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1. Introduction

In this paper, we consider the following related geometric location

problems:

(A) Given a set S of points and a poéitive real number d, find a largest
subset of S in which the distance between any two pointsjis greater
than d.

(B) Given a set S of points and a positive integer p, find a p-point
subset of S in which the two closest points are farthest awaf.

To be formal, let § = { pl,pz,...,pn} . For Problem A, we.wish to

maximize the size of a subset T which satisfies

min {d(pa,pb)’ paé T, pbé T, P, # pb} > d.
But for Problem B, we wish to find a subset T of given size p which can
maximize

min {d(pa’pb)l P, T pp € TP, pb} ’

. Since we shall consider Problems A and B in either the l-dimensional ox

the 2-dimensional Euclidean space, there are actually four problems to

be considered, which will be referred to as Al, A2, Bl and B2

?espectively.

The probléms just described are most related to the Euciidean
p—center problem [1]. The l-dimensional Euclidean p-center problem has
been shown to have an 0(nlog: n) upper bound on its time complexity [2].
In contrast, Problem Al can be solved by sorting in time O(nlog n), and
we have derived an elegant dynammic programming algorithm for Problem Bl
which runs in time O(pn+nlog n). For the 2-dimensional case, we will

prove that both Problems A2 and B2 are NP-hard as the Euclidean p-center



problem is {1], Incidentally, we also prove that the maximum

independent set probléem for circle intersection graphs is NP-hard.




2. The l-dimensional case

In this section, we give efficient algorithms for Problems Al and
Bl. Problem Al can be solved by the following greedy algorithm: First
sort the set S of points. Then scan the points from left to right and
select -a -point  whenever its distance from the last selecéed point is
greater than d. (The leftmost point is selected initially.) It is easy
to prove that this algorithm does find a largest subset as required and

its run time is O(nlog n)}.

As for Problem Bl, we use a dynammic programming approach. Let us
assume that the points of S have been presorted in ascending order, i.e.
Py < Pp< «vo <P Let S, = {pl,pz,...,pi} and let

dij = max min 'pa_Pbl s 2£3%4i%n,

' T;Si pa,pbeT z

ITI = j P # Py

p; €T
. be an optimum solution for -Problem-Bl-given Si ‘as ‘the set of points and
j as the selection size. ({Thus dné is the solution we are seeking for.)

Then dij can be computed by the following recurrence relatioln:

dyp=pP; - Py (1)

max min {dh j—l’pi-ph}’ 2<j<1i4n.
>
j-l<h<i

dij

A straightforward implementation of (1) yields an'O(pnz) algorithm.
However, we can exploit some structures peculiar to dij and reduce the

run time to O(pn).



h
Let dij = mln{dh,j_l,pi-ph}

, §£4, j-l4h<i.
Lemma 1., There exists an h such that

=1, 4 3 h h h+l i-1
L s & - . .
d 13 £ 1" £ < dij and dij > dij > > diJ

Proof: Note that dhlj-l is nondecreasing and P; Py, is decreasing as h
- 3

- h . L . ~h .
increases. Since di is the minimum of dh,j—-l and Py Py dij consists

of a nondecreasing and a nonincreasing subsequences as shown in

Fig.l(a). (One of the subsequences may not be present if the curves for

dh,j—-l and P; = Py do not intersect.) Q.E.D,

Lemma 2. Let h(i,j) be the h specified in Lemma 1 with respect to i and

j. Then d,, = d. D) ond n(d, ) € h(itLL3), §< .

1j
Proof: From (l), we have d,, = max d..h.
ij ij
j=l<h<i
Thus d., = d..h(i’J) due to Lemma 1.
ij ij

If h(i+l,j) = i, then h(di,j)< i-1 <h(i+l,i).

Assume h(i+l,j) <i. By defimnition, min { d

41,3 h,j~1’pi+1"ph} y

With reference to Fig. 1(a) and (b}, dh remains the same but P; Py

,j"'l-
is raised. to P17 Phe Thus the intersection must shift to the right.

In other words, h(i,j) <€ h(i+l,j). Q.E.D.

Lemmas 1 and 2 can lead to the following algorithm for Problem Bl:




Algorithm Bl

.for i-= 2 to n do d12 =P, ~ P endfor

for j = 3 to p do
h(j,j) = j-1

d,, = min{d

i j-1,1-1°P5 P51 §

e ce for 4 = j+l to n do

for h = h(i-1,j) to i-1 do

-

1f bl <t and min {d o )opy-ped > min{dyyy o opypyy

then break
endfor
h{(i,j) = h

endfor

Theorem 1.

"0(pn + nlog n).

- eme=w— - Proof:-Algorithm Bl correctly computes h(i,j) and dij according to
Lemmas 1 and 2., 1Its run time is O(pn) since at most 0{n) statements are

. executed in the two inner for lcops. The term nlog n accounts for the

presorting time.

f* determine h{i,j) *7

Algorithm Bl plus a presorting can solve Problem Bl in time

Q.E.D.



3. The 2-dimensional case

We shall establish the NP-hardness of Problems A2 and B2 by proving
the maximum independent set problem for circle intersection graphs to be
NP-complete. The maximum independent set problem is known to be
NP-complete for genmeral graphs, but it is solvable in'sﬁlynomial time

for many restricted classes of graphs. [3]

A graph is a circle intersection graph if each of its vertices
corresponds to a unit cirele in the plane and two vertices are joined by
an edge iff their corresponding circles intersect, (This definition is
not as general as that appeared in the literature due to the restriction
of unit circles.)

Maximum Independent set for Circle Intersection Graphs (MISCIG). Given
a circle intersection graph G ="G(V,E) and a positive‘iageger p, does G
contain an independent set of size p or more, i.e. a subset W C V such
that {W| 2 p and such that no two vertices in W are joined by an edge in

E?

Theorem 2. MISCIG is NP-complete.
Proof: It is obvious that MISCIG is in NP.
Following the éechnique developed by Megiddo [l1], we establish a
reduction from 3-satisfiability (3]. Formally, given a boolean
expression

E = ElAEZi/\ /\Em

where Ej = xj v yj v zj ( {xj,yj,zj} g.{ul,ul,uz,uz,...,uq,uq} ), the

3-satisfiability problem is to decide whether there exists an assignment




Acg { ul,ﬁl,uz,ﬁz,...,uq,ﬁq} such that

Il

A (\{styjazj} #?5 (j 1,2,...,m),

and AN {ui,ﬁig = ] (i 1,2,...,q9).

In the reduction from 3-satisfiability to MISCIG, each variable u
(i = 1,2,...,q) will be represented by a "circuit" of vertlces in the
plane. The clauses Ej (i = 1,2,...m) are represented by '"clause
configurations" which determine how the different circuits meet each
other.' Circuits must cross each other, without interfering with each
other's properties; this requires that we design. the "junétions". A
schematic view of the circuits and their relétions to the clause
configurations is shown in Fig. 2. Note that the constructed graph will
be a ciréle intersection graph laid out in the plane, each vertex of the
graph is positioned-;t the center of its corresponding unit circle.

We now describe the 3 components in details. Associated with each

, , _ i i i
variable u, is a circu;;_qf vgrtices Ci = .{vo V) ,...,vri} » Where
i 1 , i i . .
vy = vri, r, is even and Vi and v, are joined by an edge iff
ik -— h]l = 1 (mod ri)...As.Shown_in.Figb_3,ma circuit Ci consists of a

vertical stem and some horizontal branches, each branch corresponds to a
clause Ehat u, or Ei appears. It can be observed that T, is bounded by
qm to a constant factor,land the coordinates of the vertices in all the
circuits can be computed in polynomial time. In a circuit, a vertex Vi

1s called an even vertex or an odd vertex depending on whether k is even
or odd. There are essentially two different ways to choose these
vertices into a maximum independent set, namely, either all even

vertices or all odd vertices. The former case will correspond to the



assignment of '"true" to u, and the latter case correspond to the

assignment of "false" to u,.

In the reduction, each clause Ej = X. v yj v z:j is represented by a

configuration of three vertices va, vyJ and VZJ as shown in Fig. 4.

. : _ i o
The wvertex va, for example, is adjacent to a vertex ve in the circuit

, , - i,
Ci for variable u, where i 1is such that xj = {ui,ui} . Moreover, Ve is

an even vertex if xj = uy and an odd vertex if xj = u,. Thus, if Ej is
satisfied by an assignment A containing xj, then vfl is not in the
independent set and va can be included in the independent set. In

fact, this clause configuration has the property that if not all of the
vertices vfi, vgJ and vhk are in an independent set, then one and only

3 3

one vertex among v -, vy and VZJ can be included in the independent

set,

As we can see in Fig. 2, the vertical stem of a circuit may
intersect a horizontal branch of another circuit, and each intersection
produces 4 cross points. ~ To avoid such interference, ﬁe introduce
junctions, one junction for each cross point. As shown in Fig. 5{ two
circuits Ci and Cj cross each other and a junction consiééing of 4 new
vertices is created to join vertices vki and Vk+li and vertices vhj and
vh+lj' We insist that both k and h be even numbers. This ensures that
the segments of circuits between consecutive junctions have even number
of vertices. Furthermore, such a junction component has the following
property: If both Vk? and vk+li or both vhj and vh+lj are in an

independent set, then none of the 4 vertices in the junction can be

included in the independent set. Otherwise, one and only one vertex in




the junction can be included in the independent set. In other words, if
in each cireuit only even vertices or only odd vertices are in the
independené set (consistent assignment of truth value to each variable),
then an additional vertex for each junction can be included in the
independent set. Let us denote the number of junctions by J.
Letting
i
p = .Z[ri/2 +m+ J,
‘=
we claim that E is satisfiable iff the constructed graph has an
independent set W of size p or more. Before we give the proof, note
that the constructed graph is a circle intersection graph since each of
the components shown in Fig. 3, 4 and 5 is a circle intersection graph
laid out in the plane. Also from the construction of these components,

we know that the graph can have an independent set of size at most p.

Assume that E is satisfied by a truth assignment A. For

i=1,2,...,9, if A contains ugs then include in W the even vertices of
the circuit for ugs if A contains Uy then include in W the odd vertices
of the circuit for u, - We can add an additional vertex in W for each

clause and junction as we have argued. Thus W is an independent set of

size p.

To prove the converse, let W be an independent set of size p.

Since each junction and clause can contribute at most one vertex in W,

each circuit C i=1,2,...,q9, must have ri/2 vertices in W. This

i!

ensures that each segment of Ci between consecutive junctions has either




the even vertices or the odd vertices im W. Suppose that the segments
of Ci have both even vertices and odd vertices in W. Then there exists
a junction joining two vertices of Ci both of which are in W, Such a
junction cam not contribute a vertex im W. Thus W can not have p
vertices which is a contradiction. We have shown that each circuit Ci

has either the even vertices or the odd vertices in W. Let us include

u, or u, Iin an assignment A depending on whether Ci has the even

i i
vertices or the odd vertices in W. E is satisfied by this assignment

since each clause configuration has contributed a vertex im W.

Q.E.D.
It is easy to prove that each of Problems A2 and B2 is polynomially
reducible to the other and MISCIG is pelynomially reducible to Problem

A2. Thus we have the following corollary.

Corollary 1. Both Problems A2 and B2 are NP-hard.




4. Concluding remarks

Both Problems Al and Bl have a lower bound of ()(nlog n) for the
€ ~closeness problem [4] can be transformed to these problems in linear
time. Thus, sorting for Problem Al 1is optimal. The dynammic
programming _algorithm for Problem Bl, however, has éhe run time
O(pntnlog n). Further research should bé undertaken to bring close the

upper and lower bounds.

We can consider Problems A2 and B2 relative to the rectilinear
distance d((xl,yl),(xz,yz)) = le—le + [yl+yzl . These two problems
can be proven to be NP-hard in exactly the same way as thelr Euclidean

counterparts.
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Fig. 2. A schematic view of the reduction
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Fig. 3. A circuit of vertices
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Fig. 4. A clause configuration

Fig. 5. A junetion




