy the matched conditions are

marked. The marked data elements can be transferred to an output device,

" WMM T 1 RARerrapeat B LT T T 1o A N i DB
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*ﬁzlated to (or in'the context of) the results of a prev1ous search will be

or they can be used as context for the next content search. Context search
allows data to be accessed by the context in which the data occur. It is
accomplished by utilizing the search results, recorded in the SR of Mi’ as

the'whole or part of the next search condition. Thus, only the data re-

"7 found. fIt these capabllltles of parallel searchlng, as Well as accumu;

e e b e e - o s e e

" lating search results for use in subsequent searches, that gives CL devices

pabllltles of these processlng elements that dlstlngulsh the CL dev1Ces

from the conventiomnal rotatlng devices. Only the data which satlsfy a
sea?ch criterion are mOVEe into the main memory for'furfher processing.
Thus, data are processed at the place ﬁhere they;are.stored, and large quan—
tities of data can be prefiltered out by the prdcessing elemeet. F;%ther-
more,.the content and context search capabilities'proﬁide more flexibility
in data search. The process of calculation and maintaining data addresses
befoee the data can be located is eliminated.

One feature that is uniquely possessed by CASSM .is its programmabilitry
[28]. It allows the content and context addressing capabilities tolﬁe peed
to locate and activate programs stored in CASSE. In this system, programs
can be activated or triggered when the data meet some high-level data condi-
tions. This type of programming is called aseociative programming. It was
used in Hong and Su [13,14] to enforce database integrity and security in
CL devices. .

The idea of basing the design of database hardware on a network of

microprocessors dedicated to specific database functions was first developed
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by Madnick in a system called INFOPLEX [1871. Ik organizes a WMemory and .

e g

m1cr0proeessor hierarchy to exploit the Darallelism inherent in concurrent
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accesses to a database. The Database Computer(3,4,15] is a more extensive

#

design that first incorporates access control. The DBC has dedicated pro-

cessors for access control query and update interpretation, directory

processing, etc13351m11ar to both INFOPLEX and DBC is the design for a

distributed database machine proposed by Stonebraker [251. It used con—

- ventlonal mlcro/mlnl computers to off- -load database functlons from a cen—

_tral host cqmputer. Both the DBC and INFOPLEX support conventlonal access

AT

methods such as directories as well as associative logic—per—trac& proCessors.

|Im.:.v

We will devote most of our attention in this paper to the relational

i,
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database machines using cellular-logic concept. However, it is important to
note that the expolitation of these class of machines is not the only route

possible in developing relatiomal hardware. New approaches, such as LEECH

{19] and CAFS (2], using 2 central processor architectuTe design can provide

a better base for building relational systems.

P Rt oR

In the following descriptions, we assume that the readers are familiar

R

with relational data models and relational select, project, and join opera-

-

" tions.

=1

Relational data representation

As pointed above, one advantage of using associative techniques for
data search is that it can simplify the storage representation of the data

~in secoudary storage. The designers of the database machines have proposed

-
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and RARES.ﬁ Representatlous of electronlc rotatlng dev1ces will

\jhere.' Interested readers can refer to the llterature'TS 6 10 32]
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more simplified storage representatricus which allow the users to view the
stored data in tabular (or close to tabular) form, but they differ greatly
in organization. The storage representation determines the complexity of

the processing logic, the number of revolutions (i.e., memory scans) needed

‘lfto complete the query eveluatlon, the cost in space of storing a relatlon,

the amount of contentlon for outputtlug quallfled tuples. The dlscusslons

hwhlch follow are restrlcted to the storage representatlons of CASSM RAP

Tret - ephites ariy

CASSM. In CASSM, data is laid out along the track‘or.loop of the rotating -

storage device. Each track (or memory secment) contain a sequence of 40-bit

‘word. In a 40—b1t word, a 32-b1t fleld is used for data or 1nstructlon,'a

- 3= b1t field for status, a 3-bit field for tags, a l-bit field for parlty,

and a l-bit field for internal use. Figure 2 presents a schematlc descrlp—
tion of different types of words and their formats., ”The tags are used to
dlStlngUlSh different types of words such as delimiter word {D) , name-value ..
word (¥), 1nstructlon word (I), operand word (O), garbage word (GB), and _'
end—ot-file word (EOF). Status bits are used to mark the word for.output
(C-bit), to indicate the word that satisfies a match (M-bit), to mark the
point for imsertion (X-bit), to mark the instruction for execution (Arblt),

and to mark the end of the operand list (F-bit). The formats of a 32-bit

field for various types of words are different.
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Figure 2. Word types and formaté.

In CASSM, a relation is 'treated as a two-level tree. A tree is phys;4
cally stored in a top—down ana left-right order. Eaéh node of a tree or
subtree is delimited by 2 delimiter word which contains & level number, a
coded wvalue for a name,fg 6-bit stack B, a qualification bit Q, and a
specification bit‘S. The name is used for identifying the tree oT subtree.
Tt is usually the relatiom table or subtable name in an unnormalized rela—
tion, or the label agsigned to a program segment. The bit stack is used to
accunmulate temporary processing results. The $- and Q-bits, repectively,
mark the node as the place to store the search result and as a place in which
the search should be conducted. In general, the Q-bits associated with a
set of nodes are initially set to provide the context for a search. The

search Tesult (a logical "1", if a node satisfies the search condition) is

10




pushed onto the bit stacks of those nodes with S—-bits that are set. This
result cap also be ANDed or ORed with the top bit of the stacks. (Ocher

stack operations, such as complementing the top bit, pushing a bit, povp-

ing a bit, and exchaﬁging the-top two bits, are also aﬁailable.) In evalu-

Aﬂating'a complex'Boolean exhression oh a set of nodes (trees or subtreas),
':aa atomlc cendltion in the expression is flrst evaluated to set the'top

fblt of-the bit stacks of those nodes Whlch have satisfied the condltlon.
:fThe second atomic condltlon is then evaluated to set another bit pattern
..which may be 1og1cally ANDed or ORed- with the bit pattern set by the ‘First

~ atomic condltlon. It may also be pushed onto the correspondlng bit stacks,

depending on the logical operator used in the expression. The other atomic

conditions can be evaluated in a similar way. The node satisfying a complex

Boolean expression will finally have a logical "1" on the top of its bit

- stack. This generally means that the data in the node has satisfied a cer-

tain search conditionm and should be output to the user.

RAP. hthe CASSM, RAP' lays-its data along the tracks of the fetaing storage
device. Each tuple of a relation is storea in a fixed-length block. This
length can vary  from relatioun to relatiom, but within a relation all tuples
must use the same amount of storage. Only one tuple of relation‘can be
stored on a given track. Within a track tuples are stored one after the
other (one per block), and the end of each block is marked by a delimiter.

RAP's track format is illustrated in Figure 3.

11
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The beglnnlng of a track is indicated by a marker whlch is detected .r:;

electronically. This marker also implies the phy31cal end of a track The
first two bldcks of a track contain the name of the relatlon stored on the
track and the célumn nameé of the relation, respectlvely, and act as "header
track." Each succeeding block contains the concatenateq column values in a
tuple. The.order of column names determine the order of the values in each
tuple. These concatenated values are preceded by a string of mark bits.
‘A1l names (relation and columns) and values on the track are.encoded as 32,
16, or 8-bit stringg, each preceded by a 2-bit code indicating its length.
There is an upper bound on the length of a RAP relation tuple which is deter-
mined by the length of the cell buffer (1024 bits). If a relation has too
many tuples to be stored on one track, then several cell tracks are used.
The hardware requires the relation and column names to be repeated once on
each track of a relation.

A fixed length gap is required between every Cwo blocks. The lengthé
of these gaps are proportional to the amount and speed of logic required

between block operations.

-
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RARES. Not llke CASSM and RAP, RARES lays out relatiom tupies zcross tracks
(i.e., along the radius of a disk) in byte-parallel fashion : the ZIirst byte
of a column velue is placed on a track; the second byte of the value is
placed_ln the same position an the adjacent track and so . on. A byte—
'_parallel organlzatlon means the proce551ng of each relation tuple has to be
completed Wlth the amount of S;blt Shlftlng tlme. -&ﬁis emoont of time is
perm1s51ble for the loglc avallable to process a tuple lald out along a-

. radlus, glven the rotatlon tlme of the dlsk. It,seems 1mposs1ble for the

,current avallable loglc to complete the process of a tuple in ODE*blt shlft—

b ress o v

_ ing.tlme.' Thls is why the dec151on to use a byte—parallel rather than a bit-
.parellel organization is made. Each set of tracks used to store a relation
in this fashion is oalled a band. The number of tracks in the band can vary;
the size of the band is determined by the length of a tuple. For relatious
with long length of toples,'ﬁore than one radius cam be used to store a
tuple. RARES's data organization is {llustrated in Figure 4. This type of
data organization is called amn orthogoeal layout. The decision Lo use an
orthogonal feyout rather than that used by CASSM or RAP is that orthogomal
layout allows fewer tuples ean come into contention for output. However,
contention is still possible, so, like CASSM anﬁ RAP, RARES also needs an

output arbiter.

BAND 1 TgigK
BAND 2 DETAIL OF BAND 1 {

BYTE-WIDE
RADIUS

Figure 4. RARES data organization




Dats searches

éhis cection describes the data search performed by CASSM, RAP, and
RAREé.
CASSﬁ. CASSH needs search. logic for each track aud uses a RAM for marking
selected tuples. The search operatlon is best 1llustrated by means of a
specific.query. Flgure 5 shows a relation SUPPLY with attributes S#, P#
and.Q, storieg in memory eegment ﬁi'?“In Figure 5, only the dellmlter words
(ﬁ) and neﬁe—ﬁalue:peifs (N) are shqwn. “The "D SUPPLY 0" is_ used as a_de—-
1imiter word for the relatiom SUFPLY andr".D SUPPLY I"llS Ysed as a delimiter
word for tuples, where 0 or 1 is a ievel number. File XY is tﬁe name of
another fiie. {(We will ignere theAname and value decoding steps.} A query

to select from the relation SUPPLY all supplier numbers with P# = Pl and

Q > 5 would be translated in CASSM assembly program as follows :

CASSM Program

T1: DMK 1, SUPPLY

T2: QSR =, N; PUB: IM(P#:P1)
T3: QSR >, N; ANB; IM(Q:5)
T4z FNSB N; Si#; ORS C

The program starts with a DMK (delimiter mark) inmstruction to set the
S~ and Q-bits of all delimiters that have a level equal to 1, and a name
SUPPLY. The S~ and Q-bits of 2ll delimiter words "D SUPPLY 1" in Figure 5

are set as shown under Tl. This imstruction marks all tuples labelled 1,

v
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SUPPLY of the SUPPLY relatiom as the location where search results are to
be accumulated, and the nextr search is to be conducted. The T2 instruction
QSR searches for P#.= 1, specified by IM —i, e.s immediate operand clause
— in tuples whose Q-bats are set. The results of the search under these
tuples are pushed (PUB sublnstructlon)‘on thelr assoclated blt stacks (B).
The bit. stack of each tuple (whose 5- b1t is set) is the place where the
search result is stored Accordlngly, after the executlon of thlS instruc-

tion’ only those tuples whose assoc1ated data have satlsfled the search con- .

_d1t10n w111 have a loglcal "l“ on the top of thelr assoc1ated b1t stacks,

as shown under T2 of Flgure 5. .The T3 instruction searches for Q > 5; the
results of the search are ANDed (ANB subinstruction) with the top of their
bit stacks'(B) {as shown uhder T3}. So far, only those tuples with'asoci-
ated data that have satisfied the search condition will have a logical "1"
on the too of theirlassociated bit stacks (B), as shown under T3. ‘Thus,
the Boolean expression is processed and the search.results are accumulated
in the bit stacks.

.The T4 instruction FNSB searches for name~value words in g tuple whose
delimiter contains a logical "1" on its bit stack (BY. If such words are
found, the ORS C, the secound part of T4, will logically OR a logical "1"
into its status to set thercollection bit (as shown under T4 of Figure 5)}.
The collection bit C, when set, tells the hardeare that the word is to be

output. Afrer the execution of T4, the S# = §3 is marked for output. The

marked data items will then wait for output by output mechanism.

15




T T2 T3 T4

— ———— — ——

M SQBC SQBC SQBC SQBC
I

D SUPPLY O " 0000 0000. 0000 0000

p syppLy . 1 | . . 1100 .. 1110 ‘1100 . 1100

N -s#:  Si 0. o 0 0 .

'
'
!
i
H
i

N .pf: o Pl .0 -0 .0 0 R L I

; N @, 5| .0 0 0 0 e ;
— b sweLy 1 1100 1100 1100 1100 Y

N S#: Sl 0 o 0 0-

N P#: P2 ' 0 0 0 0

N Q: 6 0 0 0 0

D SUPPLY 1 . 1100 1110 1110 1110
N si: 83 , 0 0 0 1

N P Pl a 0 0 a

N Q: 6 0 0 0 0

D XY 0 0000 0000 0000 0000

M

Figure 5. CASSM's data organization and an illustrated search
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In CASSH, all marks to the fields of delimiter words (i.e., the B-
stack or the § and Q bits) are made using the RAM available to the logic
associated with eachlread/write head pair. AFor each delimiter word in
éhe database it ié assﬁmeé tha£ there is a bi;'re;erve; in tﬁe-RAM; if
‘a delimiter is to bé_markgd, its RAﬁ bit-is mar#gd;. In the next revoiu—
tion,'when tﬁe dglimiéér ﬁo&d is reaphed,,gherﬁark‘is.ﬁlaced in itiﬁefore
itrréaches thé rest of the processing 1oéié for‘conéiaeration by fhe next
CASSM instruction. The RAM is. also ‘the main‘ﬁééhéﬁism used to support .-
-the impliéit join {to be described Iater).jiéiT:i“ﬁfig;;:ﬁ;i.'. e ——
RAP. RAP also needs search logic for éach track. The ﬁaféhing is accom-
plished by rotating each tupie as it routes into ;he buffer of the search
logic designed.to hold an entiré.tuple. Instead of évélQating one atomic-
condition per rgvolution lige CASSM, it can evaluate up to k atomic condiQ
tion in a revolution. Thus, k ocmparators must be provided. The compara--
tors in each logic operaté in parallel. The results of these k independent
evaluations are then fed into hardeare Boolean operation logic to complete
the evaluaéion. 1f a selected tuple needs further processing, it must be
marked. The mark field consisting of mark bits preceding each tuple is.
provided for this purpose.

RARES. Instead of needing search logic for each track like CASSM and RAP,
RARES only needs search logic for each band. But because bands may vary
for different reélations, special logic is required to reassign the search
logic to a new set of adjacent tracks whenever a band's width is redefined.

The special logic used by RARES's designers is called “"barrel switch (17}".

RARES perform a Boolean select by matching one atomic condition per revolu-

17




tionm like CASSM. Within ome revolution a radius of a tuple is selectad
for matching. If the match is successful but further matches are required
on tge tuple, a mark is placed in the response store associated with the
search logic for the band. When previous matches have been performed on

" the tuple_to which the redius belongs, the reponse store will contalﬁ;a
_sit that ipdicates the accumulated result of these matches._ Thg_ha;dwa?e_
combines the current'result of thig accumulated result. If the match is
successful and complete,.the search logic Vait for a signal from ;he out—

put arbiter. 1f the 51gnal so 1dicates,,the tuple is,oﬁipuf'ﬁé the buffer;

otherwise it is marked for outpuﬁ on subsequent revolution.

Join algorithms

The design of associative hardware to implement the join operation has
been to concentrate on a from called the "implicit join." This join does
not require creating a new relation from the two original relations; instead

the values of the columns being joined (called the join columns) im one Te-

lation are used to select tuples in the second relation that have those

same values in their join clumns. Only RARES, LEECH [19}, and CAFS {2] con- i
sider the problem of implementing the "explicit join" as contrasted to impli~ ;
cit join, i.e., it consists of tzking the tuples in two relations and form- ;
ing a new tuple in a third relation 1f their join columns have the same H
values. We shall describe algorithms used for implementing the implicit

join in CASSM and RAP and then the explicit join in LEECH, CAFS, and RARES

in the remainder of the section.
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A e i e A e i B ek e 1

e

query.

:;With P# and PD (part descriptiéu)_a:eklogigélly étorgd in é-singlé memor

‘segment M ‘one tuple after another tsee Figﬁre 6}.1:Adﬁué:y is-tqm}igfggﬁg%u

In CASSHM, the impiicit join of two relations is accomplished by trans-
froming the encoded values of the join columns from the selcted tuples in

one relation to mark proper bits in the RAM [31] . Next the tuples of the

1 M R

second relation are matched on their join columns aganinst the values in
the RAM and marked if the match succeeds. This is 11lustrated byAa specifid

- - L .

R S e welde L

o o~

Consider that two relations SUPPLY with attributes s#, P#, Q and PART & -

P

BPIT AAETT

part numbersr(P#) and their desﬁriptiéﬁs (PD) tﬁaﬁ ;%é-ééppiiéd_by S# = }éi;;w
In first logical revolution {a logical revolution ﬁay také several revolu-—
tion in CASSM), SUPPLY relatio; tﬁpies are examinedf 'Forreach tupie tS#, 1i,
P#, Q) im SUPPLY, if S# = 'Sl"then set RAM(P#) =_1. If we assume Pl is
éoded as 1 and P2 is coded as 2,thenafte¥ this logicalurevolution,.RAM(i)
and RAM(2) are set to 1. This step is called forward\;ointer transfer. Next
logical revolution (also called backward pointerrtransfer) is to examine the
tupleszof PART relation against ;he values in RAM. For each tuple (p#, PD)
in PART, if RAM(P#) = 1 then output P# and PD. In this query, tuples (PIl,
DIODE) and (P2, TRANSISTOR) are satisfied and will wait their turm for out-
put. Thus the number of revolutions required‘is fixed, independent of the

number of tuples selected from the first relation. .Similar: idea is also  __

used by CAFS to implement join {27.
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IL :

. Forward Pointer Transfer

For each tuple (S#, P#, Q) in relatiom SUPPLY, if S = 'St

then set RAM (P#) = 1.
. Backward pointer transfer

For each tuple (P#, PD) in relation PART, if RAM (P#) =1

then output P# and PD.

Figure 6. Implicit 'JOIN' in CASSM

heeBEaiyt |

ok L 1y




RAP performs implicit join by taking the join column values of one
relation and uses them as a disjunctive select condition for the éecond
relation. Since it has k comarators per search logic, k column values from
the first relation can be matched against the tuples of the second relation

in each revolution. Thus, the number of revolutions required ls[-iﬂ, where

.r is the number of tuples selected from the first relation and Fx_lis the

least 1nteoer greater than x. 0bv1ously thls number of revolutlons re- =

quired is dependent om r. No algorlthms are provided by RARES for computlng

‘implicit join. "The explicit.j01n.algorlthmsrforJLEEQH, LAFS, and RARES are ;}

discussed as follows. . . - L ,r;;?.j'Q_;;-L;ﬁ,;\_‘

RN —— S 1]

In LEECH maéhine, the tupies of eéch relation beiﬁg.jbinéd are first
scanned to produce a bit map of the values of their join columns. These
bit maps are combined to produce a single filter for selecting tuples needed
for the join. The relation being joined are then fed to the filter an§ the
selecteé buples are processed by the front—end processorrté form the‘gonca—
tenated tuples of the join. This algorithms uses the bit map fo filter out

the tuples irrelevant to the operation. The join thus is actually performed

by conventiondl algorithms. This type of algorithms is most effective if

the selected tuples to be joined are few. _ e e e

CAFS scans the tuples in one relaticn to produce a filter in its bit-

addressable memory (l-bit wide). The bit is addressed and then set by the

encoded value of the join column of each tuple relevant to the join. (The
possible values of the join columns are eancoded by éssociaping each with a
unique address in the bit memory f21.) The relevant tuples are sent to the
front-end processor to be héld for computing the join. The second relation

is then fed to the filter. The relevant tuples (i.e., those whose join

21




column values address set bits) are sent to the processoxr Lo compuce the

join. The only difference of this algorithm from that of the LEECH machine

is the design of the fllter. The join is still performed by conventional

lcorlthms and Wlll not be erfectlve if the number of selected tuples being

;301n6d is large. ce ‘:;:;Jlt.ih-

. RARES prOV1des a hardware—support algorithm for sorting the tuples of

each relation belng joined into buckets on their respectlve join columns.r

~:However, ‘the tuples within’ each bucket are sorted in main memory by con—

and the concatenatlon of tuples from the. two sorted e

;Ventlonal algorlthms,

‘relations is accomplished by the general—purpose host. Obviously the explicit

join in RARES is mainly performed by conventional algorithms.

Projection algorithms

The design of existing associative hardware fails to provide facilities

for implementing projectiomn, especially for multiple—column projection opera-=

tions. (A projection operation consists of removing some of the columns of a

relation and then removing any repetition.)

S

TRy T

Summary and discussion

Relational database machines have been surveyed and the characteristics

and operations of cellular~logic database machines have been described. There

are limitatioms related to cellular-logic machines. In the case of handling

very large database, say 101% . 10!5, the cost of building such type of

]
I~
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machine for holding and processing the data is prohibitively high. Their
most likely use will be as staging devices. The data will reside in con-

ventional mass memory and only needed portions will be sragea lnto the

database machine.
From the discussed above; we found that the ways of efficiegﬁly imple— '
meﬁting the explicit joim and projection are not a&?ilable and hav;;io be

sought before these designs of database machineé can ‘move from prototype to

- 'product.’ ‘Academia Slnlca uow has an onﬂg01ng Natlonal Sc1ence j,tf,.

e itaid ek e =t

supportlng full join and prOJectlon operatlons. The prellmllary results

reveal that this architecture holds promise for providing direct support for

JOln—doﬁinating applications. Furfhermore, it has been found that the same
hardware used for explicit join can also be used for sqpporting thé mg;tiple ,
column pfojection. The hardware aééﬁitecture wiil.be réported in a-fdrth; I
coming report [12]. | -
" Mechanisms for controlling database access and integrity have begn
propose& and reported.by Honag and Su [13,14]. 1In additionm, thisvtfpevofl_”h
machine does not have facilities for other functions such as system fecovery,
error recovery, reliability, etc. The arithmetic processing capabilities of
the search logie are still limited. No floating point arithmetic is allowed.
Data in this type of machine can be search in parallel. However, the selected
tuples cannot be transferred out in parailel. -Perhaps the most impoftant

problem confronting this area is the lock of operating experience in real

application.
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