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Abstract

Some combinatorial identities are presented here, where
these identities are derived from the complex analysis of
parallel sorting a large data set by computer. The parallel
sorting requires statistical data partitioning ahd method of

quick sort.

1. Introduction

Combinatoriai identities are widely  tabulated in mathema-
tical, statistical and domputational textbooks[ 1,2,3,4, 1.
These 1dent1tles are important in many fields of research and
application, especially those require exact forms of sclutioms
or calculations. Here some gomblnatorlal identities are derived
through the analysis of parallel sortiné a large data set by
computer. The parallel sortihg requires statistical data
partitioning and method of quick sort{ 51.

Frazer and Mckellar { 6 ] have eérlier derived a combinatorial
equation in théir sahple sort analysis, where Knuth simplifies

it and obtains'an identity:

n k n+1 .
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The proof is easy by induction but the idemntity is hard to

find, due to the complexity of harmonic series..The proof is

based on a popular identity:

Afim ( ;) ) ('E:i)

which will be used in the subsequent identities.



2. Some Identities from Parallel Sorting

Let the data set to be sorted parallely ou 1 processors be
denoted by X, and the size of X by N, where N >0. To partition
X we first take a random sample of size nl - 1 (the choice of ¢

will be discussed later), and order this sample in ascending order

to get order statistics
¥, < ¥, < ve. <Y, < bee < Y21.<*;°'.< Y(n—l)£ < "'_<_Yn2—1

?econdly, we-use n -1 p01nts Yn, YZL’ ""-Y(n~l)l as plvor_nodes_q
and form a balanced binary tree having these n — - 1 nodes. At the
bottom of thls trea are n buckets. Fach data is steered to its?

correct bucket as it descends the tree (see Figure 1). Thus from

Figure 1 : Bilnary Tree with n = 5 Buckets.
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this binary tree we are able to partition X into n coﬁédﬁents

such that all data in the i'P component are less than each data

in the i + lSt component, i = 1, 2; .,'’n = 1. Let the iﬁh-
component.-be denoted by Qi’ i=1, 2, ..., n. Then

Ql =X I X< Yi} ,

Qi ={:X : Y(i—1)£< x< le} 3 foT 2 < i = D.—l,

Qu = {x : Y(nfl)g‘: x}

' Now we can usé the sampie sort method proposed by Frazer and
McEellar {6] to sort_these-n Qi's on n processors_simultaneously..
To explain this more clearly, we note that there are £ - 1 sample
poiints between Yti-l)l and Yilf Thgseﬂ.— 1 samp;e-p01nts are again
used as random. sample taken from Qi' Thus we can applj Frazer and

McKXellar's procsdure to sort gach.Qi oﬁ the ith

p;ocessor.' Their
procedure is a‘variation 6f-Quick Sort,.  --" = S = After
parallel sorting, we can eisiiy insert these n pivbt nodes into
Qi and then concafenate all together wifh very liitle effort to
obfain the full sorfed data set X. The entire‘sorting consists

of sampling and insertion of pivot points, parallel sorting on each

processor, and the final concatenation of the sorted components.

&



Let qi(j) be the probability that v, = Xj where vi is the ith

order statistic of the sample and Xj is the jth

clements of the sorted set of X. It is easy to see

: j-1 N-J N
qi(J) = (. ) ( _ ) ( )
i-1 nl -1i-1 nd -1/ .

Let Pi(j) be the probability that the number of elements in Qi is

j . Then we have

LEMMA 1.
Nej-1.\. (] g N ' L
. . f = 2 -
(02 ) (L) ) e
\ (n-1)2 -1 2 -1 ng -1/ o
This probability 1s indé@endent of i=1, 2, ..., D.
- . J n-j-1 N
Proof. Faor i=1, Pi(j) = qz(j+1) = ( )( ) ( ,
' 2 -1/Mn-1)2 -1 ng -1

| - (¥-3-1d N)
For i=n, P (3) = qp_q), (N30 = \(n—l)l—l)(lml> (ﬂl"l )

For 2 is n-1,



N-(n-i)2-j

P;(3) = 2 i1y (Blazy (FFIF1 lY(i-l)l =% )
| t=(i-1)2 :
t -1 N -t AN -t -3-1
N—-(n-1)&-] ( )( )( )(
(i-1)2-17 \(m-i+1)2-1" \e-1 (n—i+1)2-1-1
- z N , N -t
£ o= (i-1)2 ( ) ( . ]
ng - 1 (n-i+1)e- 1
N-j-1 j
- ((nﬂl)i— 1) (1—1)_
( N
nl- 1}.

where qig(t+j+1| y(i—l)ﬁ = Xt) gguals to the;probability qz(j+l)

for a sample of size (n—-i + 1)¢ - 1 from a set of size N - t. O-

From this lemma, we get the distribution function'Pi(j), j=2- 1,
£, ..., N-(n - 1)L . In fact this distribution is called the
negative hypergeometric distribution, - The mean

of this distribution, OT the mean size of Qi is

N -n+ 1

E(j) =
n

and the variance 5f this distribution is

(N — ng + 1¥(n - 1)

Var(j) =
(ng + 1) mn



Thus an approximate 95% confidence interval for the size of Q is

N+ 1 (N-n2+1)(n-1)

o - (n2+1) + n

This holds fér all i and also this formula sets an approximate
lower. 1imit of the size of core storage of each processcor for fast
—prbcessing without disk I/O delay.

"7Let E(C,) be the expected number OI comparisons required to

sort the sample of size nf - 1 by using the minimum storage Quicksort,

then
nz 1
- 2 -
E(Cy) zmafi %) 2(nt.~ 1) (1)
Now We can treat YC _1)1+1 Y(i~1)2+2 < elle < Yli 1 as

¢ - 1 order statistics from a population of size J given that Qi
has size j. We can extend the sample sort proposed by Frazer and
McEellar to sort Qi. The expected number of comparisons required to

sort Q; given that Q; has isze j, j=ze -1 is

- - o T T T e s men et TR e e e iemes e [

ELC(Q | a‘)'j = E(C,) + E(Cy)

whree C2 is the number of.comparisonsrequired to insert the sample,
and C3 is the number of compariéons to sort the segments of Qi.
Similarly with Frazer and McKellar's analysis, it can be showm

that 7

(j-2t1)log,t = E(Cy) = (j-2+1) 0.0861 + 1og21] ,




J |
amiHCQ =2u+ﬂj_zlzﬁj72014.+ly
Thus the expected number of comparisons required to sort Qi is
Efc(e)] = EELc@ | )]

and therefore

E [C(Qi)] = oy E(cg) + B E(Cy)-
After further derivatlion we obtain

Nen+1 iy - N-ng+l
N-nirl 1og,e < E B(Cy) < H22%2 ro.0861 + log,?]

b

3
i

[ S

N-(a-1) /N -3 =% ( {265+i§ _
E E(Cq) = T <(p 1)e— 1) (2—1) | i
. nd -

vene (F7I71) (9
3 5 (n—-1)¢-1 p=1/ 9(j-2+1)

j=o- 1 ( N )
ng - 1

(2)
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To simplify the calculation we need the following genius

identity due to Knuth.

LEMMA 2 (Xnuth).

N-a i . 3 N+1l, N
N-j-1 3 [ . L - P _ ( ) L 1
(3+1) & = 1= 1 L =
f:g, C a-1 ) <£-1) i=g ¥ ath i T

PROOF., N-a . . . J
NG RPN IR 7 ]
522 N a1 /M a-1 3

N-a . . : J
LN—J—-1> J¥1y o T o1
- az (D0 gy o vhere 2y =% 5,
—_— N . . " -
— N-J - J
= 2% ( ( (
0N a-1 ) 2 ) By = Hp)
=) k . a—-1
Now Z(a—l) zr = - — and
R - (1-=z)
(3 )@ - e E o log(ciy
% } 3 2 (l—z)g+l _ 1-z’-

Multiply these iwo power series together and look at the coefficient

of ZN;

o

a+f-1 w@ sN+1 N
Z 1 - - H 7
e les(y) T L (a+9.) (B 41 = Hard)
(1-z) ‘ 0
N
/
and hence the given sum 1is -1(N+l N T%T . gd.
_ a+l a+l

By putting a = (n - 1)2 in Lemma 2,-we have




N+1
Ng-N-1 ( nil)N 1
EE(C4) = 2 [~ + =Ll a3l - e
( \ni
Ng-1 :
N
_ N+1 1
-2[9.+—n——(~1+2 iTl)] (3)
ni
Since L wiy < log(N/(ng-1)) - 1/n2 + 2/(I+1)
II.Q. . -
2 . N+l 1 N
EE(Cy) < 2 (2 + 2+ BE2e1 - 5 S 1.

From the sbhove results we havé.: -

THEOREM 1. The expected number of comparisons (or computing time),

E{C), on processing Qi is given by the sum of Egs.(1),(2),(3), which

is

ng- -1 ' .
ong ¥ —i_ 4 N+1 (log.2 — 2 + 2% ) - 2log,t + 2(2-ni+l)

5 I €9 oY T 0€,9
= E(C)
. nt=l s ' ‘
< 2ng T — + N+1(1 ¢ - 1.9139 + 2% 1 glog. g + 1.91392
oAmb s T 0gyt - 23‘.—!-1) - 2logg '

+ 2(1-nl),

< Ej"3(21 og §_ + logzl - 1.9139 - 5%) + 2n%log(ni-1) - 1log21

+ 1.9139% + % + 6.
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From the discussion of negative hypergeometric distribu-

tion [2 ] it is easy to see that
N-§+K (n:l) .(N—n>
n=k k-1 \ M-k

The left hand side of this identity is a complete sum. But

N
() ey

to consider the partial sum properties, the general approach
is by normal approximation and in most delicated cases no
exact formulas can. be found. However the following identity

can be useful in many fields:
Lemma 3 (Huang). For i b
M-a+1l M-ty  /t b i+ly M-1
o I R A R
t=1i+1 a-1 b t=0 b-t att

M-a+1 M-t a-1
Proof. By induction on b. When b=0, o ( ) = ( )
’ o ' t=i+l *.‘a.‘l'

a . M-i-I1V 0 /M-1
+ ( F o eeeed. F ( = ( .
a-1 a-1 a /

Assume the identity is true for b; we try to prove it true

for b+l, and “in this case the left hand side of the identity is

S O j+1 M-a /M-3-1 sk
equal to & I = L | LB ( ) ]
3=1i a-1 b+1 j=i a-1 k=b ‘b s

11
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From this Lemma and Lemma 2 we have the following identity:

M-a 1 b i+1\ /M-1i MeIly M1
i=b i+l t=0 "\b-t/\a+t a+b/ a+b i+1.
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