TR—87—005
A Manipulation Language for
Visual Programmings

KUO-~YANG CHENG

(i S AR
' nmumnnmw|||Hﬂ[|i|ﬂ|ﬂ||ﬂ?ﬂ|ﬂﬁifﬂ|0u@\|wmwmmm

0065

" PART TWO

A Manipulation Language for

Visual Programmings

" B

R AR T B B R T » BIFER B A RERE
BFEETHERESR BE—FEREANER - RERASHEREIE
18] EL T S SRy — R B o EG » TR — R A XA A R C
vnm>,Eﬁﬁﬁ%%umﬁmﬁﬁ%mﬁ@ﬁm@mﬁﬁ4m@ﬁ%
BRBLARSES » HMLREREHS CRBGLEARS NERER
s WERESE RS R % ROTMS » SEE T BB ER AR o — Ml ©

AR R E R OEEEE (VML) » VML 208
%mmﬁﬁﬁﬁﬁﬁ’%Tém—@ﬁﬁﬁﬁ%,ﬁﬁmﬁﬁﬁwﬁﬁm'
sl gl > VML RS DRaiE BN BA) B B3 e R
£ MR o 08 I IREST R S L aviElE - RIBETE AR WL
A 56 R — B A A — B Py S SEPYE R AT LLB— ARA S
REBRE RN o 8% » K D—EE MY HBHFATHRRPAVIPS
MTRE RS —BERARR |

ABSTRACT

The nature of computer applications have changed in recent years.
Non-programmers are turning to spontaneous demands for developing
their own application programs. A visual programming approach is
proposed to achieve this goal. We preSént a VIsual Programming
Synthesizer(VIPS) which allows users to describe their application in
visual. In VIPS, V-Forms (visual forms) are used as the fundamental
objects because tﬁey are more akin to the user's view point and they can

be used as medium in the program synthesizing process.

In this report, a V-Form Manipulation Language(VML) is
presented. VML is a visual-oriented non-procedural language and
served as a program editor that can manipulate V-Form instances at
will. VML provides the following operations: (1) Displaying, (2)
Inserting, (3) Removing, (4) Updating, (5) Grouping, and (6)
Degrouping. After operating on V-Forms, a user-defined application
can be self—synthesizéd into a cdnsistent internal structure which can be
e*{ecuted by a dlrect V-Form interpreter. A CAI example is given to
111ustr'1te how an application program can be synthesized and

manipulated by VIPS.

il

CHAPTER 1.

CHAPTER 2.

CHAPTER 3.

CHAPTER 4.

CONTENTS

INTRODUCTION....ccciiiiiiiiriiriniceiarerenens i
1.1 Background.....cccooovrimiiiiiininiiininniinnn. 1
1.2 Related Research........ et eaeeen 4
1.2.1 QBE/OBE....ccccciriviiirneriinriennens 4
1.2.2 FORMAL....ccooiiirniiiiiniinieiiinn, 5
1.2.3 STDL..cooirriiinrtnninnirieresnannneee. 6
1.2.4 PegaSys......... et 7
1.3. Our Approach.....cccvvvivvesremrirnnnceninnnne 9
1.4 Organization Of The Thesis.....ccccovueennee. 11
LANGUAGE ENVIRONMENT......c....ccoooc... 13
2.1 Definition of Visual Language.........c.... 13

2.2 Programming Environment........ccovevenn. 16

SYSTEM ARCHITECTURE......cccccovviviriuinnen. 18

3.1 V-Form Model......ccooeriniiiiiinniiininiiianns 18
3.1.1 V-Form External Structure........... 18
3.2.1 V-Form Internal Structure............ 23

3.2 Visual Representation......cccecceevvineerrinnne, 28

3.3 System ArchiteCtUI€......c.ecerieurrererrerroveee. 30

V-FORM MANIPULATION LANGUAGE(VML)
eeeeeernrereriaenan e eeennn e star st rr et eeeanerarrartnaas 34

i

CONTENTS
4.1 Introduction. e iennienieriierienieieneiiann, 34
‘ 4.2 Definition of VML.....cccovviiinnninni 35
4.3 Syntax RuleS....eveorinniinniinnnncennin, 40
' CHAPTER 5. VML OPERATIONS......ccoviviiieivereieen, 45
5.1 Interaction Styles...ccoeevererrererrernernene. 45
5.2 Basic FunctionS.....co..mrenieneneennnn 47
5.3 Displaying....ececemeririniiiiiiiiiiiiinnienans 51
54 INSErting...ccoerervremieiiiniiinimiiiins 54
5.5 Removing.......cueeinnn Grreneesneesennenena. 59
5.6 Updating......cvceiiiininienieniinninrnennnes 61
5.7 GrOUPINZ..cecciiiiriiiiinirieieienineeniinnninenenns 63
5.8 Degrouping...ciiniineeineininnioniinn, 05
5.9 Instance Handling.......coevvinivnniniinne 67
CHAPTER 6. ANILLUSTRATED EXAMPLE 69
6.1 Courseware Development.....iinne. 69
6.2 Dircct V-Form Interpretero, 76
CHAPTER 7. CONCLUSION...cootiemrriin i 79
APPENDIX REFERENCES....cciiiiireereeeiiinenieninineens gl
i iv

CHAPTER 1
INTRODUCTION

1.1 BACKGROUND

As the advances in computers and their usag=. computerization in
many applications, such as Computer Aided Instructi :n(CAI)[1,20,25] and
Office Information System(0IS)[9,21,27,28,29,32], -.1s become more and
more needed. However, we do not have enough qua’-“ied pro grammers to
write application programs, the application backlog -as become a serious
problem’ in recent. years. Two approaches to rec:ce the backlog are
apparent: one is to increase the productivity of e people who can
program, and the other is to increase the number ¢ such people. In the
past, a lot of effort was directed to increasing :he productivity of
professional programmers. Useful methodologies an’ convenient tools for
all phases of software development life cycle were de-2loped.

¥ | ’

Later, the nature of applications has change-;‘.. Stimulated by the
decreasing cost of computing, the usérs are tur:?..;ng to spontaneous
demands for information to assist them in their daily “-ork. That is, the end
users must be given the facility to computerize their ¢ »n applications. As a
result, various forms of user-friendly facilities huve appeared in the
market-place, such as, icons, pointing devices, and iser friendly menus’

have taken the pain out of learning and rememberiz z commands. Word

INTRODU CTION

processors, query facilities, and spread sheet programs have become

important tools for text preparation, simple quiries, and financail analysis.

Nevertheless the usefulness of these tools is limited to pre- -designed
categories of applications{26]. In the servey conducted by Rockart and
Flannery of the Sloan School of management[28,29], it was found that
about 50-56% of the end user applications are not of the pre-designed
categories. For these kind of user-driven applications, one cannot derive
the benefits of computerizatioh‘ without programming. Fowever,
programming is still a time- -consuming and detail-intensive chore. It is
inconvenient and inefficient for all end users to develop their application
programs by using conventional procrammmﬂ languages. Most of the end
users are NP professionals (Non- -Programmers) which are skilled at their
fields and know little or none of programming knowledge. Unless
provided with an alternative, they'will_cdntinue to depend heavily on

programmers to develop applications.

For example, in CAI applications, three pincipal factors have driven
the development of an ideal CAI system (authoring systems)[20]. The first
factor is ease of use of, oraccess to, computers for instructional purposes.
Because the necessity of learning how to program in order to develop
courseware would draw back a significant number of teachers who might
attemp to use a computer as part of their teaching activities. The second
factor is the expense and time required to create computer-based
curriculum. Because by eliminating or sharply reducing the time of
programming and debugging, the development time and costs of

courseware can be significantly reduced. The third factor is the

e et e e et

INTRODUCT[ON

transpormblhty of courseware. Since sharing of courseware is one of the
major arouments for the cost/benefits of computer-based education(CBE).

Similarly, in office automation, data processing activities, such as updating

“inventory file, extracting and putting together of data from two or more

sources, as well as keeping records of receipt and dehvery, etc. should be

easily manipulated, namely through some sort of automated procedure. In

this area of applications, we assume that the office workers or school
teachers are not computer specialists, but required to use computer to
develop their own application programs. To them, a system that supports a
user friendly interface is essentail. Because it is rather hard to implement
such application under conventlonal programming environment which is
designed for programmers to use. Also, it is still difficult to implement
them under artificial mtelhoence(AI) programming environment alone,
because it seems still very difficult to handle the facts and rules in CAI or
OA very well[5,14,33]. Thus, a new environment is needed in such kind of
applications. ' | | |
The répreséntation of inférmation in CAI or in OA is usually in
visual. For example, CAI courseware is frame-by-frame and office
transaction is form-by-form. It looks that visual programming language,
which can define and manipuiatc frames (or forms) and their relationships,
may be a promissing approach to provide such an interface for
non-programmers. In particular, in recent years that the visual
programming approach on such kind of applications has become more and

more popular shows the importance of research in this direction.

INTRODUCTION

1.2 RELATED RESEARCH

Several systems have been developed for users to develop their
applications. Most of them have been released as products. In this section,
important related researches, such as QBE/OBE, FORMAL, STDL, and

PegaSys will be described.

1.2.1 QBE/OBE

QBE (Query By Example) is an IBM product released in
1978[35,36]. It is a high-level data base management language and it is
centered on office and business applications and is widely used in the
areas such as ‘distributio.n, finance, govemmént, manifacturing,
processing, and utilities. On the other hand, OBE (Office procﬁedura.By
Example) is the extended version of the QBE.

The features of QBE/OBE are:

1. QBE/OBE emphasizes on relational DBMS interactive query
4 _
and data maintenance. The operations are easy to learn and
easy to use. Users only need to describe their applications

directly to the computer.

2. The fundamental .object of QBE is a two-dimensional,
one-level skeleton table which also provides the programming

e_nvironmént. Initially, users are given a blank table skeleton.

INTRODUCTION

‘Then, after key in the appropriate name into the table name
field, the table heading is generated and the users can
, now "program" it by entering appropriate QBE/OBE

commands.

3. Users with no knowledge of any formal programming
language can, in a matter of several hours training, formulate
QBE programs to retrieve, modify, define, and control the
database. Psychological testing of QBE users has shown it to

be a very friendly language.
The major drawback of it are:

1. Its data object is only a one-level flat table, more complex

(hierarchical or graphical) structure is hard to implement.

2. No procedures, conditions, or actions can be incorporated
within the table.

1.2.2* FORMAL (Form-ORiented MAnipulation Language)

FORMAL provides a powerful visual-directed facility for
non-programmers to develop their data manipulation applications on

computers[28,29].

The features of FORMAL are:

INTRODUCTION

1. A form-oriented approach is employed in FORMAL. The
form data model proposed by Shu defines the forms as
a named collection of instances (or records) with the same
data structure. The components of a form can be any
combination of fields and groups. Fields is the smallest unit
of data that can be referenced in a user's application, while
group is a sequence of one or more fields and/or subordinate

groups. The group is also called the subform of a form.

2. In this model, "form" is used as a two-dimensional
[representation of hierarchical data. Each form has a form
heading which exploit the hierarchical structure within a

form.

3 The form-oriented programming language is 2
two-dimensional non-procedural description language
which uses forms as both the fundamental data object and
program structure. Users can program within the form
visually. The concept of what-you-sketch-is-what-you-get is

also introduced.

However, in FORMAL, forms can not be recursively defined to form

more complex structure(such as graphical structure).

1.2.3 STDL (State Transition Diagram Language)

INTRODUCTION

The state transition diagram language uses diagram to describe
algorithms to the computer. A visual programming environment for
this language is currently being implemented on a SUN workstation
[19]. The main features of STDL are:

© 1. Uses graphical representations to represent data objects as

well as abstract objects.

2. The temporal sequence during the dialog between a user and

the system are emphasized.

3. One diagram can call upon another diagram. This is one of
the important features of this language. In this way,
" procedure call in traditional programming language can be

simulated.
The major drawback of it are:

1. STDL is still suitable for programmers. It may be too

¥

difficult for non-programmers to use.

2. The design of a precise flow may be a burder for most users.

1.2.4 PegaSys (Programming Environment for the Graphical

Analysis of System)

INTRODUCTION

The main purpose of PegaSys is to facilitate the explaination of
program design{24]. Tt encourages and facilitaties extensive use of

graphical images as formal, machine-processable documentation.
The features of PegaSys are:

1. A program design is described in PegaSys by a hierachy of
interrelated pictures. Each picture describes data and control
dependencies among such entities as "subprograms”,
"process”, modules”, and "data objects”, among others. The
pictures also describe how algorithm and data structure fit

together to form the design of a large program.

2. PegaSys exhibits its ability to: (1) check whether pictures are
syntactically meaningful, (2) enforce design rules
throughout the hierarchical decomposition of a program,
and (3) determine whether a ’prégram meets its pictorial

documentation.

% Pictures have dual interpretation: graphical structure and
logical structure. A graphical structure is composed of icons
and their -pr0perties, such as size and location. Icons is a
picture correspond to predicates in logical structure. And
this logical structure captures the com.putational meaning of

' - "a picture, each predicate in this structure denotes a

computational concept expressed by the picture.

INTRODUCTION

4. Many raphlcal mampulatlons of pictures are provided.
Such as the creation of a new-level in a hierarchy,
refinement of active, passive entities, refinement of an

interaction.

Although PegaSys emphesizes program designs in visual, it is still

unpractical for non- programmers to develop their application

programs.

1.3 OUR APPROACH

To provide a new programming environment for NP-professionals

to develop their own apphcatmn programs, a Visual Programming -

Synthesizer(VIPS)[6] is proposed. VIPS is designed to achieve three
goals: (1) provides a visual facﬂlty to achieve a better user fnendly
interface, [provides a visual language for non- programmers to be
able to program easily, (3) prov1des visual forms as a medlum to

Process compléx and knowledgable objects.

In VIPS, V-Form(visual form) is the data representation of
text(in particulﬁr Chinese characters), static graphics(line drawing and
bit-map), dynamic graphics(animation), rules, and voices. Although it
is still in form style, but in order to dlSthUISh them from office forms,

they are called V-Forms.

INTRODUCTION

Just like other form models[4,22,24,28,29,30,35,36], our
V-Form model consists of a V-Form type and a V-Form instance. A
V-Form type describes the structure of a V-Form system, while a
V-Form instance is obtained after filling values into the contents of the
described V-Form type. The V-Form instance is a program that fits the
concept of embedded procedures for computational and controlling
requirements. Hence, facilities for ‘conditional and unconditional

control switches are also included in the V-Form mode].

Based on the V-Form model, VIPS offers a two-dimensional
non-procedural language as a user-friendly interface language to define
and manipulate V-Forms on the screen. This interface language
includes two parts: a V-Form Definition L1n0u10e(VDL)[18] and a
'V-Form Manipulation Language(VML). VDL is used to define the

V-Form type(logical and visual strtucture of a V-Form) and V-Form
instance. And VML can be invoked to display, insert, update, group,
and degroup these V-Forms gotten from VDL. After procesing VDL
and VML, a complete internal form for each application can be
self—synthesned V-Form instances that are text-only can be executed
by a direct V-Form interpreter, while V-Form instances other then text
are treated as a series of procedural calls delivered to graphics and

‘voice system for execution.

VIPS has been implemented on VAX/750 and VAX/785 under
both VAX/VMS and VAX/UNIX(Ultrix-32) operating systems.

Although, at present time, VIPS is only an experimental system, it can

10

INTRODUCTION

be enhanced to include more software packages such as standard
graphics systems, Chinese input/output, and voice system so that a more

powerful and complete VIPS can be obtained.

1.4 ORGANIZATION OF THIS REPORT

In this chapter, we discuss the requirements of computer
'lpphcatlons (such as CAI and OIS) for NP- professionals first. In
section 2, several important related research tasks or released products
are studied for guxdeness In section 3, a new visual programming
environment is described where a visual programming
synthesizer(VIPS) is served as a vehicle for non-programmers to

develop their own application programs.

Chapter 2, a formal definition of the visual language is given in
section 1. The visual language is shown to be a formal language which
is generated by an inferred grammar containing only objects sketched
by users. In section 2, a visual programuming environment is compared
to the conventional programming environment and to the Al

programming environment.

In Chapter 3, the system architecture of a visual programming
synthesizer is proposed. In section 1, a V-Form model is proposed. In
section 2, the informant presentation data which is represented by
V-Form is proposed as a visual representation of data objects. The

function behavior of each components of the system architecture will

11

INTRODUCTION

be discussed in section 3.

In chapter 4, we introduce the V-Form Manupulatin Language
and its applications in scction 1. In section 2, we define the VML

formally. In section 3, syntax rules of VML is given.

In chapter 5, section 1 describes the basic functions of VIPS. The:
displaying, inserting, removing, updating, grouping, and degrouping
operations as well as the instance handling functions will be described

in the subsequent sections.

In chapter 6, section 1 gives an iliustrated CAI example to show
how a coursewarc can be developed by VIPS. In scction 2, we present a

dircet V-Form interpreter to interprete the example.

12

CHAPTER 2
LANGUAGE ENVIRONMENT

2.1. DEFINITION OF VISUAL LANGUAGE

A visual language is a formal language which designated for
non-programmers to develop their own application programs in visual. In
this section, we shall give a definition for the visual language. But first, we

need the following definitions [10].

[Definition 2.1] An information sequence of a language L, denoted by

I(L), is a sequence of codes fromtheset { +yly e L} U (-yly eVT*-L

}, A positive information sequence of a language L, denoted by IT(L), is an
information sequence of L containing only codes from L, Similarly, a

negative information sequence of a language L, denoted by I°(L), is an

information sequence of L containing only codes from VT*—L.

[Definition 2.2] An information sequence of a language L is said to be

complete if:

1. IT(L) contains ali codes from L.
2. I'(L) contains all codes not in L. A positive information sequence

I*(L) is said to be complete if each code in L appears in IT(L).
p

LANGUAGE ENVIRONMENT

[Definition 2.3] A sample of a language L, denoted by S(L), is

defined to be the set { Y oY } u{ Y1 Y, }, where St = { +¥1»

w » +y, } is defined to the positive sample and S™ = { Y1 s - 57y, } the

negative sample. A positive sample S* of a language L(G) is structurally
complete if each production defined in G is used in the generation of at

least one code in ST,

Now, the visual language can be formally defined as follows.

[Definition 2.4] Let D be the domain of what-you-sketch and y; be a

sketched object, y; € D. Suppose y;can be generated by an inferred

-

grammar G, then a visual language is

L,={yy; € D,andy, € L¥G)) .
where
LG =L*G, u L(G;) = { positive_sample } U { negative_sample }.

The positive sample is an information sequence of L(G;) containing

only codes from L"'(Gi) which is a set of objects described by the user. On

14

LANGUAGE ENVIRONMENT

the other hand, the negative sample is the parasitical product of G, and is
not included in the visual language. And,the positive sample L, of the

language L(G;) is structurally complete. In other words, a visual language

is a formal language that contains only objects sketched by the users.

As we know, there are three types of languages, i.e. regular,
context-free, and context-sensitive languages that can be generated by an
inferred grammar in the limit{11,16]. Among thiem, context-free
languages are not powerful enough to describe the programming
applications, but context-sensitive languages are very complex for analysis.

Consequently, a compromise is made by generating a context-free
grammar into programmed grammars. The visual language L., which is
used to get the desired applications in what-you-sketch-is-what-you-get
manner of operations, can be implemented on a context-free programmed
grammar that can simulate the behavior of the inferred grammar G; of L.

In other words, the visual programming itself is an interactive process
which allows the user to describe the inference algorithm by himself. Here,
the inference algorithm is a process of describing the positive samples as

¥ : .
designed by the user. That is, the visual language is to allow the user to get

the what-you-sketched objects according to his application requirements.

In formal language aspect, this inferred grammar G, of L,, is a context-free

programmed grammar and the class of languages which are generated by

G; can be a context-sensitive language.

15

LANGUAGE ENVIRONMENT

2.2. PROGRAMMING ENVIRONMENT

A conventional programming environment concerns how to provide
programmers some conveniént and useful tools to develop their application
programs. In this environment, programming itself is not only a
time-consuming detail-intensive chore but also a specialized arduous task
requiring detailed textual instructions that must adhere strictly to syntax
rules. As for non-progfamrr_lers, using programming languages to develop
their own application programs is almost _infeasible‘ (if not impossible).
Most of them don't have time or interest to program because of lacking
programming knowledge, and it is even doubtful whether their time is well

spent in the training of programming.

‘Artificail intelligence is the field whose goal is to automate the
knowledge processing. Consequently, it involves some kind of knowlwdge
(information) representations, and to tackle the tasks (such as problem
solving, descising making, making inference, manufacturing goals, pattern
recognition, scene analyzing, natural language understanding etc.) is to
manipgulate or process the knowledge. However, in the AI programming
environiment, building an intelligent application system is essentially
coding the required knowledge into facts and rules in a high-level
- languages such as PROLOG or LISP-based languages[2,3,7,17,34]. At
present, the coding is manually written, and is, like writing a computer
program, also a laborious and tedious task in Al environment.
Furthermore, because its friendly human interface has not get been

well-developed, it seems very difficult for NP-professionals to use Al

16

LANGUAGE ENVIRONMENT |

languages to handle their specialized knowledge very well.

Based on these observations, a new programming environment is
needed for such NP-oriented 'applications. Here, we present a visual
programming synthesizer. In this system, users with or without any
programming language background, can describe their specialized
knowledge through the self—syhthesiziﬁg process to get the desired
applications. We shall use an CAI courseware as an example to illustrate
key features of VIPS and reveal thr:: easiness for teachers

(NP-professionals) how to develop their own coursewares.

In CAI applications, courseware development may be created with
the high level languages (such as BASIC, PASCAL, FORTRAN etc.), its
disadvantages are obvious, teachers will be infeasible to develop their own
courseware without programming knowledge. Another way for the
courseware development is to use the author languages (such as TUTOR,
PLANIT, PILOT, NATAL, COURSEWRITER, TIP, CATO etc.), which
are a family of special purpose, high order application languages: which
facilitate the writing of instructional programs. Authoring system, on the
other hand, represent a high level intefface intended to allow authors
(instructors or instructional developers) to create courseware; even though
they are non-programmers. So the development and use of authoring
system is the implementation of automatic programming or metasoftware,
which is a programming system that generates other programs, has been a
popular idea in compi-lter science. As a matfer of fact, our visual
programming synthesizer can also be served as an authoring system in

CAI applications.

17

CHAPTER 3
SYSTEM ARCHITECTURE

3.1. V-FORM MODEL
3.1.1. V-Form External Structure

The visual programming synthesizer allows users to open several
windows on a screen. Each window is treated as a V-Form. The
informant presentation data in a V-Form may include text, static

graphics, dynamic graphics, rules, and voices.

Let I be a set of codes to be displayed, A be a set of alphanumerics, ¢
be a set of Chinese characters, 3 be a set of graphic codes, Q be a set of
drawing attributes, and 2= [TV AU U P U Q. Then the domain of

a V-Form belongs to Z* , where * denotes the Kleene closure[15]. All

V-Forms of an application are subset of D and are considered as the

positive samples of L(G,).

A V-Form is a pair of a V-Form type I and a V-Form instance

I defined below. A V-Form type corisists of a scheme S and a template

TS for S.

i

SYSTEM ARCHITECTURE

[Definition 3.1] A Scheine S is t_he logical structure of a V-Form. It

can be recursively defined as:

<S> = <M>I|<A>

<A> = <S> <S>,<A>

<M> = <Type>i<Identifier>

<Type> = TEXT|GRAPH | BIT-MAP IRULE

IANIMATION | VOICE | YFORM

For example, consider the first V-Form of a CAI_Course shown in
Fig.3.1. The scheme for this V-Form is defined in the following

eXpressions:

CAI Course= [TEXT:Topic, TEXT:Ask, ANIMATION:Picl,

ANIMATION:Pic2, VEORM: Yes, VEORM:No]
VFORM:Yes = [...] |
VFORM:No =1{...]

¥

19

SYSTEM ARCHITECTURE

1 I I [T T T 1 1])| I T] I I |
lllT“lllllilIHIHIIllllillllllllIHIIiil”llillllll”IIIIIIIIIIIllflllflliilll

/\

Theorem proving on tisngle coincidence

/\

The following example is a practice to learn
the concept of geoimetrical coincidence.
Do you want o give a ry?

=

VOLSED> _
ACTION BYE COND FXIT- FNIL -GOTO PROC QUIT SET

I

LIS D N AR B B ¥

T
i[lllllill’l

Fig. 3.1 A typical V-Form screen

The hierarchical/graphic structure of the scheme for the

CAI_Course is given in Fig. 3.2, where a circle means a V-Form which
CAI_Course

Fig. 3.2 Hierarchical structure for CAI_Course

contains another V-Forms, a box represents a minimum V-Form which

20

SYSTEM ARCHITECTURE

contains no other V-Forms (also called an atom).
[Definition 3.2] A template I is a visual structure of a V-Form

that represents a two-dimensional display format and visual properties
of a scheme S. The visual properties of a V-Form are independent of

V-Form instance.

The template for the scheme of Fig. 3.1 is given in Fig. 3.3, where
the sub-VForms TEXT:Topic, TEXT‘:Ask, ANIMATION:Picl, and
ANIMATION:Pic2 are atoms, but VFORM:Yes and VFORM:No are
not. As shown in Fig. 3.2, each V-Form may contain other sub-VForms

and hence a hierarchical/graphic structure is formed.

T T T 7 T T T T — T I T I I T
T T AT T T T T O T TV T T T TR T e

ANIMATION:Pict

TEXT Topie

ANIMATION:Pic2

TEXT:Ask

- VFORM:Yes YFORM:No -
(vDb>
BEGIN DEFINE EDIT ERASE E)_(IT EXTEND LOAD OPEN QUIT RETURN SAVE

Fig. 3.3 A template for the CAL Course

21

SYSTEM ARCHITECTURE

A V-Form Fj is said to be a sub-VForm of F; if and only if F
contains F it If F . is a sub-VForm of F- and is not equal to Fi, then F- 1S
said to be a proper sub-VForm of F;. Two V-Forms F » Py, which are

the maximum proper sub-VForms of F;, are called brothers. A

template also describes the control flow of the V- Form node. For
instances, when VFORM:Yes (sub-VForm of CAI_Course, here,
CAI_Course is the V-Form system name which contains the first page
of V-Form.) of Fig. 3.3 is selected then the display will be switched to
that of its descendent V-Form node F2 (Fig. 6.1(b)). |

[Definition 3.4] The valué of a V-Form y of type t is X, such that

x € DOM(y,) € E* where

(A uHug)*,rif t = TEXT, RULE
DOM(y) =

(B Q)* if t = GRAPH, BIT-MAP, ANIMATION

L)

For example, the value of V-Form Topic of type TEXT in Fig.
3.1 is "Theorem proving on triangle coincidence".

[Definition 3.4] The Characteristics of a V-Form include the
displaying attributes(tNORMAL, BOLD, INVERSE, or FLASH vedio),
the indicator(ON or OFF), the alias (give an alternative name to a given

V-Form), and the embedded components (conditions, actions, and

22

RV NP VN SV i DI S VIV

procedures) of a V-Form.

[Definition 3.3] A V-Form instance (I) for a V-Form type F is
defined as a mapping which assigns a value to each atom of F. The value
of a V-Form may have the following types: text, graph, bit-map, voice,
and rule. One of the V-Form instance of Fig. 3.3 is shown in Fig. 3.1.

As stated above, a V-Form type can be filled with different
contents to obtain different kinds of V-Form instances. Therefore, a
V-Form type is just like a language, from which a user can write many

programs, which, in this model, are V-Form instances.
3.1.2. V-Form Internal Structure
The internal structure of V-Form links four kinds of nodes,

namely, system node, form control node, mode node, and action node.

The system node (SN) keeps all information of the V-Form system. The

system node connects a V-Form sub-system that may be two

independent coursewares grouped together. The form control node

(FCN) describes the characteristics and the display information of its

corresponding V-Form (atom or non-atom). The mode node (MN)
contains the content and the display attribute of an atom. The action
node (AN) contains the embedded cofnponents, such as conditions,

actions, or procedures.

23

SYSTEM ARCHITECTURE

In the following, the detailed information of these four kinds of
nodes are specified.

1. System Node (SN):

id . sub-system id.
name : sub-system name. N
ptr ¢ a pointer pointing to the first corresponging

V-Form page.

next : apointer pointing to the next SN,

End.
2. Form Control Node (FCN):

id . form control node id.

name : V-Form name.
aliasptr : a pointer pointing to a MN which contains the

alias of 'the'corresponding V-Form (with type

. VFORM).

Iow : window row position in the screen.

col : window column position in the screen.

width : window width length in the screen.

height : window height length in the screen.

procptr : a.procedure pointer pointing to an AN which

specifies its embedded components.

phyaddr : aphisical address pointer.

24

type

indicator
next
link

End.

3. Mode Node (MN):

typename
attribute

type
content
L)

link

End.

condptr

SYSTEM ARCHITECTURE

a M/F flag, with type "M", this FCN represents an
atom and its physical address pointer pointing to a
MN containing its coﬁtent; with type "F", this
FCN represents a non-atom V-Form(with type
VFORM) and its physical address pointer
pointing to another form control table.

a ON/OFF display indicator.

a pointer pointing to next FCN.

a link pointer which is used to create the internal

structure or link the available buffer.

type name of content.

display attribute.

a N/C flag, with type "N" means a normal content
and type "C" means its content is a continued one.
represents the content of the corresponding
V-Form or its embedded component,

a link pointer which is used to create the internal

structure or link the available buffer.

4. Action Node (AN):

a condition pointer pointing to MN which

25

SYSTEM ARCHITECTURE

represents its condition part.

actptr : anaction pointer pointing to a MN.,

putype . : a M/F flag for actptr, with type "F", the actptr
points to another FCT; with type "M", actptr
points to a MN.

next ! apointer pointing to next AN,

link : alink pointer which is used to create the internal

structure or link the available buffer.
End.

Accordingly, an atom is represented by a FCN which has a pointer
pointing to a MN. A non-atom V-Form is also represented by a FCN
.but has a pointer (in FCN) pointing to a list of FCN which describes its
sub-VForms. The list of FCN, also called a form control table (FCT),
describes the V-Form structure within a window. Fig. 3.4 shows part
of the internal structure of the V- Form system CAI_Course (only F1
of Fig. 6.1(a) is shown).

B8

IET™INE
R AL) i) s)
Lt b1l Ans T o P13 T LA
N o ,
: R |- ER (,’R_x.ml...... + . KT
w | T e T
“ _ 3 e, Em[---]'rlnfnnwng...|_}j___ T -
- Wl
---|rx1r n
26

SYSTEM ARCHITECTURE

Fig. 3.4 The internal structure of the V-Form F1 of Fig.6.1(a).

In Fig. 3.4, the system node SN(CAI_Course) connects a V-Form
system starting from the form control table FCT(FL), FCT(F1) is a
linked list with the folloWing elements: FCN(Topic), FCN(Ask),
FCN(Picl), FCN(Pic2), FCN(Yes), and FCN(No) etc. According to the
V-Form created sequence, the relational position of these FCNs is
obtained. The contents of atom TEXT:Topic, TEXT:Ask,
ANIMATIOMN:Picl, and ANIMATION:Pic2 ar¢ stored in the
correspdnding MN, respectively, which pointed by the FCN physical
address(pllyaddf) pointer. On the other hand, the content of
'VFORM:No is NULL and VFORM: Yes is another V-Form page (the
physical address pointer of FCN(Yes) pointing to form control table
FCT(F2)). An action node is pointed by the procedure pointer
(procptr) of FCN(No), its condition pointer (condptr) now is NULL
and action pointer (actptr) pointing to a MN whose content is "EXIT".
It means that when the VFORM:No is selected, there is an unconditional
action is executed which halts the execution. ‘While, when the
VFORM:Yes is selected, the display is switched to that of its descendent
V-Form F2.

In this model, there are some other features about the embedded
components, they are: (1)._ Automatical (unconditional) switching
facility -- when the pointer type (ptrtype) of AN is "F" and condition
pointer (condptr) is NULL, then the action pointer (actptr) points to
another form control table(FCT), so an unconditional switching
control is accomplished. (2). Conditional switching facility -- just like

27

SYSTEM ARCHITECTURE

(1) except now the condition pointer is not NULL, so the condition part
is evaluated first, if it is satisfied, control is switched to another FCT, so.
a conditional switching control is accomplished. (3). Condition-action
facilities -- when the ptrtype of AN is "M" , then the actptr points to a
‘MN to specify the action part(such as display or other arithematic
operations) and condptr also points to a MN to specify the condition
part(expression evaluation). In this way, the condition-action facility is
accomplished. (4). Embedded procedures - Just like (3), except now
the condptr is NULL. Now it is served as dn embedded procedure. (5).
Graph structure -- V-Form can be recurssively defined to form any

complex structure.

3.2. VISUAL REPRESENTATION

Rerjuirements for visual representation are user visible, easy
understandable, and executable in a visual procvrammm0 environment.
To fulfill these requirements, we use V-Forms (visual forms) as
mediym in manner of what-you-sketch-is-what-you-get. Here, the
V-Forms dealt with contain text, static graphics (line drawing and

bit-map), dynamic graphics (animation), rules, and voices.

There are several reasons for using V-Forms. First, after close
examination of the neén-programmers' data processing needs, we
concluded that much of the data manipulation can be naturally

expressed or thought of as form-format object processing. V-Forms

28

il

SYSTEM ARCHITECTURE

hold the information needed in described objects and exhibit in their
two-dimensional form-type format.

Second, V-Form describes the user-visible behavior and

represents the cognitive structure of the user interface. In the last few

years, a vast amount of work focusing on "forms" in the interest of
office automation and office information system. For instances, forms
have been used as templates for documents which are logical images of
business paper forms. Form editors and screen management programs
have been implemented to facilitate the entering and querying of data
via forms. Query languages and data base systems have been extended

to deal with forms and other types of documents.

Third, a VForm-based iﬁterface lmfruane offers an opportunity to
drastically alter the nature of programmmg Traditionally,
programming is a specmhzed arduous task requiring detailed textual
instructions which must adhere strictly to syntax rules. Both the
structure of the traditional prografnming language and the data objects
manipulated by them are geared toward the internal (computer)
representations. Perception and convenience of non-programmers are
sacrificed or ignored for the sake of machine efficiency. However, to
encourage the user level programming, end user convenience must be
considered. It is our belief-that V-Form is not only a convenient
representation of data objects, but also a convenient representation of
program structure. V:Forms are designed toward the external
representation which are more akin to the user's point of view then the

computer's.

29

SYSTEM ARCHITECTURE

In VIPS, the V-Form model is a two-dimensional representation
of hierarchical/graphic data. It served as a visual aid to help users
understand the high-level V-Form operations performed on their data.
V-Form model is also a structured representation of various kinds of
knowledgable objects. This structured V-Form is a fundamental
concept that makes it possible to transform high-level exj;)licit

operations to truly non-procedural specifications.

3.3 SYSTEM ARCHITECTURE

In this section, a primary system architecture is proposed. It
consists of the following 'compdnents: the Informant Presentation
Data(IPD), Visual Interface(VI), V-Form Definition Language(VDL),
V-Form Manipulation Language(VML), Internal Structure(IS),
Directed V-Form Interpreter(DVI), Supported Sub-system(SS), and -
Relational Data Base Management System(RDB MS)(8,12,23]. Fig. 3.5

shows a configuration of this system architecture,

¥

30

SYSTEM ARCHITECTURE

Iterface Language
)
]
]
¥-Form Defirition X
] Language (VDL) :

- Visual Y-Form Modzl internaf Relational
nlormant - ‘ Data Base
Preseriation (=t Tnteface * Stnuctre. e gda;eﬁlcmmi

Daia ' ye
N (15)
(1PD) (Y1) N} V-Form Manipulation {RDBMS)
: y) Language (VM)

1 .

; V-Form Madel

i

]

1

R e

e et e -_.__._L_ﬁ_...b_

Suppted Dircet V-Fom
- - o o S“gl.);'c “---P [mcrp[cw
ub-Sysiem (541}

Fig. 3.5 System Architecture of VIPS

The Visual Interface provi'des users an environment to
communicate with VIPS. In this interface, many user-friendly devices,
such as mouse or pointing devices, may be considered. But now in our
system, a keyboard is used to simulate pointing devices. The type of the
Informant Presentation Data in the communication includes text, static
graphics (line drawing and bit-map), dynamic graphics (animation),
rules, und voices, they are formatted in V-Forms. Based on the V-Form
Model, a V-Form Definition Language and a V-Form Manipulation
Language are designed as an Interface Languagre. V-Form Definition
Language is used to define the V-Form type and edit the V-Form

instance, while V-Form Manipulation Language accepts the V-Form

31

SYSTEM ARCHITECTURE

type or V-Form instance from VDL, VML offers users several

non-procedural operations to manipulate V-Forms.

After processing the VDL and VML, a consistent Internal
Structure, which holds the properties of knowledgable objects and the
execution flow of the desired appliéations, is self-synthesized. The
Internal Structure is executed by the Direct V-Form Interpreter. The
Supported Sub-system provides many graphic packages and voice
uiterances for users to generate their appliaction progrﬁms. That is, this

Supported Sub-system supports the Visual Interface to communicate

. with users such that the VDL and VML can be used to define and

manipulate V-Forms, and the Direct V-Form Interpreter to interprete
the Internal Structure. Finally, in consideration of resources sharing, a
Relational Data Base Management System is integrated with the visual

programming synthesizer.

There are some design methods for visual programming
languages. However, a systematic approach to a theoretical sound
methodology is still under developing. Here, the visual programming
synthesxzer 1s interactive and application- oriented with the following
features (1) ease to use -- various user friendly facilities such as icons,
pointing devices, and menus are included. End user perception and
convenience are consideredé’ (2) visual directed objects -- V-Form is
used as the visual knowledge repreSentation method because it is more
akin to the user's view point; (3) non-conventional programming

nature -- users only need to describe the external representation of

objects instead of writing a series of instruction codes; (4) for

32

SYSTEM ARCHITECTURE

non-programmers -- since application programs are generated
autumatically by VIPS, users can concentrate in expressing their
knowledge to obtain a bettér presentation; (5) portable -- V-Form
system generated by VIPS is always consistent in its internal structure,
to transport this system from one system to another is simply by means
of an interpreter which interpretes the structure and its contents. (6)
resource sharihg -- intergrates VIPS with a relational data base

management system will facilitate the utilization of resource data.

33

CHAPTER 4
V-FORM MANIPULATION LANGUAGE(VML)

4,1 INTRODUCTION

In many computer applications, such as office information
system(OIS) or computer aided instruction(CAI), there is a close
connection between activities and data processing. Most of the common
business applications and the development of instructional system can
be viewed as manipulation of forms. Here, V-Forms are taken as the
fundamental objects which hold all information needed in objects
description, they are displayed in a format of window forms. V-Form
is not only a convenient data representation (in its external
representation) but also a convenient representation of program
structure. In the following, a V-Form manipulation language(VML)
for the processing of V-forms is presented. It is a non-procedural

language for users to do various operations visually.

yLet us use a CAI courseware as an activity to explain the operation
of VML. A V-Form type describes the program structure and various
visual properties(such as dlsplaymg attribute, display format, display
relationship, and content type etc.) of the defined courseware. And the
original V-Form instance has been filled values into its V-Form type,
its control flow has synthesized and attached with many embedded

components(such as conditions, actions, and procedures). So, an

V-FORM MANIPULATION LANGUAGE

original V-Form instance which conforms to one V-Form type is
corresponding to an unwrought instructional program. The invocation
of VML is to get the final V-Form instance (courseware) through
various operations on V-Form. If the input object of VML is a V-Form
type, VML can generate a complete V-Form instance by filling its
contents. Otherwise, VML is served as a program editor to edit the
existing V-Form instances. All of the information carried by V-forms
can be modified by VML and new V-Form instances can be created by
V-Form grouping and degrouping from existing V-Form instances.
VML can be implemented as a menu-driven and prompt-oriented
V-Form manipulator such that VML can operate in a
what-you-see—is-what—you-get' manner. Just like other form

- manipulations, VML provides users several convenient operations to

manipulate V-Forms at will.

4.2 DEFINITION OF VML

t

[Definition 4.1] Let any two objects x, y e . The string

transformation T : & » =" such thaty e T(x) has the following five

transformations:

1. Inserting transformation

35

V-FORM MANIPULATION LANGUAGE

W W, wiaw, forallae X
2. Updating transformation

W aw, wbw, foralla,be ¥, a#b
3. Removing transformation

wlng wiw, forallae X

4. Grouping transformation

Wi W, wiAw, forallAe yF
5. Degrouping transformation

wiAw, | wyw, forallAe >

where wl, w2 € ¥

-

[Definition 4.2] A V-Form Manipulation Language VML is
a five tuples ‘

VML=(O,LFT,S)

36

il

V-FORM MANIPULATION LANGUAGE

where

O is a set of the input objects. The object may be a V-Form type or
| an original V-Form instance.

Iis a set of intermediate objects. Each intermediate object is a
: working V-Form.

I is the collection of final objects.

T is the string transformation. Each transformation carries an

object x € Qorx e I to anew object € T(x).-
S is a strategy function, different strategies produces different

results.

[Definition 4.2] A V-Form process, denoted by VIP, is defined
as a sequence of transformations which gradually derive an input object

to a final object.

Exampll 4.1. Given an input ObjCCt O= wlaAbcwz, and a final

result(object) F = wladBcbwz, where a, b, c,d e, wl,w2,A,Be

E , then VP may be the following sequence of transformations:

O= wlaAbcwz

' wladAbcwz WI .'«.1d‘t><:\fv2 wladcbcwz

37

e AL o MR Lt 37 e

AT iy o e g

V-FORM MANIPULATION LANGUAGE

wladBcbcwz wladBcbwz =F

[Lemma 4.1] Different VP may obtain a same final object.

Example 4.2. Consider Example 4.1, a different VIP may be used

to derive the same final object by the following transformation

sequence:

1= wlaAbcw2

wlédAbcwz : wladbcwz wladecw2

w1ad]3c:<;w2 wiadBcbe =F

Fig. 4.1 shows a graphical interpretation of V{P for Example 4.1. Each
horizontal branch indicates an updating transformation U, a
right-upper diagonal branch indicates an inserting transformation I, a
right-lower diagonal branch indicates a removing transformation R, a
vertical upward branch indicates a grouping transformation G, and a
vertical downward branch indicates a degrouping transformation D.

38

V-FORM MANIPULATION LANGUAGE

Fig. 4.1 A graphical interpretation of V{P for Example 4.1.

Each V{P which derives the initial object O to the final object F
constitutes a path from O to F, but with the restriction that such a path
contains just one vertical-upward branch and one vertical-downward

branch. There exists many such paths as can be seen from Fig; 4.1.

[Definition 4.4] ‘A non-procedural language is defined as a

manipulator that obtains the same final object from any given input

39

V-FORM MANIPULATION LANGUAGE

object by more than one V{Ps.

[Lemma 4.2] VML is a non-procedural language.

4.2 SYNTAX RULES

As mentioned earlier, VIPS interface language is generated by an

inferred grammar. The V-Form Manipulation Language is one part of

this interface language, so VML is also generated by an inferred

grammar. In this section, the syntax of V-Form Manipulation

Language is designed. Table 4.1 shows the syntax of VML.

Table 4.1 Syntax of V-Form Manipulation Language

1 <VML> (===

2 <Commands>:==
3 <Command> ==
<Opeh> ==

<Close> ==

<Display> :==

<Commands> <End>

<Command> <Commands>

INULL -
<Open>l<Close>l<Display>I<Insert>l<Update>
I<Reniove>l<Group>l<Degroup>l<Save>
OPEN <Filename>

CIOSE <Filename>

DISPLAY <Identifier>

IDISPLAY <Identifier> <Character>

40

7 <Insert>

8 <Update>

10 kGroup>

V-FORM MANIPULATION LANGUAGE

* —

<REMOVE> ==

11 <Degroup> ==

12 <Save>

13 <End>

14 <Filename> ==

15 <Character> ==

16 <Embedded> :==

17 <Position> ==

18 <Size>

19 <Number> ==

20 <Integer>
21 <Digits>

IDISPLAY <Identifier> <Embedded>
<Number>

INSERT <Type> <Attribute> <Indicator>
<Identifier> AT <Position> WITH <Size>

IINSERT <Embedded> TO <Identifier>

UPDATE <Identifier>

[UPDATE <Identifier> <Character>

IUPDATE <Identifier> <Embedded>
<Number>

REMOVE <Types> <Identifier>

IREMOVE <Embedded> <Number> FROM
<Identifier>

GROUP %Filename> <Identifier> AT
<Position> WITH <Size> [<Identifier>]

DEGROUP <Identifier> TO <Filename>

SAVE

ISAVEAS <Filename>

EXITIQUIT

<Identifier>

ATTRIBUTEIINDICATOR
CONDIACTIONIPROC

<Integer> <Integer>

<Integer> <Integer>

<Integer>

<Digit>l<Digits>

<Digit>l<Digits>

INULL

41

V-FORM MANIPULATION LANGUAGE

. 22 <Digit> = == O0I1121314i5I6I718I9
. 23 <Type> == TEXTIGRAPHIBIT-MAPIANIMATION
IVOICEIRULE
24 <Types> == TEXTIGRAPHIBIT-MAPIANIMATION
~ IVOICEIRULEIVFORM
25 <Attribute> :== NORMALINVERSEBOLDIFLASH
26 <Indicator> :== ONIOFF
27 <Identifier> == <Letter> <Alphanums>

28 <Alphanums>:== <Alphanum> <Alphanums>

INULL

29 <Alphanum> == <Digit>l<Letter>

30 <Letter> == AIBICIDIEIFIGIHIIJIKILIMINIOIPIQIRISITIUIV
IWIXIYIZ

lalblcldlelflgihlifjikillmnlolplglrisitiulviwixlylz
LLLE < IADI N N@I1$1 %M &I |-+ =l T~

The inferred grammar is a context-free programmed grammar.

The grammar G, shown:in Table 4.1 which is a context-free

programmed grammar. For clearity, the definition of context-free

programmed grammar is given in the following.

~ [Definition 4.5] A programmed grammar Gp is a five-tuple (

Vo Vo I, P, S), where Vp Vs and P are finite sets of nontgrminals,

terminals, and productions, respectively. S is the starting symbol, S CE

42

V-FORM MANIPULATION LANGUAGE

V- J is a set of production labels. A production in P of the form
NDa — B SU) FW)

o — [is called the core, where , 0 € v* VN V™ and Pe v () is

the label, r € J. U is the success field and W the failure field, U, W e J.

The programmed grammar operates as follows. Production (1) is

applied first. In gereral, if one tries to apply production (r) to rewrite a
substring , and the current string Q contains the substring o, then (r) o
— B is applied and the next production is selected from the success

go-to field U. If the current string does not contain o, thel_l the
production (r) is not used(ie. & is not changed) and the next
production is selected from the failure go-to field W. If the applicable
go-to field contains @, the derivation halts.

[Definition 4.6] If the core of the production of a programmed

grammar is of the context-free form (i.e. A — [3), then the grammar is

called a context-free programmed grammar,

.
-

The syntax of VML grammar G, is a context-free programmed

grammar. The success and failure fields of VML grammar is as

follows. When its first production (1) is applied, its success field is the

43

V-FORM MANIPULATION LANGUAGE

second production (2). Similarly, success field of (2) is (3). From
production (4) to (12), all of their success fields are same, ie.

production (2), this forms a loop. The success field of production (13)

'is @ which is a termination. All other productions have its right

productiori label as its success field. The content of failure field for
each production is obvious, so we do not bother to explain them
further. It is shown that the language generated by a context-free

programmed grammar can be a context-sensitive language. So the

interface language generated by VML grammar G,, can also be a

context-sensitive language.

44

K - CHAPTER 5 | :
VML OPERATIONS

5.1 INTERACTION STYLES

As mentioned in Chapter 4, the V-Form manipulation language is
a menu-driven prompt-oriented manipulator. Fig. 5.1 shows three
regions of the screen: scratch-pad region, interactive region, and

command region, |

--I--i_s-_[u-l--l--‘---I---:---_--_--__-nn-------m-n-n-nunul
lIIIIlIIIIlIIIlII“IIIIIIIHII”IIIlllllll”lilll|IIII|IIII|IIII|HEI|IIIIIIIHI . |

Scratch-pad . ‘;

region

T ¥ 14
ST rr g rr v v r | ¥ 117§

| Interactive region

BN DSFAY TWSTAY WEPOVE PORTE CRAP DEGRO o Gommand region

Fig. 5.1 Three regions of the screen.

All of VML commands (i.e. operations) are shown in the

command region at screen buttom , called the command region. The !

VML OPERATIONS

scratch-pad region is the area in which a
what-you-sketch-is-what-you-get manner operation is proceeded. In
the interactive region, users can give commands in three styles:
all-prompting, partial-prompting, and no-prompiing. For example,
the insertihg operation in all-prompting style looks like --

VML> insert
_Type(TEXT/GRAPH/BIT-MAP/ANIMATION/RULE/COND/ACTION/PROCY):
ext .
_Attribute (¢<N>:NORMAL / <I>:INVERSE / :BOLD/ <F>:FLASH): n
_Indicator (ON/OFF): on
_Naming: Test .i12;_Position (row <1-18>): 16
_Position (col <1-77>): 30
_Size (width <1-48>): 20
_Size (height <1-3>): 2 .

/* Now fill in the data of TEXT:Test in scratch-pad region */

VML>,
in partial-prompting style, it looks like --

partial-prompting example (1)

VML>insert text n on Test
_Position (row <1-18>): 16
_Position (col <1-77>): 30
_Size (width <1-48>): 20
_Size (height <1-3>): 2

/¥ Now fill in the data of TEXT:Test in scrach-pad region */
VML>

%

46

A R MR et A B B IR

VML OPERATIONS

partial-prompting example (2)
VML> insert text
_Attribute (<N>NORMAL / <[>:INVERSE / :BOLD / <F>:FLASH): n
_Indicator (ON/OFF): on
_Naming: Test TO 16 30
_Size (width <1-48>): 20
_Size (height <1-3>): 2
/* Now fill in the data of TEXT:Test in scrach-pad region */
VYML> ‘

in no-prompting style, it looks like --

VML> insert text n on Test to 16 30 with 20 2

f* Now fill in the data of TEXT:Test in scrach-pad region */
VML>

Notice that all commands (operations) can use first two characters.

For example, users can key in:

VML> in text n on Test to 16 30 with 20 2

is also a valid command for inserting.

5.2 BASIC FUNCTIONS

VML in VIPS is a V-Form manipulator which provides a device

for users to manipulate V-Forms. Some basic functions in VIPS are as
follows.

47

VML OPERATIONS

Load function:

* This function allows users to load V-Form types or V-Form
instances from memory to system explicitly. When the V-Form type or
instance is loaded, an entry in instance table is created and all
information will be read in from file, the corresponding internal
structure is built. Users can manipulate it later. For example, to load an

instance(CALINS) into system, key in the command

VIPS>load cai.ins

Store function:

~ This function is an inverse of the Load function. It frees the entire
corresponding internal structure and delete its corresponding entry in
instance table. After a V-Form type or instance is stored, it is deleted

from the system but can be load again if needed. For example, to store
the instance CALINS , key in the command

VIPS> store cai.ing

Type function:
This function is a V-Form outline scanner which allows users to

48

VML OPERATIONS

see the first V-Form page previously existed in system. There is no
need to invoke VDL or VML, any V-Form type or instance can be
viewed by this function. For example, to see the first V-Form page of

CALINS on screen, key in the following command

VIPS> type cai.ins

VDL fu_nction:

This function is used to invoke V-Form Definition Language to

define the V-Form types or V-Form instances. For example, key in
VIPS> vdl

entering into the environment of VDL which allows users to define the

V-Form types or V-Form instances.

VMLqunction:

This function is used to invoke V-Form Manipulation Language to

manipulate V-Form types or V-Form instances. For example, key in

-

VIPS> vml cai.ing

entering into the environment of VML which provides several

49

VML OPERATIONS

operations to manipulate V-Form instance CALINS.

Copy function:

This function allows users to copy V-Form type or V-Form

instance to another one. For example, to get a new V-Form instance
THEOREM.INS from V-Form instance CALINS, key in the command

VIPS>_copy cai.ins to theorem.ins

Run function:

This function is used to invoke the direct V-Form interpreter to
interprete the V-Form instance obtained from VDL or VML. For
example, to interprete the V-Form instance CALINS, key in the

command

VIPS> run cai.ins

Help function:

This function will show various kinds of information for users. It
provides many help messages which assist users to understand the usage

of the system. For example, to understand TYPE function, key in the

50

VML OPERATIONS

command

VIPS> help type ’

Exit function:

This function terminates the execution of the visual programming
synthesizer system. After using EXIT command, the system returns to
host operating system. For example, to terminate the execution of °

© VIPS, key in the command
VIPS> exit

The above basic functions are built on the top of VDL, VML, and
direct V-Form interpreter. These functions integrate V-Form
components and manage their V—Form types and V-Form instances
consistently before entering into the environment of VDL or VML. In
the following sections, only the VML operations will be described. As
for VDL operations, please consult the M.S. thesis of M. C. Lu[13].

5.3 DISPLAYING

-

A V-Form type or a V-Form instance is a graph structure with
V-Form pages as its elemental nodes. Each V-Form page is defined as a

V-Form window on the screen. The displaying operation is served as a

51

A

VML OPERATIONS

page-tuner which allows users to tune each V-Form page in the
V-Form type or V-Form instance. The V-Form page which is
displayed and shown on screen is the current V-Form page. Each
V-Form page has a instance name at the center of the first row on the
screen, and a V-Form page name at the upper-left corner of screen. In a
V-Form window, there is a V-Form name and its type that is shown at
the upper-left corner for each V-Form(atom or non-atom), and the
content of V-Form is shown within it. Fig. 5.2 shows a typical V-Form
page, where CALINS is the instance name(the same as its file name), its
V-Form page name is Cai_Course now. TEXT:Topic,
ANIMATION:Pic1, ANIMATION:Pic2, TEXT:Query, VFORM:Yes,
and VFORM:No are their sub-VForm type and name pairs,

respectively.

Y FORMCAl Cour se T brrrr CALINS Tr P o]

i ANIMATION:Pic1

" TEXT:Topic -

C | Theorem proving on triangle coincidence

o ANIMATION:Pic2

i TEXTQuery— : :
1 The following example is a practice © learn

L the concept of geome ical coincidence.

- YFORM:Yes | Do youwanttogiveatry? YFORM:HNo
[[Yes] | Mo |
YML> '

OPEH DISPLAY INSERT REMOVE UPDATE GROUP DEGROUP SAVE SAVEAS EXIT QUIT

Fig. 5.2 A typical V-Form page (Cai_Course)

52

VML OPERATIONS

The V-Form page name inherits from its father's name. So, if one
V-Form page has multiple father V-Forms, it may have different
V-Form page names when different paths are used to reach it. The
displaying operation searches for the destination V-Form page in the
V-Form instance (or type) from the current V-Form page. The
destination V-Form page Iﬁay have two methods to identify it. One is to
display its father V-Form name, and the other is to display any
non-atom V-Form name which is included in this V-Form page. For
example, the third V-Form page can be reached either by displaying its
father V-Form name(C) or displaying its non-atom -sub-VForm
name(From). Fig. 4.2 shows an example for displaying operation by

two displaying methods.
VML> display ¢
or

VML> display from

53

I\

VML OPERATIONS

YFORM: CTmmmmmam s raav C A | NG T v e e

[TEXTFrom '
As demonstrated in the Mustrated
example, we know that

TEXTKnov
o prove the equivalence of two wangles,
we simply put these two triangles ogether
and see If they can be compleiely mathed.

TEXT:Folow
| Now, in the following we shell demonstrate
a theorem proving on triangle coincidence.

YFORMEXIT o YFORM:READY

|_EXIT | - | READY |

YML> display From
¥ML»
OPEN DISPLAY INSERT REMOYE UPDATE GROUP DEGROUP SAYE SAVEAS EXIT QUIT

T T T
T T T T TT T T T b e g

Fig. 5.3 An example of displaying operation

If the current V-Form page is now VFORM:Yes, the first command
will get the third V-Form page. The second command can be used at
any V-Form page to get the third V-Form page. Of course, the
sub-VForrri name "From" must be unique in this V-Form instance.
Otherwise, the first V-Form page which include a sub-VForm name

"From", will be displayed.

Because a V-Form instance is an application program which
consists of several V-Form pages linked in a complex graph structure.
Essentially, the V-Form displaying operation is a graph search and a

displaying activity of V-Form. The graph search strategy adapted here

-is ‘a bread-first traversal on each V-Form node. During the search

process, an extra Queue is used to put the unsearched V-Form pages

(form control tables), and a Traversed list is used to record those

54

VML OPERATIONS

V-Form pages traversed. The search process starts with the current
V-Form page, traversing the remaining reachable part. If destination
V-Form page is not found in the remaining part, then a secondary try
begins from the rooted(start) V-Form page and to search down those
parts untraversed in this V-Form instance. Beside the V-Form page
searching and displaying, the displaying operation also contains the
retrieval of all information held in V-Forms. The characters of each
V-Form consists of its display attribute(may be NORMAL, INVERSE,
BOLD, or FLASH) and its indicator(ON or OFF). The attributes and
indicators of V-Forms are their di-splayingr characters in V-Form
interpreting. The following commands display the attribute and the
indicator of V-Form TEXT:Ask. | |

VML> display ask attribute

The ATTRIBUTE of ASK is: NORMAL
VML> display ask indicator

The INDICATOR of ASK is: ON

The other information beld in V-Forms are their embedded
components, such as conditions, actions, or procedures. The displaying
operation can retrieve all these components in the same way. For.
example, the first procedure of V-Form Exit in VFORM:Yes can be

displayed through the command

VML> display ¢ procl .
The 1-th PROC of C is: DISPLAY TEXT:Good.

55

ik

VML OPERATIONS

The displaying of conditions and actions are just the same.

5.4 INSERTING

Inserting operation is used to add an atom V-Form to the current
V-Form page or to add embedded components(such as conditions,
actions, or procedures) to some V-Form of the current V-Form page.
All information of an atom V-Form must be specified in the INSERT
command, this includes the content type, name, display attribute,
indicator of V-Form, and its window coordinate and size. The
following is an example. Assume the current V-Form page is
VFORM:No. An atom V-Form with content of type text is now inserted
into VFORM:No by using the command

VML> insert text n on Test to 16 30 with 20 2

/* Cursor is now at the beginning of TEXT:Test, user can now

key in the text "This is a test for INSERT operation." */
'VML>

In this command, a text type V-Form TEXT:Test is added, its window
position is at row 16 and column 30, its window size is width 20 and
height 2. Besides, its attribute is NORMAL and indicator is ON. When
complete this command, cuisor will stay at the beginning of V-Form
TEXT:Test waiting user to key in its text type content. After finishing
this inserting operation, a‘new V-Form page VFORM:C, as shown in
Fig.5.4 is obtained.

56

VML OPERATIONS

VFORM;C'nlluuilui]nnlnnlnnCAHNSIlllilil”i”“l””I””I””I
TEXT:From

As demonstrated in the illustrated
example, we know that

TEXTKnow.
w prove e equivalence of two tiangles,
we simply put these tvo triangles wgether
and see if they can be completely matched.

TEXTFollow
Now, in the following we shell demonstrate
a theorem proving on tiengle coincidence.

XT.Teat
YFORM:EXIT T o YFORMREADY
EXIT [INSER’I‘ operation | READY

YML> ingert text n on Test o 16 30 with 20 2

1|
L ¥ l T T §. 1 l T & & 1 l

YML»
OPEN DISPLAY INSERT REMOYE UPDATE GROUP DEGROUP SAYE SAVEAS EXIT QUIT

Fig. 54 An inserting operation example.

Unlike displaying operation, inserting operation and the later ones
will alter the internal structure of V-Form instance manipulated. In this
example, when TEXT:Test is added, a form control node(FCN) which
specifies this V-Form is added to the form control table(FCT)
VEFORM:C, the Mode Nodes(MNs) which records its attribute and
content is linked by a pointer from the FCN of TEXT:Test. The logical
structure of VEORM:C after inserting is shown in Fig. 5.5.

57

VML OPERATIONS

(Added after
inserting operation)

From Follow Test

Fig. 5.5 The logical structure of VFORM:C after inserting
TEXT:Test.

Another function of inserting operation is to add an embedded
component to the V-Form under consideration. Each V-Form(atom or
non-atom) may have several conditions, actions, and procedures,
Condition must be added in a manner of condition-action pair, while
action and procedure can be added alone. The inserting operaiions of
condition-action pair and procedure are described in the following in

line mode commands

VML>_insert cond B

CONDITION: IFE error count LESS THEN 3
ACTION: ADD error count 1

VML>

VML>_insert proc C

58

VML OPERATIONS

PROCEDURE: DISPLAY TEXT:Good
VML> '

The first INSERT command adds a condition-action pair to VFORM:C,
it checks whether the query count is less then 3 or not. The second
INSERT command adds a procedure to VFORM:C to update the
V-Form page CAL Course. | |

5.5 REMOVING

The removing operation deletes the link between the V-Form
removed and its form control table. So this operation comes two
effects on removed V-Form in the V-Form instance. First, it can be

served to inverse the inserting operation. That is, it removes an atom

from the current V-Form page to cause a deletion of the FCN

corresponding to the atom from FCT. Then this FCN and all branches
linked to it will be freed. Second, it removes an non-atom V-Form(with
type VFORM) from current V-Form page. At this time, a structural
relationship will be tested. If now they are structural unrelated, i.e.
they are two independent V-Form instances, then removed V-Form
instance will be freed, otherwise, it just breaks the link between this
removed V-Form and the current V-Form page. Of course, when
removing operation has completed, its corresponding V-Form window
will be erased from current V-Form page. To removes an atom
(TEXT:Test) from currént V-Form page VFORM:C, key in the

following removing command

59

VML OPERATIONS

VML> remove text test
VML>

Another removing operation example is to break the link between
sub-VForm VFORM:Ready and the current V-Form page. After

completing this operation, the resultant V-Form page as shown in Fig.

5.6 is displayed.

VML>_remove vform ready
VML>

VFORM: Crrrprrrraes [ro e frorT C AT NG T oo e e

C TEXT:From

As demonstrated in the illustrated
| example, we know that
TEXTKnow

3 to prove the equivelence of two wengles,
N we simply put these two triangles ogether
. and see if they can be completely matched.

TEXTFollow
Now, in the foliowing we shell demonstrake
o theorem proving on triangle coincidence.

TEXT.Test
VFORMEXIT This i3 :Smst for

EXIT . INSERT operation.

YML> remove viorm ready
YML>
OPEN DISPLAY INSERT REMOVE UPDATE GROUP DEGROUP SAYE SAVEAS EXIT QUIT

Fig. 5.6 The V-Form pags after removing sub-VForm Ready.

Another function of removing operation is to delete the embedded

60

il

+
P
¢
f
+
i
1

VML OPERATIONS

components of V-Forms in current V-Form page. The first procedure

of VFORM:C is removed by using the following command

VML> remove proc 1 from C
VYML>

The number of procedure which will be removed and the numbers of

actions or conditions must be specified in REMOVE command

5.6 UPDATING

When the bbject_. manipulated by VML is a V-Form type, the

updating operation is used to fill in the content of each V-Form. On the

other hand, if the object manipulated by VML is a V-Form instance, the

updating operation is used to modify the contents of V-Forms. The
information manipulated by users in updating operation are all
formatted data. So, the contents of V-Forms updated by this operation
are represented externally. That is, the updating operation'is
performed in a what-you-§ketch-is-what-you-gct manner. The

following command demonstrates the updating operation.

VML> update test

/* Cursor is now at the beginning of TEXT:Test, user can now
edit its content at will */

VML>

VML OPERATIONS

The embedded components are modified by updating operation in
a prompting manner. That is, when embedded component is updated,
old content is displayed and allowed to key in new content. For
example, the first condition of VFORM:Yes in above example is

modified by the following command

VML> update B cond 1
The 1-th CONDITION of YES is: IF error_count LESS THEN 3

_New CONDITION is: IE error_count LESS THEN 5
VML>

After finishing this.opcration, the first condition of VFORM:B has

been changed to "IF error_count LESS THEN 5". If the embedded

component that is modifying does not exist, the updating operatlon will
be aborted and a error message is responded The characters (such as
display attribute or indicator) also can be modified by updating
operation. For éxample, to c_hange'the attribute of TEXT:Query to
INVERSE, key in the following command | |

VML> update Again attribute
The ATTRIBUTE of QUERY is NORMAL.

_New attribute (<N>:NORMAL / <I>;INVERSE / :BOLD/
| <F>FLASH): i | |
VML> e

The indicator modification is just the same as atiribute updating.

Notice that, the updating operation will modify the contents of

62

VML OPERATIONS

V-Forms, but it cannot alter the internal structure of V-Form instance

being manipulated.

5.7 GROUPING

Grouping operation is used to group two independent V-Form
instances together. It takes the current V-Form page of manipulated
instance as a destination V-Form page, and then takes any V-Form page
in grouped instance as a root which will be inserted into the destination
V-Form page. Finally, a new V-Form instance is created from the
current manipulated instance. But it will leave the grouped V-Form
instance unchanged. Fig. 5.7 shows an example of grouping. This
grouping operation adds a complementary course, V-Form instance
COMP.INS(in file COMP.INS), to the current V-Form page
VEORM:C of the V-Form instance CALINS. Here, the VFORM:Comp
in COMP.INS is used as a rooted V-Form page which is added to the
current V-Form page. In this GROUP command, "HELP" is used as the
alias of VFORM:Comp in VFORM:C. If the alias is absent, the content
of VFORM:Comp will be "Comp". The grouped V-Form
VFORM:Comp has a "FLASH" attribute just likes all the other
V-Forms with type "VEORM", and an indicator with value "ON".

-

63

VML OPERATIONS

YFURNZ Crmrrr TR CA | ING T T o T

TEXT:From
As demonstrated in the lustrated
example, we know that

TEXT:Know : ;
1 prove the equivalence of two tiangles, '
we simply put these two triangles together
and gee if they can be completely mathed.

TEXTFollow.
Now, in the following we shell demonstrate

& theorem proving on trangle coincidence,

YFORM:EXIT T YFORM:Comp) e n VFORM;EQEADY
.| EXIT : ¢ | READ
: | + [_HELP | | e |
VML
YMbL»
OPEN DISPLAY INSERT REMOVE UPDATE GROUP DEGROUP SAVE SAYEAS EXIT QUIT

H
lllllllillliilll[l

(a) Current V-Form page VFORM:C (in frame F3).

VFORM: Comp e rrrrfoss CA NS TP Tam [oo

TEXT:Swkel
Two given triangles are said 1o be equivalent if their vertices,
sides, and intersecting angles can be exactly matched. Two i
vertices (sides, angles) which can be matched are called the
corresponding vertices { sides, angles) of these two tiangles.

T 1 T

We use the symbol AABC 1o represent a triangle with vertices
A,B,ard C. If two given triangles AABC and AA'B'CY axe
equivalent with vertices A, B, and C comresponding wA', B,
and ¢ regpectively, then we use AABC &2 AA'B'C' 1o denote
their equivalence. '

T 1T T ‘ 1 I l T T T l
-

YFORM:Next—

| NEXT |

VHLr display comp
YLy

OPEN DISPLAY INSERT REMOYE UPDATE GROUP DEGROUP SAVE SAYEAS EXIT QUIT

.
-

(b) Rooted V-Form page VFORM:Comp in COMP.INS.

Fig. 5.7 An example of grouping operation.

64 ‘

VML OPERATIONS

Fig. 5.7(a) shows a new structural relationship between two grouped

V-Form instances. Fig. 5.8 shows the logical structure after grouping.

CAI_Course (in CALINS)

Yes (F2)

Comp_Course
(in file COMP.INS)

Comp

From Know

Fig. 5.8 Logical structure of CALINS after grouping operation.

5.8 DEGROUPING

Degrouping operation is just the inverse of grouping operation.
The difference between removing and degrouping operations is that the
degrouped instance will be extraily saved as a new one. Removing,
grouping, and degrouping operations can all change the branches of
control flow. A structural unrelationship must also be checked, just as
removing a “"VFORM" type V-Form, before performming this
degrouping operation. The following command is used to degroup the
VFORM:Comp from the current V-Form page VFORM:C in CALINS

65

[EESEE Y

VML OPERATIONS

instance, and the degrouped object is saved in V-Form instance
COMP.INS (COMP.INS file).

VML>_degroup comp to comp.ins
VML>

It is an inverse action of the above grouping operation. The logical
structure after degrouping is shown in Fig. 5.9, where two independent

V-form instances are obtained.

CAI_Course (in CALINS)

Yes (F2) Comp_Course’
(saved in file HELP.INS

after degrouping)

Comp

From Know

Fig. 5.9 Logical strutures after degrouping operation.

.
-

66

VML OPERATIONS

5.9 INSTANCE HANDLING

VML provides several instance handling commands for users to

manage instance in this environment.
, Save:

This command is used to save the immediate result of manipulated
instance. When a V-Form instance is manipulated 'By VML, it is
duplicated first and this duplicate is served as a working instnace for
manipulation. SAVE command will overwrite an original V-Form

instance with its working instance.
Saveas:

The difference between SAVE and SAVEAS commands is that
SAVEAS command saves the immediate result to a new instance name
instead of the original one. That is, it is served as an instance

duplication for the immediate object.

Close:

-

CLOSE command closes the working instance. If there is any

change during the manipulation, a query for saving its changes is given

67

VML OPERATIONS

by system. When the user wants to save it, the working instance
overwrites its original one and stops its manipulations. Otherwise, the
working instance is aborted and its manipulation is stopped. If no
change occurs, system deletes the working instance and stop its

manipulation directly.

Open:

OPEN command can be used to open another V-form instance

after CLOSE command for manipulation.
Exit and quit:

Thes_e two commands will cause to leave VML environment. The
difference between them is that EXIT command will ask users whether

to save the change or not before rleaving it, while QUIT command

leaves it right away.

68

CHAPTER 6
AN ILLUSTRATED EXAMPLE

6.1 COURSEWARE DEVELOPMENT

From previous, discussion, an instant thought about the V-Form
manipulation language is its application in CAI courseware
development. Indeed, our visual prbgramming synthesizer can be
served as an authoring system, because it may exhibit the following
functional characteristics: '

1. Content creation -- the updating operation can be used to edit
 the contents of a specified V-Form type, just like the editing phase in
V-Form Definition Language(VDL) which allows users to enter the
data to be displayed or stored. |

2. Lesson definition -- the inserting, removing, grouping, and
degrouping operations can be used to specify the structure of individual
Jesson. They are related to the information display, student response,
and branch control: |

3. Courseware management -- VML allows a user to define an
instructional course according to his strategy(e.g. drill, quiz, tutorial
etc.). The direct V-Form interpreter can be used to simulate what his
strategy will be. ‘

4. Provides alternate facilities for man-machine interaction --
VML provides different prompting styles for different level of users.

In the following, we will described how a CAI courseware can be

AN ILLUSTRATED EXAMPLE

easily created by VIPS. Fig. 6.1 shows a courseware for the purpose of
demonstrating the concept of geometrical coincidence. Fig. 5.1(a) is the
first frame of the courseware with two triangles circling around in
different speeds, one is twice faster than the other so that both circling
triangles will stop and coincide at the top one. A touch/selection the
VFORM:Yes starts the practice to learn the concept of geometrical
coincidence in the second V-Form page(the second frame F2). The
third V-Form page(frame F3) exhibits the facility of delay displaying,
the dotted line denotes the delay of a period of time between two
consecutive V-Form.

A theorem proving on triangle equivalence is demonstrated from
F4 to F9. Notice that, in these frame, the whole screen is partitioned
into two regions. the right-lower region is a window which allows a
user to touch/select the appropriate answer within it. These
answer-question activities are the theorem-proving process of. triangle
equivalence by using geometrical coincidence method. An asterisk lay
on or beside the dotted line means the display sequence of V-Forms,
and the display of the content depends on a proper selection of a fact.
When a V-Form is marked with an asterisk at the left-lower corner,
then the indicator of such a V-Form is now "OFF", indicats that the
V-Form is not displayed on the screen initially in its interpreting, only
to display when some kind of condition specified by users is satisfied.

To design such a CAI courseware, teachers with or without
programming language background can concentrate in describing their
specialized knowledge as the process of how to get the desired
courseware. The interface language which provides some user-friendly
facilities will allow them easily to implement the courseware.

Once a teacher has prepared his/ger own well-written sheets in

V-Forms according to the eourseware, he/she can interactively define
the individual V-Form page with a sequence of commands in VDL,

70

o

PRRUE—)

" AN ILLUSTRATED EXAMPLE

-each non-atom V-Form(With "VFORM" content type) can be added by

grouping operation or deleted by degrouping operation. In this way, an
entire well-constructed V-Form instance (coursewadre) can be obtained.
Furthermore, the displaying, inserting, removing and updating
operations can be used to modify the V-Form instance at will. The
embedded components can also be processed by these operations. Fig.
6.2 shows the self-synthesized control flow of the V-Form instance
illustrated in Fig. 6.1. '

((A) twice IastilieifB;)_ €

n"

Theorem proving on tiangle coincidence :

The following example is & practice to lesin
the concept of geometrical coineldence. .
. Do you want o give atry ?

(a) F1

71

AN ILLUSTRATED EXAMPLE

RS

Can you identify which of the four upper-right triangles
that is equivalent 1o triangle A 7

TRY AGAIN !
VERY GOOD |

-

(b) F2

As demonstrated in the iflustrated
example, we know that

]
-

to prove the equivalence of two triangles,
we simply put these two triangles together
and see if they can be completely.

.
*

Now, in the following we shell demonstrate
a theorem proving on Iriangle coincidence.

Note: ...4 denotes delay of a period of lime between two
consequtive V-Form. ' :

(c) F3

72

AN ILLUSTRATED EXAMPLE

Theorem : Glven mny twa triangles If they exhibit two squal aldes with samae
interaecting angles, then they are ecquivalent.

A

=\

[[Fampie: |

,4\

o

.—_._--..._--———_—.-—-

ll‘robleln is‘ "'lQ ABC o ~ATEF |'l

w 1) Move > ABC Locw DEE.

- Now, point A and point D ars matched.
. -
-

B} SICE AJ=DE . Bon sido A3 Can cover sids DE
- comptetely and point I3 and point E are matchey

) Since 2An £I, tien side AC can cover sido DF
- complctely,

Ay Stcc Ac=DY . then pomt C and point Foans
matched,

_————— T
[iiven _SABC sand_obEr] [Facs:] ¢ @

L.
-
) Now, &S you can ice, wiicn move S ABC

ADEF they can be maiched completely, o

10

LL.]
window { from F4 10 F9)

LABC X ADEF -

Note: =,

(d) F4

denotes the dlsplay of the content when the fact is propesly selected.
** Jenotes the window of performing the answer-question from F4 to F9.

Which of the following
facts are true ?
(Multiple answers)

17(2) aapc e ADEF i |
[G&a]

[® AcDE.

[Rightt]

- IWron ELI

Which of Lhe following
facts is the answer to
this problem ?

(Choose one)

- [ReenE

| Right! |

I (2) IQABC&‘ADEF::»!
[@) ACDF o |
I 4 £A= D - I

. Wrong! |

(e) the right-down comner. of F4

73

(H) F5

AN ILLUSTRATED EXAMPLE

Now, you may try to
prove the theorem by
the process of matching.
First, move 2 ABC (o
ADEF . '

And, what next ?

(1) Match A 0. 12 |

[(2) Match B to D.|

[(3)-Match C 10 D||

(g) Fo6

Now, points A and D
are matched, the next
step is to move side AB
to coincide one of the
sides of ADER

And, which one in the

following ?

KDDE| |- Right! |

I(Z)Ej .I Try again ! I

l(3)'§§| -I Try again ! |

(h) F7

‘There remains one side o be
matched. Which pair ?

[T acandsr] [Fad]

[12) #g and &e | [Wrong!
=
-t | Why ? Give your reason.
.

:':[(l)'ﬁ;ﬁﬁ . [ink again! |
=13y ¢a= ¢p] [eryGoodi]

[Can_ Ac concide 5 7

-
" [ve]
2ow] [

-t e e wm Em Em Em oEm e e e owe

- [Isitbecause AC-BF 7

b

»

+

.

- n

. (1) Yes . Right!
: @) No . .

Yrong!

Now, are you sure that:

&ABC o ADEF T

[[(0YesT] | [Very goodt]

i-ﬂl': (2) No. | _ {Fhink again!]

* [The theorem has been I
o] proved. What next ?

P [CTIRYAGAIN -]

BT]

: [TRY ANOTHER EXAMPLE]

@ F8

‘¢

(P

Fig. 6.1 V-Form'instance of template CAI_Course

74

AN ILLUSTRATED EXAMPLE

ks

e [&
oun e) o
¢ —

e Selt fioee ringie ABC | [mvetnmgic ABC Tage JBC
ﬂ n'ﬂ H o lanyle DEF ind o ¥imgle DEF nd wzimgle DEF md
frch Ao D, sBnh

Mo ATeBu Dk I_p;“‘- PrrrbinR {

Display [TRTAGATR]| |Displey FERT G0

'
'
rm 71
Sdsn\-' 1

HuE] &

.f‘:i‘. el T e 1 MIES f;ﬂ

B * {
‘ Dipley Dicgley {Tryagant l Displey ![q spund]
&HEH Sel:tm mm ME) Dirpley (b inF4 -
\

m iwtey [Ree] | Disgto] Rigte] | Display] Rugf! f ‘
E_\=£ inFA :f¢ |inFé

-
-
~t-

375 0E) b R
‘ (WY, v
Sa [T § e T salfT] § sl
1 —
ply {Wrone'}d | piptey [k , Display G, Dighy [Winee!
[otGre | R, L
=], |
‘ Selet
—] Safli.] y =0
_i D | [ty (R
- — D:;[:; (d‘{i;mn iy [Wreey]
ALFC D AT v
inFd

et [[E] ¥ Sekat L2

¥

Fisgley ' haplay

Prepley ()i Fd

S G| St D[S [RCDIEREGE]
1

o] -

Fig. 6.2 Control flow of CAI_Course

75

AN ILLUSTRATED EXAMPLE

6.2 DIRECT V-FORM INTERPRETER

When a V-Form instance is created through the processing of
VDL and VML, a Direct V-Form Interpreter can be invoked to
executed such a V-Form instance. This interpreter views a V-Form
instnace as an executable program and interpretes it directly. Because
the internal structure of V-Form instance is consistent and complete,
the interpreting algorithm is simple and easy to understand. We shall
describe the interpretion of V-Form pages processing in the following
algorithm (main program of the interpreter).

Get the first frame as the current V-Form page.
While (the terminating‘condition is true)
Display the current V-Form page.
Execute the embedded components of the V-Forms with type
non-"VFORM".
Repeat |
Get input from user.
until (proper V-Form is selected).
~ Execute the embedded components of the selected V-Form.
Get a new working frame.
Erase current V-Form page.
Set the new frame as current V-Form page.
end.

* In this algorithm, the first frame is the rooted V-Form page in a
V-Form instance. This interpreter interpretes a V-Form instance
beginning with the rootéd V-Form page(ie. the form control
table(FCT) pointed by the system node(SN) of this V-Form instance).
Then a form-by-form V-Form page displaying. and processing is
continued until the terminating condition is satisfied. Note that the

76

AN ILLUSTRATED EXAMPLE

termainting condition may be executed when a "EXIT" procedure is
called or a forced termination by using Control-Z interrupt is
encountered. Also, note that the selected V-Form must be a "VFORM"
type V-Form else a beep 1s responsed.

The displaying of a V-Form page is supported by several
sub-system, such as graphics packages and voice utterances. A text type
V-Form is displayed directly by this interpreter, and the V-Forms with
type static graphics(graph or bit-map) or dynamic graphics(animation)
can be delivered to graphics sub-system. Similarly, the voice type
V-Forms can be treated as a series of procedure calls which invoked a
voice sub-system for execution. |

The V-Form pages processing exccutes as follows: (1) tests whether
the terminating condition is true or not, if it is true, stops the execution,
(2) display the current V-Form page, (3) exccutes the embedded
components of the V-Forms with type non-"VFORM", (4) wait for
uscr's input for sclection, (5) executes the embedded components of the
sclected V-Form, (6) creates a new frame for a working page and
return to ().

The embedded componcents of non-"VFORM" is often used to
facilitate the management of V-Form displaying. For example, in the
third frame F3 (VFORM:C in Fig. 6.1(c)), TEXT:From may have
such procedures "DELAY 3.; DISPLAY TEXT:Know.”. The first
procedure comsumes three time segments for delaying and the sccond
procedure displays a V-Form TEXT:Know because its indicator is
"OFT™, These two procedures cause a delay of a period of a period of
time between two consccutive V-Forms TEXT:From and
TEXT:Know. On the,other hand, the embedded components of the
selected V-Form is often used to control the switching of V-TForm pages
as well as many expressing. For example, the. V-Form VFORM:B in (he
sccond frame IF2 may have the following emebdded components: a

77

AN [LLUSTRATED EXAMPLE

procedure as "ADD error_count 1.", a condition-action as "IF
error_count LESS 3. ; DISPLAY TEXT:Again.", and another
procedure as "GOTO VFORM:CAI_Course.". So, when VFORM:B is
selected, the first procedure is performed to increase the error count
one, then test its condition whether the error count is less then 3, if yes,
a V-Form TEXT:Again with indicator "OFF" is displayed, otherwise
go to the first V-Form page VFORM:CAI_Course. The user's input
may be entered by using convenient pointing devices, but now it is
simulated by the entering of the window region coordinates. To create
a new working frame is usually achieved by the selection of a proper
V-Form or the "GOTOQ" procedure.

78

CHAPTER 7
CONCLUSION

VIPS provides a visual programming environment for users to
develop their own application programs without going into detailed
programming that must be adhered strictly to syntax rules. In VIPS,
V-Forms are used as the fundamental objects because they are more
akin to the user's view point and their contents may include text, static
graphics, dynamic graphics, rules, and voices. The V-Form
Manipulation Language provides displaying, inserting, removing,
updating, grouping, and degrouping operations for users to manipulate
V-Forms in a what-you-see-is-what-you-get manner. It can be used to
generate complete V-Form instances by filling in its contents according
to the V-Form types, or may be served as a program cditor to edit
V-Form instances at will. All information carricd by V-Forms can be
modificd by VML, even some new V-Form instances can be created by
V-Form grouping and degrouping from existing V-Form instances.

The sclf-synthesized internal structure which structurized from a
V-Form instance can be viewed as a program for one particular
application, and executed by a direct V-Form interpreter,

VIPS is only an experiment system in the study of visual
programming and its applications. More knowledgable objccts and
their relations arc expected Lo be included in VIPS in near future. To
cxtent the functional capabilitics of extensions may be proceeded for
VIPS, there arc two things ¢ould be done. One is to connect VIPS to a
Relational Data Base Management System(RDBMS) so that the data
records of internal structure can be stored in or retricved from
RDBMS. The other is to translate the internal structure of a particular
application dircctly into an cxceutable program, so that VIPS becomes

e

CONCLUSION

trully an automatic program generator. From resource sharing point of
view, VIPS integration with RDBMS should be done first. Besides, the
technology of storing and accessing of an executable program codes
within RDBMS still far to reach at the present time. However, still
there are a lot of things to do. Among them, the first important thing is
to dig out more of the theoretical understanding of visual perception so
that a designer can devise knowledge representation for wider objects
in a more general way.

80

[1]

(2]

(31

(4]

[3]

[6)

[7]
(8]

9]

[10]

APPENDIX REFERENCES

Anderson, J. R., Boyle, C. F. and Yost, G., "The Geometry
Tutor," IJCAI, LosAngIes, U.S.A.,pp. 1-7 (1985).

Bobrow, D. G., and Raphael, D. "New Programming Language
for A. I. Research," Computing Surveys 1974.

Campbell, J. A., ed., Implementations of Prolog, Ellis Horwood
Series in Artificial Intelligence(1984). _

-Chang, S. K. and Charisse, O., "The. Interpretation and

Construction of Icons for Man-Machine Interaction in an Image
Information System,” Proceedings of IEEE Workshop on
Language for Automation, New Orleans (Nov. 1984).

Chen, 1. C., ".A Knowledge-Based Environment on Virtual
Workstation," M. S. Thesis, Graduate Institute of NTUEE,
Taipei, Taiwan, R. O. C. (June 1985).

Cheng, K. Y:, Hsu, C. C,, Lin, I. P., Lu, M. C., and Hwu, M. S.,
"VIPS: A Visual Programming Synthesizer," Second IEEE
Computer Society Workshop on Visual Language, Dallas, Texas,
U.S. A. (June 1986).

Clocksin, W. F. and Mellish, C. S., Programining in Prolog, 2nd
ed., Springer-Verlag, Berlin, 1984.

Date, C. J. An Introduction to Database System, Third Edition,
1981.

Ellis, C. A. and Nutt, G. J., "Office Information Systems and
Computer Science,” Computing Surveys, Vol. 12, No. 1, pp-
27-60 (March 1980).

Fu, K. S. and Boéth, T L., "Grammatical Inference: Introduction
and Survey -- Part I," IEEE Trans. on System, Man, and
Cybernetics, Vol. SMC-5, No. 1, pp- 95-111 (1975).

REFERENCES

[11] Fu, K. S., "An Introduction to Formal Language," Chap. 2. in
. Syntatic Pattern Recognition and Application, Prentice-Hall,

[12]
[13]

Englewood Cliffs, N. J., 1982.
Gray, M. D., Logic, Algebra and Database, Halsted Press, 1984.

Harrison, M. A., Introduction to Formal Language Theory,
Addison-Wesley (1978).

[14] Hayes, P. I., "The Logic of Frames", from Webber and Nilsson,

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

Readings in Artificial Intelligence (Tioga, 1981).

Hopcroft, J. E. and Ullman, 1. D., Introduction to Automata
Theory, Language, and Computation, Addison-Wesley, 1979.

Hopcroft, J. E. and Ullman, J. D., "Formal Languages and Their
Relation to Automa,", Addison-Wesly, 1976.

Kowalski, R., Logic for Problem Solving, Amsterdam: North
Holland, 1979.

Lu, M. C., "A Visual Approach to Automatic
Program-Synthesizer," M. S. Thesis, Graduate Institute of
NTUEE, Taipei, Taiwan, R. O. C. (June 1986).

Jacob, Robert J. K., "A State Transition Diagram Language for
Visual Programming,” IEEE Computer, pp. 51-59 (1985).

Kearsley, G., "Authoring Systems in Computer Based
Education,” Comm. of the ACM, Vol. 25, No. 7, pp. 429-437
(1982).

King, K. J. and Maryanski, F. T, "Information Management
trends in Office Automation,” Proceedings of t he IEEE, Vol.
71, No. 4, pp. 519-528 (1983).

Kitagawa, H., Gotoh, M., Misaki, S., and Azuma, M., "Form
Document Management System SPECDOQ - Its Architecture and
Implementation,” Second ACM-SIGOA Conference on Office
Information System, Vol. 5, No. 1-2, pp. 132-142 (June 1984).

82

REFERENCES

[23] Liu, K. C. "A Multi-Model Database System With A Unificd Data
Language," M. S. Thesis, Graduate Institute of NTUCSIE, Taipei,
Taiwan, R. O. C. (Junc 1985).

[24] Moriconi, M. and Hare, D. F., "Visualizing Program Designs
Through PegSys," IEEE Computer, Vol. 18, No. 8, pp. 72-85
(1985).

[25] Reiser, B. I., Anderson, J. R. and Farrel, R. G., "Dynamic Student
Modelling in an Intelligent Tutor for LISP Programming,”
IJCAIL LosAngles, U. S. A., pp. 8-14 (1985).

[26] Rockart, L. A. and Flannery, L. S., "The management of End
User Computing,” Communications of the ACM, Vol. 26, No. 10,
pp. 776-784 (Oct.. 1983).

[27] Shu, N. C., Lum, V. Y., Tung, F. C., and Chang, C. L.,
"Specification of Forms Processing and Business Procedures for
Office Automation,” IEEE Transactions on Softwarc
Engineering, Vol. SE-8, No. 5, pp. 499-512 (Sep. 1982).

(28] Shu, N. C., "A Forms-oriented and Visual-directed application
development system for non-programmers,” First IEEE
Computer Socicty Workshop on Visual Language, Hiroshima,
Japan, pp.162-170 (Dcc. 1984).

[29] Shu, N. C., "FORMAL: A Form-Oricnted, Visual-Dirccted
Application Development System,” IEEE Computer, Vol. 18,
No. &, pp. 38-49 (1985).

[30] Sugihara, K., ct al,, "An Approach To The Design of a Form
Language," First IEEE Computer Socicly Workshop on Visual
Language, Hiroshima, Japan, pp.171-176 (Dec. 1984).

[31] Tsichritzis, D. C., "Form Management", Comm. Of the ACM,
Vol. 25, No. 7, pp. 453-478 (1982).

(32] Tsichritzis, D. C. and Lochovsky, F. . "Officc Information

System: Challenge for the 80's,” Proccedings of the IEEE, Vol
68, No. 9, Seplember 1980.

83

REFERENCES

[33] Winston, P. H., Artificial Intelligence, Addison-Wesley (1984).

[34] Winston, P. H., and Horn, B. K., Lisp. Reading, Mass.:Addison
Wesley, 1981.

[35] Zloof, M. M., "Query-by-Example: A Data Base Language,” IBM
System Journal, Vol. 16, No. 4, pp. 324-343 (1977).

[36] Zloof, M. M., "QBE/OBE: A Language for Office and Business
Automation," IEEE Computer, Vol. 14, No. 5, pp. 13-22 (1981).

34

