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Abstract

Given the geometry of wires for interconnectiohs, we want to
assign two conducting layers to the segments of these wires so that
the number of- vias required is minimized. This layer assignment
problem, also referred to as the via minimization problem, has been
formulated as finding a maximum cut of a planar graph. In this paper,
we propose a new algorithm for optiﬁal layer assignment under  a
general model where théi planar graph has real-valued edge weights.
The time complexity of the proposed algorithm is 0(r13/2 log n) where n
is' the number of wire-segment clusters in a given layout. In
contrast, all existing optimal algorithms for layer assignment have

the time complexity of O(n3). And none of these existing algorithms

-can find an optimal layer assignment under such a general model.




i. Introduction

We consider the layer assignmeﬁt problem in an environment where
two conducting layers are used for interconnection. Most existing
routing algorithms for two layers assign all the vertical wire
segments to one layer and all the horizontal wire segments to the
other. Therefore, a large number of vias are introduced to
interconnect the wire segments on different layers. Vias not only
reduce the reliability and 'performance of the circuit, but also
increase the manufacturing cost. Thus, it is desirable to reduce the
number of vias. The objective of the layer assignment problem is to
assign wire segments tc the layers so that the number of vias is
minimized. {This problem is also known as the via minimization

problem.)

The layer assignment problem can be stated as follows: Given a
collection of nets such as in Fig. ll(borrowed from [18]), each net
cohsisting of wire segments that electrically comnmect. a set of
terminals, find a layer assignment to all the wire segments such that
any two wire segments in different nets that crbss or overlap each
other (The design rules must be taken into account.) are assigned to
different layers. When two connected wire segments are assigned to
different layers, a via must be introduced. Then minimizing thé
number of vias is equivalent to minimizing the total layer changes in

the layout. A possible layer assignment for the nets in TFig. 1 is

shown in Fig. 2 where 3 vias are introduced for layer changes.




Hashimoto and Stevens {first formulated the layer assignment
problem as a graph—-theoretic maximum cut problem [9]1 By using a
similar but more general graph model, Stevens and VanCleemput proposed
an approximate method [18]. Ciesielski and Kinnen proposed an integer
programming method, but the time complexity of their algorithm is
exponential [4]. Kajitani identified the wire-segment clusters in a
layout, and showed that the graph in Hashimoto’s model is planar [12].
- Thus optimal polynomial-time algorithms for via minimization were
proposed based on the maximum cut algorithms for planar graphs
[3][12][18]. Recently, Chang and Du developed a heuristic algorithm

by splitting vertices in a graph [2]."

All existing polynomial-time algofighms [3]1[12][18] for optimal
layer assignment are based on Hadlock's maximum cut algorithm for
planar graphs [1] [8]. Since Hadlock's algorithm includes subroutines
for finding all-pair shoftest paths and for finding a maximum weight
matching of a dense graph, these layer assigﬁﬁent algorithms are very
involved and have the time complexity of 0(n3) where n is the number

of wire-segment clusters in the given layout. In contrast, we shall

present an O(n.?’/2 log n) algorithm for optimal layer assignment which
is faster and more general. The proposed algorithm is based on a

model due to Pinter [18]. Note that the original graph model of
Hashimoto and Stevens is rather restricted. By introducing negative

weights associated with the edges of the planar graph, Pinter

generalized their model to allow wire segments of any orientations




{(not necessarily horizontal or vertical) and to allow 3-way split
points (T-shape connections) in the nets. We shall show that
Hadlock’s algorithm does not work under this general model (The

opposite was claimed in [18].) but our algorithm does.

‘In Pinter’'s model, a split point is connected to at most 3 wire
segments, i.s. its split number is at most 3. This Iimitation can be
easily removed by adopting the modeling methods in [3][19] though the
optimali;y of the proposed algorithm must be compromised. Since split
poihts with split numbers greater than 3 are uncommon in a layout, it

is conceivable that this algorithm can get near-optimal solutions with

such extensions.

The layer assignment problem considered in this paper is

sometimes referred to as a constrained via minimization problem since

‘the geometry of a layout is given and fixed. The problem in which

both topology of the layout and the layer assignment are to be decided

is referred to as an unconstrained via minimization problem

[27[11][18].

In the next section, we briefly review Pinter's graph model for
layer assignment. In Section 3, a series of problem transformations
are introduced to show that finding a maximum cut of a planar graph
can be reduced to finding a minimum complete matching of a sparse

graph. The algorithm for optimal layer assignment is then presented

in Section 4 with empﬁasis on a recursive procedure for _finding the




minimum complete matching. Finally, in Section 5, we will make some

remarks on why Hadlock's algorithm can not find a maximum cut under

Pinter’s general model.




2. The Graph Model

In this section, we briefly describe Pinter's graph model for
layer assignment [18]. The emphasis is placed on the intuition behind

the model.

In a given layout such as in Fig. 1, one can identify the
following objects:

A via candidate is a meximal piece of wire that does not cross or
overlap any other wire, and can accommodate at least one via.

A wire segment is a piece of a  wire- comnecting two via
candidates.

A wire—segment-cluster (or simply clﬁster) is a maximal set of
mutually crossing or overlapping wire segments.

For example, in TFig. 1, wire segmeﬁts are labeled by numbers 1
through-18. The wire segments 4,5,6,12 and 14 form one cluster; the
wire segments 7,8,9 and 18 form another clustér. Connecting the two

clusters are 3 via candidates.

Note that in each cluster, once a wire segment is assigned to a
certain layer, layer assignment of the rest of the cluster is forced.
Thus there are only two possible ways to assign the wire segments in a
cluster to layers. With a prescribed layer assignment, a cluster is
said to be flipped over if all the wire segments in the cluster are

reassigned to the opposite layers.




The clusters can-form a planar graph called the cluster graph.
Each vertex of the graph corresponds to a cluster, and two vertices
are comnected by an edge iff their corresponding clusters are
connected to at least a common via candidate. The cluster graph for
the layout in Fig. 1 is shown in Fig. 3 where each vertex is labeled

by using a representative in its corresponding cluster.

Assume that a laygr assignment such as in Fig. 2 is known. Then
associated with each edge e of the cluster graph is a weight w(e)
defined as follows: Let v be the number of via candidates comnecting
the two clusters incident to e, and let ¢ be the number of vias

Aintroduced by the known layer assignment connecting the two clusters.
Then |

w(ie) =0 - (v = o).

In other words. the ﬁéight indicates the via .reduction that can be
achieved due to flipping over either one of the two clusters. -As an
example, in Fig. 3, thg weight fof the edge connecting clusters 5 and
15 is 2 since for this edge v = ¢ = 2 (with reference to Fig. 2). If
one of the clusters 5 and 15 is flipped over, then the two vias

connecting clusters 5 and 15 can be eliminated. °

An arbitrary layer assignment L can be obtained from a known
layer assignment L0 by flipping over a set of clusters. Let o(L) and
U(LO) be the numbers of vias introduced by L and LO respectively, and

let X be the set of clusters that are flipped over. Then

a(L) = U(LO) - 2 w(e) (1)
e € E(X.X)
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where E(X.ﬁ) is 2 cut separgting X and X, i.e. the set of edges
connecting vertices in X and vertices not in X. (1) is due to the
fact fhat for any two clusters both in X or both in X, the via count
between the two clusters remains unchanged, but for two clusters one
in X and one in X, the via count is reduced by w{e). In order to
minimize the via count oL}, we want to find a cut E{X.X) which

maximizes its weight 2 _w(e), i.e. to find a maximum cut. Note
e € E(X.X)

that the edge weights w{e) can be positive or negative, but a2 maximum
cut always has nonnegative weight since X can be ¢ and

3 w(e) =0 for X =¢ . In case that a maximum cut has weight
e € E(X.,X)

0, LO is an optimal layer assignment.

For -the cluster graph in Fig. 3, vertex sets. {2,5,8} and {11,155}
determine a maximum cut of weight 2. Thus an optimal layer assignment
can be obtained from the layer assignﬁent'shoﬁn in Fig. 2 by flipping
over clusters 11 and 15. The resulting layer assignment is shdwn in

Fig. 4.




3. Problem Transformations

Let G = (V.E) be the cluster graph for a given layout. Then G is
planar and each edge of E has an associated real-valued weight. By
introducing a series of transformations, we will show that a maximum

cut of G can be found by finding a minimum complete matching in a

certain graph G’ constructed from G.

Without loss of éenerality, we assume that & is connected.
(Otherwise =2 maximum cut can be found by finding maximum cuts in
~individual connected components.) We first trianguléte G by adding
some new edges. A triangulagion Gt = (V'Et) of G is a connected
planar graph embedded in the plane satisfying

(1) ECE,.

{ii} Each vertex of Gt has &égree at least 2,

(iii) Each face of Gt is enclosed By a simple cycle of three

. edges, and |

(iv) Any two faces of Gt share at most one edge.

We assign zero weight to each new edge in Et - E. As an example,

a traingulation of the planar graph in Fig. 3 is shown in Fig. 5.

Lemma 1. A maximum cut of G = (V,E) corresponds to a maximum cut of

Gt = (V.Et). and vice versa.

Consider a geometric dual Gd = (Vd.Ed) of Gt = (V’Et) [5]. G




can be constructed from Gt as follows: Consider an embedding of Gt in
the plane. Associated with each face of Gt' there is a vertex in Gd.
For '‘each edge shared by two faces of Gt' there is an edge in Gd
connecting the two corresponding vertices. A geometric dual of the
plénar graph shown in Fig. 5 is illustrated in Fig. 6. We assign to
each edge of Ed the same weight as its corresponding edge of Et' In
general, a geometric dual of a planar graph is a multigraph. However,

due to the construction of Gt' Gd contains no self-loops and parallel

edges, and Gd is regular.

Lemma 2. Gd = (Vd.Ed) is a cubic planar graph. (A graph is cubic if
each vertex of the graph is of degree é.)

Proof: Gd ﬁontains ne self-loops énd parallel edges since Gt satisfies
(11) and (iv). Thus G; is a graph. Each vertex of Vd is of degree 3

since Gt satisfies (iii); The planarity of Gd is due to the fact that

G, 'is a geometric dual of G_. _ S o Q.E.D.

In Gy = (V&.Ed), an edge set D C E; is said to be even—degree if
each vertex of Vd is incident to an even number of edges in D. The
weight of an even—degree edge set D is the total weight of the edges
in D. Since Gd = (V&.Ea) is a geometric dual of Gt = (V'Et)' there is
a one—to—one correspondence between edges of Et and edges of Ed. This
induces a natual correspoﬁdence betwegn the cuts of Gt and the

even—-degree edge sets of Gd'

Theorem 1. A cut of Gt = (V.Et) corresponds to an even—-degree edge set
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of Gd = {Vd.Ed). and vice versa.

Theorem 1 will be proved later in the appendix. Here we simply
illustrate this theorem by an example. TFor the graph in Fig. 5,
consider the vertex set X = {8,11}. X determines a cut E(X.X) where

E(X.X) = {(8.2).(8.,5),(8,15),(11,2),(11,5),(11,15)}.

In the dual graph (Fig. 6). the edge set that corresponds to E{X.X) is

{{E.D).(D.4).(A.E}. (F.C).(C.B).(B.F)}.

Apparently, this edge set is even-degree, and consists of two simple

cycles.

Corollary 1. A maximum cut-of Gt = (V.Et) corresponds to a maximum
(weigﬁt) even—degree edge set of Gd = (Vd.Ed), and vice versa.

Proof: Directly from Theorem 1.

The following lemma characterizes a maximum even~degree edge set
of Gd'
Lemma. 3. Let D be a maximum even-degree edge set of Gd = (Vd,Ed).
Then D is either empty or a union of vertex-disjoint nonnegative
cycles.

Proof: Assume D # ¢. Since Gd is a cubic graph, each vertex of Gd is
adjacent to 0 or 2 edges in D. Thus D is a union of vertex~disjoint

cvcles in Gd. The claim then follows from the fact that D is maximum.

Q.E.D.




To find a maximum even-degree edge set of Gd = (Va'Ed)' we
construct a graph G’ = (V',E') from Gd' Each vertex v of Gd is

replaced by a "star” in G' and each edge e of Gd has a surrogate in G’
as depicted in Fig. 7. For the cubic planar graph in Fig. 6, the
constructed graph is illustrated in Fig. 8. Define the edge weights
of G’ as follows: the surrogate of each edge e € Ed has the same

weight as e; and all new edges in stars have zero weights. Similar

constructions have appeared in [13][17].

A matching M of graph G = (V',E') is a set of edges no two of'
which havela common vertex. If [M| = IE'|/2, " then M is called a
complete matching. A wmweximum weight matching (minimum complete
matching) is a ma£ching (complete matching) of G’ whose total 'weight

is maximum (minimum).

Theorém 2. Let M C E’ be a minimum complete matching of G’ = (V'.E").
Then Ed ~ M is 2 maximum even-degree edge set of Gy = (Vd.Ed).

Proof: Let M C E' be any complete matching of G’. If M contains edge .
(v’'.v¥") in a star substituting a vertex v of Gd (see Fig. 7), then M
‘must contain all the edges incident to v in G, and hence v has degree

d

C in the subgraph of Gd induced by E. ~ M. On the other hand, if M

d
does not contain (v’,v"), then v has degree 2 in the subgraph. Thus
Ed - M 1is an even—degree edge set of Gd' Conversely, let D be any

even—degree edge set of Gd' As shown in Lemma 3, D is either empty or
a union of wvertex-disjoint cycles in Gd' Thus from the construction

of G', one can observe that there exists a complete matching M of G’
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such that D = Ed - M. (Such a complete matching is illustrated in
Fig. 8 with respect to an even-degree edge set shown in Fig. 6.)
Clearly the weight of Ed - M is maximum if and only if the weight of M

“is minimum. Q.E.D.
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4. The Algorithm

Let us summarize the algorithm for optimal layer assignment and

analyze its time complexity.

Input: The cluster graph Gc = (VC.EC) for a given layout. Real-valued
weights are assigned to the edges of Gc with respect to a known
layer assignment.

Output: A maximum cut of Gc.'

Algorithm MaxCut

1. Decompose Gc into connected components. For each connected

component G = {V,E), do steps 2 to 5.

y

2. Construct a triangulation Gt = (V,Lt) of G = (V,E) by adding new

edges to G. ' i
- 3. Coﬁstfuct a geometric dual G, = (Vd.Ed) of ét = (V.Et).
4. Construct the graph G' = (V' ,E’} from Gé. Each vertex of Gd is
replaced by a "star" in G'. | ' , . ' . i
5. Find a minimum complete matching M of G'. M determines a maximum _ ;
even—-degree edge set Ed—M of Gd which corresponds to 2 maximum cut
of Gt and thus a maximum cut of G = (V,E}. |

6. Combining the maximum cuts for individual connected components, we

have a maximum cut for Gc = (VC.EC).

Let n, and n be the numbers of vertices of Gc and G respectively.
Since Gc is planar, due to Euler’s Theorem [5], Gc has O(nc) edges.
Thus Step 1 can be computed in O(nc) time by using a simple

depth~first search. Applying Euler’s Theorem repeatedly, we can see




that each of the graphs G, Gt and G, bas O{n} vertices and O(n) edges.
G’ alsc has O{n) vertices and O{n) edges for each star in G' contains
5 wvertices and 7 edges. Each of Step 2 and Step 3 takes O(n) time
-since they can be carried out by embedding G and Gt in the plane and
identifying their faces [10]. That Step 4 takes O(n) time and Step 6
takes O(nc) time is obvious. We have argued that all steps except
Step 5 takes linear time in the worst case. Below we shall describe

an O(n‘B/2 log nj algorithm for Step 5 of Algorithm MaxCut.

A minimum complete matching of G' = (V',E') can be found by
finding a maximum weight matching of the same graph except that the
weight w(e) of each edge e € E’ must be replaced by a new weight
¥ - w(e) wﬁere ¥ is a large constant. ' {The negation of w(e) .converts
a2 minimization problem to a maximization problem. The added large

constant W forces the obtained matching to be complete.) Lipton and
3/2 '

Tarjan have presented an O(n™ ~ log n) algorithm for finding a maximumﬁ

weight matching of a planar graph by applying the planar separator
theorem [14][15]. For graph G' = (V',E') which is not always planar,
the same "divide-and-conquer” method can still be applied as K.

Matsumoto, et al. have pointed out [17].

Imput: Graph G" = (V",E"}. G" is the same as G’ = (V',E’) except that
the weight w(e) of each edge e € E’' is replaced by ¥ - w(e)
where W is a large constant.

Output: A meximum weight matching of G”.

Algorithm MaxMatching




1. If G" contains a few (no more than a fixed constant) vertices, find
a maximum weight matching of G" by the algorithm in [6].

2. Otherwise, partition the vertices of G” into three sets A, B, and
C such that no edge joins a vertex in A with a vertex in B, |A],

B < ey v] and fc] ¢ eplv]¥2

for suitable constants cq (< 1)
and_c2.

‘3. Let GA and GB be the subgraphs of G” induced by A and B
respectively. Apply the algorithm recursively to find maximum
weight matchings MA in GA and MB in GB' Let M = MA U MB and
S =AUB.

4. Add C one vertex at a time to S. Each time a vertex is added to S,
replace M by a maximum wgight matching in Gs, the subgraph of G”

induced by S. Stop when S = V",

Lemma 4. A minimum complete matching of G’ = (V',E’) can be found in

O(n3

/2 log n) time by using Algorithm MaxMatching.
Proof: In Algorithm MaxMatching, Step 1 takes constant time. The
partitioning in Step 2 is guaranteed by the planar separator theorem

and takes O(n) time [14]. Step 3 involves two recursive calls on

subgraphs of size at most c . Step 4 takes O(n3/2 log n) time since
1/2

each updating of M takes O{(n log n)} time and lc]l = o™ “) [8].
Solving the recurrence relation
T(n) = T(n,) + T(ny) + O(a>> log n)
3/2
where n, +n, { n and n,. By < cin, we have T{n) = O(n log n).

(For a detailed analysis; of Algorithm MaxMatching, please see [17].)

Q.E.D.
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Theorem 3. Given a cluster graph Gc = (VC.EC) with real-valued edge

weights, Algorithm MaxCut can find a maximum cut of Gc in

O(nifz log nc) time. In other words, an optimal layer assignment can

/2

be found in O(nc log nc) time where n, is the number of clusters in

a given layout.

- 18 -




5. Concluding Remarks

We have presented a new algorithm for optimal layer assignment.
The algorithm has the time complexity of 0(:113/2 log n) where n is thé
number of clusters in a given layou;. In contrast, all existing
polynomial-time algorithms for optimal layer assignment are based on
Hadlock's maximum cut algorithm for planar graphs which has the time

complexity of O(nS) [8].

The new algorithm is not only more efficient, but also more
general. It can find an optimal layer assignment under Pinter’s
genera! model {[187]) while Hadlock's algorithm can not. In Pinter's
model for layer assignment, the cluster graph can. have mnegative
weights associated with its edges; In the following, we will see why
Hadlock's éigorithm can not find a maximum cut in a flana; graph with
negative weights. Hadlock tried to findla maximum cut of a planar
graph by finding a maximum evenjdegree edge set in the graph's
geometric dual (Similar to Corollary 1). His algorithm relies on the
result that the complement of a maximum even—degree edge set 1is a
union of edge-disjoint shortest paths connecting pairs of odd-degree
vertices. This result is true for planar graphs with nonnegative
weights, however, is mnot true for planar graphs with negative weights.
As an example, for the planar graph in Fig. 3, its geometric dual is
shown in Fig. 9 where the maximum even-degree edge set is a simple
cycle. {Edges in t@e cycle are marked with short bars.) The

complement of the maximum even—degree edge set consists of an edge




A il

and C plus a2 negative cycle joining B and C. Note that in the
presence of mnegative cycles, the shortest path is not well-defined,
and finding a simple path which is shortest is NP-hard [7].

Therefore, Hadlock’s algorithm can not be adapted to the general

- situarion where the planar graph has negative weights.
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Appendix

We will prove Theorem 1 in this appendix. Given a connected graph
G = (V.E), let E{A.B) denote the set of edges of G that connect two
disjoint vertex sets A and B. Thus an edge set CCE is a cut iff
there is a partition of V into two nonempty sets X and X such that C =
E(X.X). (We exclude the empty set as a cut for ease of presentation.)

A cut is minimal if none of its proper subsets is a cut.

Lemma 5. The union of two disjoint cuts is a cut.

‘Proof: Let C = C,UC, where C, = E(X.X), Cy = E(Y.Y) and C,nC, = b.

Consider the vertex sets XNY, XNY, XNYand X0 ¥ as shown in

Fig. 10. Since .Cl n C2 = O, we have

E(XNY,XNY) = E(XNY.XNY) = &,

C, = E(XNY,XNY) U E(XNY,XNY) and

C, = E(XY,XN7) U E(XnY.%nY).
Thus C = CIUC: is a cut se.pafating (XNYYU(XNY) and
(XNYYU(ENY) . : _ Q.E.D.

Lemma 6. Let C andCzbeéutsofGandC cCC,. 'I'hranC:Cz—C1 is

1 1 2

also a cut of G.

Proof: let 02 = E(X.X) and Cl = E(Y.Y). Consider the vertex sets XNY,

XY, XY and ¥NY as shown in Fig. 11. Then
Cy = E(XNY,XNY) U E(XNY.XNY) U E(XNY,XNY) U E(XNY,XNY).

Since C1 c C2 and C1 is =z cut separating Y and Y, we have

C, = E(XNY.XNY) U E(XNY.XNY) and

1
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E(XNY.XNY) = E(XNY.XNY) = &.
Consequently, C = C2 - C1 = E(XNY,XNY) U E(XNY.XNY) and C is a cut

separating (XNY) U (XNY) and (XNY) U (iﬂY): Q.E.D.

Lemma 7. An edge set CCE is a cut of G = (V,E) iff it is a union of
disjoint minimal cuts of G.

" Proof: Directly from Lemmas 5 and 6.

The even-degree edge sets have essentially the same properties as

the cuts. We just state the result without proof.

Lemma 8. An edge set is even-degree iff it is a union of edge-disjoint

simple cycles.

In the planar graph theory, the minimal cuts of a planar graph..

are associated with the simple cycles of its dual graph [5]. .The

following lemmz is a classic result.

Lemma 8. Let G = (V.E) be a connected planar graph, and let Gd =
(Vd.Ed) be its geometric dual. Then there is a one-to-one
correspondence f:EﬂEd which maps a minimal cut of G to a simple cycle
of Gd and vice versa.

Due to Lemmas 7, 8 and 9, Theorem 1 is proven.
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Ik Fig. 4. Optimal layer assignment 3




(Edges marked with short bars form a cut.)

Fig. 5. Triangulation Gt of G




(Edges marked with short bars form a cut.)

Fig. 5. Triangulation Gt of G
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(Edges marked with éhort bars
form an even-degree edge set.)

Fig. 6. Geometric dual G. of Gt
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Fig. 7. The star substituting a vertex




(Edges marked with short bars form a complete matching.)

Fig. 8. Graph G' constructed from Gy




Fig. 9. Geometric dual of G
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Fig. 10. Illustration for Lemma 5




’ ’ Fig. 11. Illustration for Lemma 6




