TR-87-004
A Visual Approach to
Automatic Program Synthesizer-

KUO-YANG CHENG

TP SR)

i Ill\ll\ll“\lllli\llll\illﬂlim IH\NIll!IHlII

3 0330 03 000064 5

PART ONE

A Visual Appfoach to

“Automatic Program Synthesizer

-

.

Rt RN EHRES » FE R ITIE Bk — 27 BRI 0 T A SR B
R AT BRI AR « AT EETHRRNERGURTE >
AR BFERLEE S EMIEAER « B-HE) EATERESH
SR AT » EATRRER BE IR b R M T
AR - BEEBREERRRN FEBEEE TR SRR
SRR SIS T E— BRIRA R A BL R ~ BRI EERA
LA A B AT AL B EEE - BT RIEERERREL
GRE » KRR H—EFREERREHE o FEILEET » BETH
s B R g MR T B M » R B ERERHTRERA A
HEMBROERAESR | .

kS B T B BB A RS L — g -
R I CERARFGLE + ARTRARAEIRHBERN TR
Kigig HERAKETE B (RBRER) « HEIRAE H -
e LT E R R RS T » AR R ERAREI AUE
7 AR U FE 2 Y M A A e e o ARBRAE— 05K »
KFERA TREFHEREE « DY KIBRAK Prolog MRER ©
e S S S SR » I fOTE AR R AB L E b B B — P

B b & T R Syt SRR R FES AT T o BN

FHsZ B RR AT » R Y K SRR ©

BT REARIEES G RaPEl S ~ SRACHIEN A Ry » I
R ST LSRR « AGRSCAMEE —REEHH7E PrologiZ FHUIBISE Prolog #
st ATHGE— IR SRS LIS BTSSR B A B AIERRS AR =T 31
{7y Prolog #23X °

ABSTRACT

Traditional programming environment concerns how to provide the
programumers some convenient and useful tools to develop their application
programs. Under this environment, however, its provision seems not very
convenient for Non-Programrﬁe'r Professionals (NPPs) to develop their
own application programs effectively. On the other hand, under Al
language programming environment alone, it seems still very difficult for
NPP users to handle their specialized knowledge very well. Such a problem
arises in the selection of a user-friendly environment encountered in the
design of some applications, in particular in the areas of Office
Information System, Computer Aided Instruétions, and screen-oriented
information systems. In order to solve this problem, a visual pfo gramming
environment is pr(')pos.ed. Under this environment, the NPP users can
easily develop and execute their own application programs that simulate
their specialized knowledge in visual.

The research purpose of this thesis is to explore anew approach to the
design of an Automatlc Program- Synthesmng (APS) system for NPP
users. In this thesis, visual forms (V-Forms) are used as the fundamental
data/programming objects of APS system. The informant presentation data
of APS system may contain text, static graphics (line-drawin g or bit-map),
dynamic graph.ics (animation), or rules. They are organized as V-Forms.
* In this environment, a V-Form model is proposed to represent the visual
properties of V-Forms and to .support a graphical structure of the
applications as described by the NPP users.

Based on the proposed V-Form model, a V-Form Definition
Language (VDL), a prototype graphics utility, and a V-Prolog interpreter
are integrated into the APS system. Through the VDL, an user-designed

application can be self—syntheéized into a consistent internal structure

which holds the properties of knowledgable objects and the execution flow

of the desired application. The prototype graphics utility is used to support
the graphical entry of V-Forms. When applying a mapping algorithm
which transforms the self-synthesized internal structure into Prolog

. programs, the user-designed application becomes executable by the

V-Prolog interpreter.

CHAPTER

CHAPTER

- CHAPTER

1.

1.1
1.2

2.1

2.2

2.3
2.4

3.1

3.2

33

3.4
3.5

TABLE OF CONTENTS

INTRODUCTION

WHY VISUAL PROGRAMMING
ORGANIZATION OF THIS THESIS

VISUAL PROGRAMMING ENVIRONMENT
INTRODUCTION

RELATED RESEARCHES

2.2.1 Form Language

2.2.2 QBE/OBRE

2.2,3 FORMAL

»-2.2.4 State Transition Diagram Language

THE VISUAL PROGRAMMING ENVIRONMENT
OVERVIEW OF THE SYSTEM CONFIGURATION
2.4.1 System Architecture

24,2 Main Features of Visual Programming Approach

ON VISUAL LANGUAGE -

INTRODUCTION '

BACKGROUND

3.2.1 Closures .

3.2.2 Phrase-Structure Grammars/Languages
3.2.3 ' Inferred Grammar

3.2.4 Context-Free Programmed Grammar
3.2.5 Non-Procedural Language

THE DEFINITION OF VISUAL LANGUAGE
3.3.1 Related Researches

- 3.3.2 . Formal Definition of Visual Language

WHY A V-FORM APPROACH
V-FORM MODEL

18
18
18
19
20
22
23
24

25
26
28
30

CHAPTER 4,

CHAPTER

4.1
4.2

4.3

4.4
4.5

5.1
5.2

:_7

3.5.1 Extemal Structure
3.5.2 Internal Structure

V-FORM DEFINITION LANGUAGE

INTRODUCTION

THE SKELETON PHASE

4.2.1 BNF Syntax of the Skeleton Phase

4.2.2 Primitive' Operations of the Skeleton Phase
4.2.2.1 Initialization
4.2.2.2 Window Operations
4.2.2.3 Flow Manipulation
4.2.2.4 Type Redefining
4.2.2.5 Instance Generatiof
4.2.2.6 File Handling
4.2.2.7 Miscellancous

THE EDITING PHASE

4.3.1 BNF Syntax of the Editing Phase

4.3.2 Primitive Operations Of the Editing Phase
4.3.2.1 Content Management
4.3.2.2 Procedure Processing
4.3.2.3 Flow Manipulation
4.3.2.4 Miscellaneous ‘

A PROTOTYPE GRAPHICS UTILITY

AN ILLUSTRATIVE EXAMPLE

4.5.1 Problem Statement

4.5.2 Startup

4.5.3 Interactive Sequence

INTERPRETING V-FORMS UNDER PROLOG
INTRODUCTION

BACKGROUND

5.2.1 Predicate

3.2.2 Unification

3.2.3 Backtracking

30
35

37
37
38
39
40
40
40
42
44
45
45
46
47
47
49
49
50
51
51
53
55
55
60
61

63
63
64
64
65
05

2.3

5.4

CHAPTER 6.

APPENDIX A.

APPENDIX B.

REFERENCES

5.2.4

CProlog Interpreter

THE V-PROLOG INTERPRETER

5.3.1

3.3.2.

The Machine-hidcpendcm Systern Predicates
5.3.1.1 Procedure Evaluation

5.3.1.2 Control Strategy

5.3.1.3 Database Management

5.3.1.4 Window Manipulation

The Machine-Dependent System Predicates
5.3.2.1 Screen Management/Vedio Control
5.3.2.2 System Communication

5.3.2.3 Miscellaneous

INTERPRETING ENVIRONMENT

5.4.1
54.2

Mapping Algorithm
An Example

CONCLUDING REMARKS

INsTALLATION: OF APS SYSTEM

AN ExaMrLE ON INTERACTIVE SEQUENCE

66
67
63
63
69
69
70
70
71
71
72
12

72

76

33

87

94

2.3.1
2.4.1
2.4.2

3.5.1
3.5.2
3.5.3
3.5.4

4.2.1
4.2.2

4.3.1
4.4.1
4.5.1
4.5.2
4.5.3
4.5.4

5.3.1
5.4.1

FIGURE

Visual Process vs. Traditional Programming Process
Basic Architecturc of APS System
System Architecture

The First V-Form F1 of an Application CAI Course
The Hicrarchical Structure for the Application CAI_Course
The Template for the CAI_Course

The Intemal Structure of the V-Form Fl of fig. 3.5.1

Block Diagram of VDL Interactive Sequence

After Using EXTEND and a scries of OPEN commands
on YFORM:Yes of fig. 3.5.3 _

An Example Showing the Usage of ALIAS

A Typical Screen Layout of the Graphics Utility

The Application CAI_Course

Screen Layout of the Proposed APS System

. Screen Layout of VDL

Control Flow of CAI_Course

The Structure of V-Prolog
A Typical Screen During Execution

12
13
14

31
33
33
36

38

43
53
34
56
60
6l
62

67
79

4.2.1
4.3.1

5.4.1

TABLE

Categories About The User Applications

Syntax of the Primitive Operations in VDL Skeleton Phase
Syntax of the Primitive Operations in VDL Editing Phase

The Productions of the Mapping Algorithm

39
43

73

CHAPTER 1

INTRODUCTION

1.1 Wuy VisuaL PROGRAMMING

The improtance for the study of visual language has been recognized
in the United States and Japan in recent years [3,14,19,24,25,30,31]. The
major issues of the study are to provide a programming environment for
Non-Programmer Professionals to develop their own- application
programs visually. This kind of applications can be seen widely in the
design of Office Information Systems [7,16,17,23,28] and others such as
Computer Aided Instructions {1,15 21]. In these applications, the visual
language is used to describe visional data: a menu, a screen layout, an
engineering drawing, a typeset report, and the abstract data type such as

hierarchy, condition statements, and rule-based knowledge.

‘When encountered in the design of such an application program, one

‘may ‘ask whether the traditional programming environment or the Al

programming environment should be used? As we know, both
programming environments require knowledge about the programming
techniques which are still the time-consuming, detail-intensive, and
error-prone chores. In addition, as the computer has brought into the

office environment and the classroom, there emerges a group of

Introduction

non-programmérs who have no time or no interest to program but
urgently need to write their own application programs from time to time.
Also, according to the survey of Rockard and Flannery [22], when
classified by primary purpose of end-user applications, about 50-56% of
the end-user applications in table 1.1.1 are not of the pre-designed
categories. Users fall into these categories can not derive the benefits of
computerization without the help of programming. This leads to the

problem of the so called "application program backlog".

Table 1.1.1 Categories about the user applications

Category Percentage
Operational Processing 9%
Report Generation 14%
Inquiry/Simple Analysis 21%
Complex Analytical Assistance 50%
Miscellaneous 6%

To solve the "application program backlog" problem, a new
environment called the visual programming environment, which is
different from the traditional and Al programfning environments, is
proposed to let the users with or without programming knowledge to
develop and run their own application programs. Under this environment,
there is a V__-Forni Definition Language (VDL) which allows the users to
focus on expressing their specialized knowledge without relying on the
data structure or information processing techniques and yet can effectively
carry out their tasks. Usually, these tasks under the visual programming

environment can be processed in terms of V-Forms'’ ‘definition and their

2

Introduction

relations which can be interpreted by any Al language. Hence, an V-Prolog
interpreter is proposed as the interpreter of the "programs” synthesized by
the V-Form Definition Language. In this way, rules and data processing

capabilities can be handled well in the visual programming environment.

1.2 OgrcanizatioN Or Tuis Report
This report is organized as follows:

Chapter 2 discusses the properties of a visual programming
environment and its differences to the traditional and Al programming
environments. Some related researches concerning form language and
user-friendly interfaces are discussed. Finally, derived from the concept of
visual programming environment, a suitable system architecture is

proposed.

Chapter 3 gives the formal definition of visual language and the
properties of visual forms (V-Forms). Also, a V-Form model which
explicitly reveals the visual properties of V-Forms to the user and
implicitly supports the internal structure of V-Forms to the system is

propésed.

Chapter 4 discusses the syntax of a V-Form Definition Language
which allows the users to describe their applications visually. It will be
shown that the V-Form Definition Language is a three-dimensional,
non-procedural language for defining and manipulating V-Forms on the

screen in a manner of what-you-sketch-is-what-you-get. Also, a prototype

3

Introduction

graphics utility is designed to provide the graphical information of
V-Forms in the sketch. Finally, an CAI example is given to illustrate how
VDL is functioning. '

Chapter 5 presents a method that interprets V-Forms under a logic
programming language -- Prolog. After processing VDL, a consistent
internal structure that holds the definition and relations of V-Forms for
each application can be self-synthesized and the behavior of the internal
structure can be interpreted. In consideration of portability, extensibility,
and sometimes in need of unification and backtracking during the
interpretation of such an internal structure, a CProlog interpreter
(available on VAX 11/785 under VAX/VMS at NTU Computer Center)
with a slight modification is employed as the target interpreter. Finally, a
mapping algorithm which transforms the internal structure into a Prolog

program is discussed.

CHARTER 2

VISUAL PROGRAMMING ENVIRONMENT

2.1 INTRODUCTION

In the following, we shall divide our discussion in visual
programming environment into three sections. The first section provides
the discussion of the related researches in the aspect of visual interface

design and their effect on our approach.

The second section gives a detailed explanation about a proposed
visual programming environment and its difference to traditional and Al

programming environments.

The third section introduces a basic three-level architecture of
V-Form Definition Language, from which an overall system architecture
is designed. Finally, the advantages and features of this approach are
discussed. '

2.2 RELATED RESEARCHES

Recently, in the United States and Japan, there exists a number of user

interface systems which provide both programmers and non-programmers

Visual Programming Environment

a guiding to describe their applications. Among them, Form Language
[27] by Sugihara, QBE/OBE [30,31] by Zloof, FORMAL [24,25] by Shu,
and the State Transition Diagram Language [14] by Jacob are well known.
In the following, we shall summarize their primary features w1thout going
into the detailed designs and implementations.

2.2.1 Form Language .

The approach to the design of a form language for office use was
proposed by Sugihara, et al. Their research was basically to design a form
language which allows users to define and manipulate office forms
visually. This language consists of two components: a form definition
language and a form manijpulation language to define and manipulate
forms, respectively.

Using the form definition language, users can describe the forms
processed in the office environment. On the other hand, users can use form
~manipulation language to create, retrieve, modify, and browse form
instances (filling values into forms). With this form language, the forms

and activities in the office can be simulated.

The most important features of the form languacre that are employed

in this report includes:

1. Sugihara proposes a new form model to exploit the
visual propertieé of forms. A form, in their model, is
defined as a pair of a form type and a form instance.
Once a form type is defined, different valﬁes can be

6

Visual Programming Environment

filled to obtain different kinds of form instances. As a
matter of fact, V-Form model proposed in this report as
discussed in charter 3 is basically the extension of their

form model.

2. The screen is partitioned into several windows by the .
user. Each window represents a subform (forms within a
form, just like columns or fields within a table) to be
displayed. Users can arrange the windows so that an
office form can be faithfully reproduced. In many visual
applications, this is considered as a good approach
toward user interface désign. The V-Form proposed in
this report is basically the same as office forms, except

. that V-Form includes more entities.

3. A form has a form heading, a heading has many columns,
and a column has several fields, so that the relation of
forms is a hierarchical structure. We shall also use the
hierarchical structure but add in the control flow to

V-Forms.

In summary, the form language proposed by Sugihara is well suited

to office environment, as they put their conclusion in the following

sentence:

"“This is the step toward the development of user-friendly
interfaces of office information system."

Visual Programming Environment

2.2.2 QBE/OBE

QBE (Query By Example) is an IBM product released in 1978. It is
centered on office and business applications and is widely used in the areas
such as distribution, finance, government, manifacturing, processing, and
utilities. On the other hand, OBE (Office procedure By Example) is the
extended version of the QBE.

The features of QBE/OBE are:

1. QBE/OBE emphasizes on relational DBMS interactive
query and data mainteinance. The operations are easy to
learn and easy to use. Users only need to describe their

- applications directly to the computer.

2. The fﬁndamental object of QBE is a two-dimensional,
one-level skeleton table which also provides the
programming cnvironment. Initially, users arc given a
blank table skeleton. Then, after key in the approprialc
name into the table name field, the table heading is
generated and the users can now "program” it by

entering appropriatc QBE/OBE commands.

QBE/OBE is well suited to office automation as stated by Zloof [31]:

"We suggest that the two-dimensional programming
approach of Query-by-Example ... is suitable for
non-programmers who wish to interactively automate their
applications ... Consequently, users with no knowledge of-

Visual Programming Environment

any formal programming language can, in a matter of
several hours training, formulate QBE programs to
retrieve, ‘modify, define, and control the database.
Psychological testing of QBE users has shown it to be a very
friendly language."

2.2.3 FORMAL (Form-ORiented MAnipulation Language)

FORMAL provides a powerful visual-directed facility for
non-programumers to develop their data manipulation applications on
computers. To accomplish their goal, a forms-oriented approach is
employed. Their approach consists of three aspects: a form data model, a

form-oriented language, and filling forms with instances.

The form data model proposed by Shu defines the forms as a named
collection of instances (or records) with the same data structure. The
components of a form can be any combination of fields and groups. Fields
is the smallest unit of data that can .be referenced in a user's application,
while group is a sequence of one or more fields and/or subordinate groups.
The group is also called the subform of a form. This form-subform

concept is also employed in Sugihara's approach.

The form-oriented programming language is a two-dimensional,
non-procedural description language which uses forms as both the
fundamental data object and program structure. Users can program within
the form visually. The concept of what-you-sketch-is-what-you-get is also

introduced.

In summary, as'said in the paper of Shu:

Visual Programming Environment

"FORMAL 1is a forms-oriented and visual-directed
application language, designed and implemented to provide
the non-programmers with powerful capabilities to
computerize a wide range of data processing tasks."

2.2.4 State Transition 'Diagram L:imguage

The state transition diagram language (STDL) uses diagram to

describe algorithms to the computer. A visual pro gramming environment

~ for this language is currently being implemented on a SUN workstation
- [14]. The main features of STDL are:

1. Uses graphical representations to represent data objects

as well as abstract objects.

2. The temporal sequence during the dialog between a user
and the system are emphasized. This concept is important
in many application areas, such as computer aided
instruction. Therefore, the basic concept of temporal
sequence during user/system dialog will be used in our

approach.

3. One diagram can call upon another diagram. This is one

of the important features of this language. In this way,
procedure call in traditional programming language can
be simulated. In our approach, this gives the idea of
procedure embedded concept within a form. |

10

Visual Programming Environment

2.3 THE VISUAL PROGRAMMING ENVIRONMENT

Traditional programming environment concerns how to provide
some kinds of tools for the users, programmers, to develop their
application programs. In this environment, users must take care of the data
structure, keep in mind what the results should be, and write the detailed
textual instructions that must adhere strictly to the syntax rules. Under this
situation, the background and convenience of non-programmers are often
ignored for the sake of machine efficiency. On the other hand, under Al
programming environment alone, it seems still very difficult for
Non-Programmer Professionals (NPPs) to express their specialized
knowledge very well. Hence, a new programming environment is needed
such that users with or without any programming knowledge background
can describe their specialized knowledge to the computer. This newly

emerging technique is called the visual programming environment.

The visual programming environment allows users to develop their
applications in a manner of what-they-sketch-is-what-they-get. In this way,
users only need to describe their specialized knowledge as a process of how
to get the desired output results. The difference of this visual process and

the traditional programming process is shown in fig. 2.3.1.

Notice that, during the development of an application program, the
.user can see the results echoed on the screen and determine to see if these
results are what he desired. This visual process is just like painting on a
scratchpad Which is so easy that a user is no longer afraid of writing his/her

own application programs.

11

Visual Programming Environment

Problem Program

Data .
Structure Algorithm
Application | ¢ TPE % Application | EXecute Results]

Ardious
&
Tedious
(@
o YPE Execute
Application Application
Problem Program

What-you-get

What-you-sketch

(b)
Fig.2.3.1 Visual Process vs. Traditional Programming

Process
* TPE: Traditional Programming Environment
% VPE: Visual Programming Environment

2.4 OvVERVIEW OFr THE SysTEM CONFIGURATION

2.4.1 System Architecture
The basic architecture of Automatic Program-Synthesizing (APS)

system consists of three hierarchical levels similar to that of
ANSI/X3/SPARC Information system framework and SPECDOQ [17] as

12

Visual Programming Environment

shown in fig. 2.4.1. Théy are called the external, logical, and internal level.
External level, the highest, handles V-Forms from the user's point of view.
The V-Forms defined by the user are synthesized by VDL into logical level
which is the internal structure of V-Forms. Finally, a mapping is invoked
to-translate the self-synthesized internal structure into internal level which
is in the form of predicate logic [18] and can be directly interpreted by a
Prolo g -interp.reter [2,4,6,20,26].

Extemnal Level

Fig. 2.4.1 Basic Architccture of APS System

The corresponding components of our approach with respect to the
basic architecture arc shown in fig. 2.4.2. The informant presentation data
to be processed may include text, graphics, and rules, They are formated in
V-Forms. Based on a V-Form model, a V-FForm Definition Language is
used as an interface language to define the V-Forms. After processing
VDL, a complete internal structure can'bc sclf-synthesized. Finally, a
mapping algorithm is used to translate this internal structurc into an
cxecutable Prolog program. During the interpretation of the Prolog

program, V-Forms with text or rule type arc dircctly interpreted by

13

Visual Programming Environment

(o e Informant Presentation Data _ f
] r 1
1]
. STATIC DYNAMIC
1 1 4]
: TEXT GRAPHICS GRAPHICS RULE :
] - I

L B R Y

BRI RIS R e e,
- V-Form Manipulation -}
Languag '

. o
IllllllllllllllllllllllIllIlllll\l.ll\ll!llllllllilllllllllllll’l’l)f{lllllllllIllllllllllll.lllllllIl!l [RE N

by A 4 Y

Internal Structure Mapping Logical
. Level
r— R Algorithm
Internal
Prolog Program L&z/ ol
V-Prolog ~p - Graphical Subsystem
A4
——— Flow
Results

————p Support

Fig. 2.4.2 System Architccture

V-Prolog, while V-Forms with graphic type are delivered to graphical

subsystem for cxecution. In this way, the user's application programs can

be developed visually. Furthermore, a V-Form Manipulation Language

can be invoked to manipulate the designed applications. The overall system

is called VIsual Programming Synthesizer (VIPS) as described

14

i

Visual Programming Environment

elsewhere [5]. For more information about V-Form Manipulation

Language, please consult the part 2 of this report.
2.4.2 Main Features of Visual Programming Approach

There are some design methods for visual programming languages
[14,19,24,25,27]. However, a systematic approach toward a theoretical
sound methodology is still under developing. Here, the visual
programming environment is proposed to be interactive and

application-oriented with the following features:

1. Easy to Use. At the current stage, the communication
between user and system is through prompting a
command menu on the screen. However, facilities are
reserved so that various user friendly interfaces such as
icons, poihting devices, or mouses can be easily appended
if the hardware is available. For novices, it takes only a

few hours' training to be familiar with our system.

2. Visual-Directed Objects. V-Forms are used as the
fundamental objects of our approach because their
features are more akin to the users’ view point. From
the visual interface, users can define their application
objects on the screen in a manner of what-they-sketch

is what-they-get.

3. Non-Procedural Programming Nature. Instead of

writing a series of instruction code to tell how, users

15

Visual Programming Environment

need only to tell the computer what the results should be.
This will make the programming an easy and artistic job.

. For Non-Programmers. The application programs
are automatically generated by VDL, so the users can
concentrate on expressing their specialized knowledge to

the computer.

. Variety of V-Forms. Multiple sources can be
described in the V-Forms, e.g. text, graphics, or rules.
VYoice can also be included if needed. Furthermore,
procedures or actions can be embedded within a
V-Form. This makes the V-Form an active media which

is powerful to describe many user applications.

. Portable. The source of this system is coded in standard
Pascal with the machine-independent factor loaded from
a file. Porting it from one environment to another is
simply by changing the parameters of the file.
Furthermore, the internal structure at the logical level is
uniform and consistent. Hence, to transport the proposed
system from one computer to another is simply by
recompiling the sources, changing the parameter file,

and a slight modifying the mapping algorithm.

. Extensible. The interpreter is contructed on a CProlog
interpreter available on VAX/VMS as well as some

added extensions (we call this interpréter as the

16

Visual Programming Environmernt

V-Prolog). Some reservations are kept so that the system
maintainer can easily add the available tools to extend the
capability of the proposed system without changing or

modifying the source programs.

17

CHAPTER 3

ON VISUAL LANGUAGE

3.1 INTRODUCTION

The study of visual language approach has just begun in the United
States and Japan in recent years. However, a formal definition on visual
language is still underdeveloped. In this chapter, we try to define visual

language from theoretical viewpoint of formal language.

Visual forms (V—Fbrms) which are the basic element of
data/programming objects can be regared as the terminal nodes of a
grammar that generates visual languages. A V-Form model which

forms the basis of the visual language can be regard as a parsing tree.

3.2 BACKGROUND

Formal language theory [11] has been developed extensively, and
has several discemible trends which include applications to syntatic
analysis of programming language, program schemes, and relationships
with natural language. In order to define the visual language approach

formally, we will give a brief introduction about coritext-free language,

On Visual Language

context-sensitive language, regular language, context-free programmed
language, inferred grammar, Kleene closure, and non-procedural
language as follows.

3.2.1 Closures

Let = -be a finite set of symbols, A be a null sti‘ing, and let Ll , L2
be a set of strings from the reflexive and transitive closure [12] of X. The
concatenation 6f L, and L,, denoted by L,L,,isthe set {xylx e L,,

y € L,}. That is, the strings in L,L, are formed by choosing a string in L,

and following it by a string in L,, in all possible combinations.
[Definition 3.2.1] Kleene Closure [8]

Let 1.9 = {A} and LI =LL - Vi > 1. The Kleene closure of L,
denoted by L*, is the set

: . [era)

* .

L = v L
i=0

[Definition 3.2.2] Positive Closure

The positive closure of L, denoted by L*, is the set

It = o Ll

i=1
In other words, L.~ denotes the words constructed by concatenating any

- 19

- o

On Visual Language

number of words from L, while L* is the same but with the word A

excluded. Note that, L* contains A if and only if L docs.

3.2.2 Phrase-Structure Grammars/Languages

[Definition 3.2.3] Phrase-Structure Grammar [9]

A phrase-structure grammar G is a four-tuple G = (Vo V., P, §)

in which:

1. VN and VT are sets of the nonterminal and terminal

vocabularies of G, respectively.

2. P is a finitc sct of rewritc rules or productions

denoted by o — [, where o, Be V (= Ve uVvy)

with o involving at lcast one symbol of VN.'

3. S € V is the starting symbol of a sentence.

Chomsky divided the phrase-structure grammars into four types
according to the forms of the productions: type 0 is unrcstricted
grammar, type 1 is context-sensitive graminar, type 2 is context-{rec

grammar, and type 3 is regular grammar.

20

On Visual Lanéuage

[Definition 3.2.4] Type 0 (Unrestricted) Gramumar

For type 0 grammar, there is no restrictions on the productions, i.e.

either o, or J may have any strings. This type of grammar is too general to

be useful.
[Definition 3.2.5] Type 1 (Context-Sensitive) Gfammar
For context-sensitive grammar, the productions are restricted to the
form: '
oA, — o fa,

where A € Vi, 0,0, € V*, [3 e V* . The languages generated by

context-sensitive graxmﬁars are called the context-sensitive language.
[Definition 3.2.6] Type 2 (Context-Free) Grammar

For context-free grammar, the productions are of the form:
A—-p
where A € V, B e V, . Notice that, context-free grammar allows the

nonterminal A to be replaced by the string P independently of the context

in which A appears. On the other hand, productions of context-sensitive

grammar permit replacement of nonterminal A by the string [only in the
“context” a. -t, . The languages generated by context-free grammars are

called the context-free language.

21

)

On Visual Langitage

[Definition 3.2.7] Type 3 (Regular) Grammar

For regular grammar, the productions are restricted to the form:
A—>aB o A—>b

where A, B € Vi anda, b € V. Note that all A, B, a, ilndb are single

symbols. The languages generated by regular grammars are called

regular language.
3.2.3 Inferred Grammar

The problem of learning a grammar based on a set of sample

sentences is called the grammatical inferences. Let G be an unknown
grammar, S be a finite set of sentences or strings, L(G) be the language
gmerated by G, then the inferred grammar is a set rules for describing the
given finite set of strings S, from L(G) and predicting other strings which

in some sense are of the same as the given set [9).

However, the predicted strings from S may be in thé set {+y;11=1,
2, by € LYV {y1i=1,2, 00t 35 € V¥ - L}, where +y, contains
only strings from L and Y contains only strings from VT* - L. The set
(+y;1i=1,2, .., y;€ L} is called the positive sample of L(G) and is

denoted as L*(G), while the set {-y;1j=1,2,...t,y; € V" - L} is called

the negative sample of L(G) and is denoted as L°(G) which is the parasitical
product of G. :

22

On Visual Language

3.2.4 Context-Free Programmed Language

[Definition 3.2.8] Context-Free Programmed Grammar [9]

A context-free programmed grammar G is a five-tuple G = (V, V.1,

- J, P, S), where VN, VT, and P are finite sets of nonterminals, terminals,

and productions, respectively. S is the starting symbol, S € V; Jis a set

of production labels. The productions of G are of the form:

® A-—=p SU) FW
where A — [} is called the core, A e VN'B € V*, (r) is the label,

re 1. U is the success field and W the failure field. U, W € J.

The context-free programmed grammar operates as follows:

Step 1. Production (1) is applied first.

Step 2. If one tries to apply production (r), *r € J to
rewrite A € Vi and the current string o. contains A,
then

() A - B is applied and the next production

selected from the success go-to field U.
else :
production (r) is not used and the next

production is selected form the failure
go-to field W. ,

Step 3. if the applicable go-to field contains @ then

derivation halts.
else goto Step 2.

23

On Visual Language

For instance, the context-free programmed grammar G = (Ve Voo

J, P, S) with Vi={S, B, C}, V.={a, b,¢},T = {1,2,3,4,5},and P

-(r) Core 'S(U) F(W)

1 S — aBC (2,3} {z}

* 2 B —> aBB (4) {o])
3 B— b {3} {5}

4 C7 CC 2,3y (<

5 C= ¢ (5 (@)

will generate the context-free programmed language {a"b"c"in=1, 2, ...}

- 3.2.5 Non-Procedure Language

For convenience in our discussion, we say that a programming
language is non-procedural if and only if the programming method is a
process of specifying what-to-get instead of telling how-to-get the
desired results.

Obviously, the process of specifying what is much more easier than

that of telling how. Thus, a non-procedural language is essential for NPP

Uusers.

24

On Visual Language

3.3 Tue DerNITION OF VISUAL LANGUAGE
3.3.1 Related Researches

The definition of a visual language drawn researchers' attension
began at the first wdrkshoP on visual language sponsored by the IEEE
Computer Society at Hiroshima, Japan on Dec. 1984. Since then, intensive
discussion on this topic has been seen in many published papers in several
Jjoumnals. (3,5,14,19,24,25,27]. In the following, some of their definitions
about the visual language are illustrated in words:

1. In "Call For Paper" of the IEEE computer Society

Workshop on Visual Language:
"Visual Language:

1) A computer language with prominent visual

~ components, such as icons or computer
graphics. |

2) A computer language specifically designed for

use with visual problem, such as image

“analysis."”

2. In the paper "A State Transition Diagram Language for
“ Visual Programming" of Jacob [14]:
- "The visual programming language provides a
- natural way to describe the graphical object."

Since the above definitions are rather abstract, we will give a formal

definition about the visual language in the following section.

25

On Visual Language

3.3.2 Formal Definition of Visual Language

[Definition 3.3.1] Visual Grammar

A visual grammar, Gy, 1is a four-tuple G, = (V, Vo, P, §) in

which:

1. V and ' VT are the nonterminal and terminal
vocabularies of Gy, respectively. The union of V and

V., constitutes the total vocabulary V of GV,

VNmVT=®.

2. P is a set of inference rules (thinking processes) for
describing the objects from the one sketched by the
user and predicting the results which in some sense are

of the same nature as the sketched objects.
3. S e Vis the starting symbol.

The Janguage generated by visual grammar G, is:

sk
LG,) = (vlv eVr, such that s2v)
v

*

=

where is the reflexive and transitive closure of the relation =. As

26

P

On Visual Language

described in section 3.2, the information sequence generated by G may

contain a set of positive samples and a set of negative samples, i.e.

L*G,) ULG,)

{positive samples} U {negative samples}

L(Gy)

I

In visual language approach, what we need is the objects sketched by

the users. Hence, a visual language should be:
(Definition 3.3.2] Visual Language

Let D be the domain of what-you-sketch, and y be a sketched
object, y € D. Suppose y can be generated by the visual grammar Gy, then

a visual language L., is

LV = {y | Yy € D‘, andy & L+(Gv)}

In other words, a visual language is a formal language that contains

only objects sketched by the user.

As we know, there are three types of language, i.e., regular, context-
free, and context-sensitive that can be generated _by an inferred grammar in
the limit [9]. Among them, context-free languages are not powerful
enough to describe the programming applications, while context-sensitive

languages are very complex for analysis. Therefore, the visual language
Ly, which is used to get the desired apphcatlons in a set of

Wh’lt -they-sketch-is- what -they- get operatlons, is used to 1mplement the

27

On Visual Language

context-sensitive programming applications in a manner of context-free

programmed language that can simulate the behavior of the visual
grammar G,. In other word, the visual programming itsclf is an
interactive language which allows the users to describe the infercnce

algorithm of G,, by themselves.

3.4 Wuy A V-rormM APPROACH

To accomplish our goal, visual-forms (V-Forms) are adopted as
the fundamental objects of our visual language approach. Here, the forms
dealt with contain text, static graphics (line drawing and bit-map) ,
dynamic graphics (animation) , and rules. They are the basic elements in
the visual programming applications. In order to distinguish them from

those in the office environment, we call them the V-Forms.

There arc several reasons for adopting V-Forms as the
fundamental data/programming objects of our visual language approach.
First, V-Forms arc morc akin to the uscr's viewpoint. As we know,
pcople arc more familiar with forms than any other objects. For
cxample, [illing a form is morc easier than writing an article. Hence, it

will be casy for users to use the V-Form-oricnted systcm.

Scecond, forms arc the most natural interface between a user and the
data [18]. In the last few ycars, there exists a vast amount of rescarch
locusing on "forms" in the interests of office environment. For instance,

LEilis [7] uses forms as the template for document which: are logical images

28

- On Visual Language

of business paper forms. Kitagawa [17] presents an architecture and
‘implementation of a form document management system which allows
users to perform handling of form documents such as their creation,
s'torage, retrieval, editing, cut, and paste, as if they were conventional
paper documents in the office information systems. Shu [24, 25] has
provided the users a forms-oriented programming language to
~describe their data processing activities as a form process or a series of
form processes. Tsichritzis [28] has introduced forms as an abstract and
generalization of Business paper forms. Furthermore, Zloof [30,34] has
extended the query language and database system to deal with the forms.
It seems that forms are the most natural interface between the

non-programmers and the computer system.

Third, V-Forms are the most acceptable programming nature for
non-programmers. In traditional programming environments, the
programming objects manipulated by them are geared toward the
internal/computer representations, users can only figure out in their mind
what the results will be. On the other hand, in visual programming
appliéations, it needs only the program-developing process in
what-they-sketch-is-what-they-get manner of operations. To make this
process feasible for non-programmers, we use V-Forms as the
programming objects such that the results are directly corresponding to
those described by the user. Thus, the programming nature is shifted from

procedural to non-procedural.

Fourth, upon filling the contents of V-Forms, there may be some
embedded actions/procedures to be taken. The actions/procedures,

either conditional or unconditional, can be attached to the V-Forms. This

29

On Visual Language

concept is similar to the demons (29] in the frame system. Hence,
V-Forms can serve as a more complex, flexible knowledge
representation method for future extension.

From the above four reasons, it is believed that the contents of
V-Forms are more fruitful than the forms in the office environment.
Hence, we use V-Forms-oriented approach as the convenient
data/programming objects.

3.5 V-rormM MoDEL
3.5.1 External Structure

VDL allows users to open several windows on a screen. Each
window is treated as a V-Form. The informant presentation data in 2
V-Form may includes text, static graphics (line-drawing or bit-map) ,
dynamic graphics (animation) , or rules. They are all represented in

V-Forms.

Let II be a set of codes to be displayed/processed, Abe a set of
alphanumerics, B be a set of graphic codes, € be a set of drawing
attributes, and =TI U A U B U Q. Then the domain of a V-Form vy,

DOM(y) e Z*, where *-denotes the Kleene closure [12]. All V-Forms of

an application are subset of D and are considered as the positive sample of

LG,). - ' | |

On Visnal Language

A V-Form system is a pair of a V-Form type F and a V-Form
instance I which are defined below. A V-Form type describes the skeleton

structure of a V-Form system which contains a list of structuraily related

V-Forms. A V-Form type consists of a scheme S and a template Tg for S.

[Definition 3.5.1] Scheme

A scheme S is the logical structure of a V-Form. It can be

recursively defined as:

<S> n= <M>I<A>
<A> = <S> 1 <S>, <A>
S <M> u= <Type>: <Identifier>
<Type> = TEXTIGRAPGI BIT-MAP | ANIMATION
| RULE | VFORM

ERRRRRINRRRSRARRRY! RETIRRSALALL i:IHl;lllilLIHIJHllllliilliinl:illiiilltillll
1 TEXT Title— : ‘
l . Linear Programming
GRAPH: Snoopy TEXT Head—
snoopy.dat _ o
The following topic is the
| Graphical Solution of Linear Frograns
in two varisblies.
To you want to try it ?
YFORM:No— VFORM: Yes—
l No | Yes
VDL$ED , '
i DR BT EENEC EE BN ERE OB B

Fig. 3.5.1 The f rst V-Form F1 of an application CAI_Course

31

On Visual Language

For example, consider the first V-From of an application
CAI_Course shown in fig. 3.5.1. The sheme for this V-Form is defined in
the following expressions:

CAI_Course = [TEXT:Title, GRAPH:Snoopy, TEXT:Head,
VFORM:Yes, VFORM:No]

Where TEXT:Title, GRAPH:Snoopy, and TEXT:Head are V-Forms
that contain no other V-Forms (these primitive V-Forms are also
called the atoms), while VFORM:Yes and VFORM:No are V-Forms

that may contain a set of V-Forms.

The VForms-within-VForm concept is similar to that of the
{ields-within-record in a table structure. Hence, a hierarchical structure is
formed. The V-Forms within a V-Form are also called the sub-VForms
of that V-Form. Fig. 3.5.2 shows the hierarchical structure of the
scheme for the application CAI_Course, where a box represents an atom,

a circle represent a V-Form that contains other V-Forms.

[Definition 3.5.2] Template

A template T for the scheme S is the visual structure that represents

the two-dimensional display format and visual properties of V-Forms

which are independent of the contents held by V-Forms.

For instance, the template for the scheme S of fig. 3.5.1 is given
in fig. 3.5.3.

32

- On Visual Language

CAI Course

TEXT:Title TEXT:Head
GRAPH:Snoopy

Fig. 3.5.2 The hierarchical structure for
the application CAI_Course

[i L I 1 [l 1 | Il | i] l |
lllHlI]lllll[l[[lI"I|-|ll!llIlIllllll[llll||||l|||]|||iilIllllllllllmTlllllll
i ‘E)\T:Tltlv .
GRAPH: Snoopy TEXT:Head
YFORM: Ho— : ' YFORH: Yes——
]Ho I |Yea
VL '
CESHE e qEr INCR: CIWIERASE ERITR:E DRI R GAUR PERE UL S TURI QS ERSER

Fig. 3.5.3 The Template for the CAI_Course
(only the first V-Form of that application is shown)

The template also describes the control flow of the V-Form
system implicitly. The control flow of a V-Form system is similar to the

concept of flow-charting in traditional programming environment and

33

On Visual Language

is the execution flow of user's application program. For example, when
VForm:Yes (sub-VForm of CAI_Course) of fig. 3.5.1 is selected, then the
display will be switched to that of its descendent V-Forms.

~ [Definition 3.5.3] The Value of a V-Form

The value of a V-Form y of type t is x, such that x € DOM(y,)

c =* where
(A U I’ +if t =TEXT,RULE

DOM(Yy) = . ‘
(B v Q) if { = GRAPH, BIT-MAP, ANIMATION

For example, the value of V-Form Title of tjfpe TEXT in fig. 3.5.1

is "Linear Programming".
[Definition 3.5.4] The Characteristics of 2 V-Form

The characteristics of a V-Form include the displaying attributes
(NORMAL, BOLD, FLASH, or INVERSE vedio} , the alias (give an
alternative name toa given V-Form) , and the “demons" (embedded

action/procedure) of a V-Form.
[Definition 3.5.5] V-Form Instance (I)
The V-Form instance for a V-Form type (F) is defined as a mapping

which assigns a value to each atom of F and assigns optionally a

characteristic to each V-Form of F.

34

On Visual Language

For instance, one of the V-Form instance for the template of fig.
3.5.3 1s shown in fig. 3.5.1. As stated above, a V-Form type can be filled
with different contents to obtain different kinds of V-Form instances.
Therefore, a V-Form type is similar to a language, from which users

can write many programs which are V-Form instances in this model.
3.5.2 Internal Structure

The external structure of this V-Form model gives the user an
opportunity to express their specialized knowledge in terms of V-Forms,
~ while the internal structure gives an internal/computer representation
about the V-Forms defined by the user.

According to the external structure defined in section 3.5.1, a
V-Form system consists of a group of V-Forms which may be either
atoms or sub-VForms of a particular V-Form. Furthermore, "demons"
can also be embedded in a V-Form. Hence, an internal structure with
four kind of nodes is proposed to implement the atoms, V-Forms, and
demons. They are called the System node (SN), the form control node
(FCN), the mode node (MN), and the action node (AN). System node
keeps all information of a V-Form system. Form control node keeps all
the characteristics of a V-Form (either atom or non—atdm). Mode node
contains the value and display attribute of an atom. Alias and the content
of the embedded procedure are also kept in MN. Finally, action node

specifies the embedded components, such as conditions and actions.

An atom is represented by a FCN which has a pointer pointing to a

MN. A non-atom V-Form is also represented by a FCN but has a pointer

35

e ——————— |

On Visual Language

(in FCN) pointing to a list of FCN which describes its sub-VForms, The
list of FCN, also called a form control table (FCT), describes the

V-Form structure within a window. For example, the internal structure of
fig. 3.5.1 is shown in fig. 3.5.4

(i}
| AL Coe | 1
T Y i (1
BE) N1 Tie |, Lyl Sy [) e +Hif Ko 6| |, ,-1
BT |- | L., L hont] L TET[b folowing.| l M K1)
T
b 1

Fig. 3.5.4 The internal structure of the V-Form F1 of fig. 3.5.1

36

CHAPTER 4

V-FORM DEFINITION LANGUAGE

4.1 INTRODUCTION

V-Form Definition Language (VDL) is a pictorial language used
to describe the ldgical and visual structure of V-Forms. It is a
three-dimensional non-procedural language to communicate with
users interactively. Once the user has prepared his/her own applications in
a set of well-written sheets of V-Forms, he/she can invoke V-Form

Definition Language to manage the screen at will.

As stated in Chapter 3, a V-Form consists of a V-Form type F and a
V- Form instance I. Hence, VDL is divided into two phases, namely, a
skeleton phase and an éditing phase to define the V-Form type and
V-Form instance, respe'c_:tively.- The details about this two phases are
given in this chapter. An illustrative example on the CAT application is
also given to illustrate how the V-Form Definition Language is performed.

It is .;vorthwhilc to mention that a prototypé graphics utility
is designed to serve as the graphical enfry of non-text type V-Forms
only. However, a commercial graphical packages is preferred and is

suggested to be attached to our system, if there is one available.

- V-Form Definition Language

4.2 TuE SKELETON PHASE

In this phase, the user can directly manipulate the screen visually.
The role of the skeleton phase is shown in fig. 4.2.1. The skeleton phase is-
used to describe the template of a V-Form system and after processing this
phase, a V-Form type is obtained which is delivered to the editing phase

for filling in the V-Form instances.

Load o No
V-Form Type

¥

load Skeleton
1 Phnse
O

1 V-Form Type is obtained

. i
Editing
Phase

T

Fig. 4.2.1 Block Diagram of VDL Interactive Sequence

For convenience, all the following interactive sequences are
illustrated in line-mode commands. But actually in our system, a mouse or

a pointing device can be used as a menu-driven device.

38

]

V-Form Definition Language

4.2.1 BNI Syntax of the Skeleton Phase

There arce fourteen primitive operations in the skeleton phase which

arc summarized in Table 4.2.1, where the bracket denotes optional.

Table 4.2.1 Syntax of the primitive operations in VDL skelcton phase

<START> [<COMMANDS>] <END>

<VDL> =
<START> = <BEGIN> <SYSTEM-NAME>
<COMMANDS> = <COMMAND> [<COMMANDS>|
<COMMAND> = <COPY> | <DEFINE> | <EDIT> | <GRASE>
| <BEXTEND> | <[TOME> | <LOAD> | <OPEN>
| <RETURN> | <SAVE>| <SET>
<COPY> = COPY [{PROCEDURE | FLOW] [OF]]
<VFORM_NAME> TO <VFORM_NAME>
<DEFINE> := DEFINE <VFORM_NAME> AS <TYPES>
<TYPES> = TEXTIGRAPH I BIT-MAP | ANIMATIO\I IRULE
I VOICE [VFORM
<EDIT> = EDIT <VIFORM_NAME>
<ERASE> = ERASE <YFORM_NAME>
<EXTEND> = EXTEND <VEFORM_NAME> [MARGIN AT
<POSITION> WITH <SIZE>]
<POSITION> = <INTEGER> <INTEGER>
<SIZE> = <INTEGER> <INTEGER>
<[HOMLE> = [OME [<SYSTEM_ NAME>|
<LOAD> = LLOAD <FILE_NAME>
<OPLN> = OPEN <TYPES> AT <POSUTION> WITI <SIZ1E>
[AS <VIFORM_NAMI>]
<RETURN> = RETURN
<SAVE> = SAVE <FILE_NAME>
<SET> = SET NEXT <VFORM_NAME> [GOTO]
<GROUP_NAME:>
| SET PROC <VFORM_ NAMF> [TO]
<STATEMENTS>
| SETTOTAL <GROUP_NAMIE>
<[:ND> n= EXITIQUIT

lIn table 4.2.1, SYSTEM_NAME is the name of the V-Form
systenl. VFORM_NAME is cither the name of a V-Torm given during
the process of OPENing or a delault name given by VDL,

GROUP_NAME gives a method to name the whele screen which may

39

V-Form Definition Language

contain a group of V-Forms. The above three names are all identifiers.
On the other hand, the FILE_NAME is the legal file specification

allowed by the operating system of the user's computer environment.
4.2.2 Primitive Operations of the Skeleton Phase

According to the function performed, the above fourteen primitive
operations can be further classified into seven categories, namely,
initialization, window operation, flow manipulation, type redefining,

instance generation, file handling, and miscellaneous.
4.2.2.1 Initialization

The command BEGIN is used to identify a V-Form system and start
the "programming” of V-Forms. It causes VDL to get a system node,
initialize variables for a new V-Form system, and assign the given name to
the system node, i.e.

procedure VDL}Begin;
begin

get a system node;
initialize the variables needed,;

SN.name < name;
end;

The name defined by BEGIN can also be used as the file name " of the

defined V-Form type and V-Form instance (will be described later).
4,2,2.2 Window Operation
There are two' commands in this category, namely, OPEN and

40

V-Form Definition Language

ERASE. As the name stands, the command OPEN is used to open a
window on the screen, while the command ERASE is used to erase a
window. When the command OPEN is given, auser-supplied name and a
system-given unique id are attached to the V-Form opened. The unique id
-1s used as the key to the searching process which is needed during erasing
or editing. Hence, even different V-Forms can be assigned the same
name and still no confusion. The algorithms for OPEN and ERASE are as

follows.

procedure YDL$Open;
begin
get a Form control node;

if type € (text, graph, bitmap, animation, voice, rule} then
begin
get a mode node;
end;
assign the characteristics supplied by the command to the relative
fields of the nodes gotten;
end;

procedure YDL$Erase;
begin
search a V-Form on the screen with the name the same
as that required;
if the V-Form is found then
begin ‘
dispose the nodes (FCN and optional MN or AN);
end
else report the error;
end;

For instance, after giving the following interactive commands, we

have the V-Forms as shown in fig. 3.5.3.

VDL> BEGIN CAI Course
VDL> OPENTEXT AT 120 WITH 40 1 AS Title

VDL> OPEN GRAPH AT 5 5 WITH 20 10 AS Snoopy
VDL> OPEN TEXT AT 5 35 WITH 40 10 AS Head
VDL> OPEN VFORM AT 18 S WITH 10 1 AS No
VDL> OPEN VFORM AT 18 65 WITH 10 1 AS Yes

41

V-Form Definition Language

4.2.2.3 Flow Manipulation

There are three commands in this category, namely, EXTEND,
RETURN, and SET. The EXTEND command can be used to stretch the
V-Form node so that we can define the sub-VForms of a V-Form node.
The stretching process is similar to the extension in the z-direction (the
screen is considered as the x-y plane). This is the reason why we call the
VDL a three-dimensional language. Furthermore, the screen margin can
also be redefined by EXTEND command. This facility is useful in some
multiwindow applications. For example, in CAl, part of the screen can
be reserved for demonstration of theorem, the other part of the screen
can be used as interactive region for teaching, just like a blackboard in the
classroom. The algorithm for EXTEND is as follows.

procedure VDL$Extend;
. begin _
search a V-Form on the screen with the name the same as that
required;
if the V-Form is found then
begin .
clear up the screen with the specified margin; {if not
specified, the default is the one specified previously.
Initially, a full screen is specified}
push the V-Form to return on a stack;
end
else report the error;
end;

For instance, the command

VDL> EXTEND Yes

will clear up the screen, ready for users to define the sub-VForms of
VForm:Yes. After, giving a series of OPEN commands similar to those
in section 4.2.2.2, the screen of fig. 4.2.2 is obtained.

42

V-Form Definition Language

] | L | I { L { | ! }] 1 }
lllIll|HT|I.IHIIlill!H—lllll!iil|I'IIH'IIIHIIFITHHHIIIIH tIIIH]

LITETTEL Pl
FTEXT Prolr VFORMIExit—
T lExil }

TEXT Ex

VEORM: Readyy
|Ready]
L
VDL$ED:

LCT200 6 OEIE R B

Fig. 4.2.2 After using EXTEND and a series of OPEN commands on
VForm:Yes of fig. 3.5.3

The RETURN command can be used to return to the previous
V-Form. The algorithm for RETURN is as follows.

procedure YDL$Retum;
begin
pop the stack;
display the screen which contains the popped V-Form;
reset the screen margin to the screen newly displayed;
end;

"For instance, the selection of
VDL> RETURN
in fig, 4.2.2 will display fig. 3.5.3 again.

43

V-Form Definition Language

The SET command has three options: SET NEXT, SET PROC, and
SET TOTAL to give the next destination, assign the embedded procedure
of a V-Form, and group the V-Forms on a screen, respectively, The

algorithm for SET is as follows.

procedure VDL$Set; -
begin
case options of
'SET NEXT":
begin
assign the destination V-Form's address, from the
group table, to the field PhyAddr;
end;
'SET PROC":
begin
get an action node;
get a mode node;
store the procedure to the MN;
assign the address of MN to the field ActPtr of AN;
end;
'SET TOTAL"
begin :
save the address of the first entry of the screen and the
group name into a group table; '
end; : '
end; {case)
end;

For instance, you can group the screen of fig. 3.5.3 as the name F1

by giving the command:

VDL>SETTOTAL F1

after the interactive command shown in section 4.2.2.2.

4.2.2.4 Type Redefining

This category of operations contains only one command: DEFINE.
It can be used to change the type of a V-Form. The algorithm for
'DEFINE is as follows.

44

V-Form Definition Language

procedure VDL$Define;
begin
case old_type of -
'TEXT’, 'GRAPH', 'BIT-MAP', 'ANIMATION',
"VOICE', 'RULE' :
begin
if new_type ='VFORM' then
begin
dispose the attached MN;
set field MF of FCN to F;
end
else
begin _
set field type of MN to new_type;
end;
end;
"VFORM'":
begin

et a MN;

set field MF of FCN to M;

set field PhyAddr of FCN to the address of MN;
set field type of MN to new_type;

end;
_ end;
end; {case}
end;

4.2.2.5 Instance Generation

The command EDIT is for instance generation which assigns values
to a V-Form node. When the command EDIT is given, the interactive
mode is switched to the editing phase and the command menu of this phase
is prompt in the bottom of the screen. The details about editing phase

will be discussed in section 4.3.
4.2.2.6 File Handling

There are two . command in this category, .namely LOAD and

SAVE. LOAD command reloads a prewritten V-Form type. As mentioned

45

V-Form Definition Language

in chapter 3, a V-Form type is similar to a language, while V-Form

instances are programs derived from that language. Hence, the LOAD

command is used to reload a "language™ for "programming”.

SAVE command is just the reverse of LOAD. It saves the V-Form

type just constructed to a file for further usage.

4.2.2.7 Miscellaneous

" The remaining two command: COPY and HOME ai‘e included in
this category. The COPY command saves the designing effort. It has
three options: COPY PROCEDURE, COPY FLOW, and COPY to
duplicate the embedded procedure, make the flow of many V-Forms to

the same destination, and combine the above two options, respectively.

The algorithm for COPY is as follows. -

procedure VDLSCopy;

begin
case options of
'COPY PROCEDURE"
- begin
set the field ProcPtr of the destination V-Forms to that
of the source V- form;
end;
'COPY FLOW"
begin
set the fields MF and PhyAddr of the destination
V-Forms to the corresponding fields of the source
V-Form;
end;
'COPY":
begin
do the works specified by the above two cases;
end;
end; {case}
end;

46

V-Form Definition Language

The command HOME forces the displaying of the first screen
defined. It provides a method to return, at any level, to the top of the

V-Form syetem.

Furthermore, there is another command in this category which is
not the member of the fourteen commands in skeleton phase. It is
called RECOVER. During the process of application developing under
VDL, there may exist some kind of interruptions such as power failure,
reset, or hardware interrupt. This annoying situation will discourage
the user because he/she must redo what he/she had done. To remedy
this situation, all the interactive commands/data given by the user, whether
in skeleton phase or in editing phase, are recorded in a file named
VDL.DIA (stands for VDL DIAlog). Upon abnormal leaving of VDL, the
command RECOVER can be used as the first command to perform
recovery. During normal leaving, by giving EXIT to save the defined
V-Form instance or by giving QUIT to abort, the file VDL.DIA will be
deleted. |

4.3 Tue EDITING PHASE
4.3.1 BNF Syn'tax of the editing phase

There are nine primitive operations in the editing phase which are

summarized in Table 4.3.1.
In table 4.3.1," a regular expression [12] over the alphabet % is

47

V-Form Definition Language

recursively defined as follows:

1) @ is a regular cxpression and denotes the empty sct.

.2) A is aregular expression and denotes the set { A}, where A

is the cmpty string.

3) Forcach symbol sin Z, s is a regular expression and denotes
the set {s}.
4) If r and s are regular expressions denoting the sets R
. *
and S, respectively, then (r+s), (18), and (r) are regular
expressions that denote the sets R U S, RS, and R,

respectively.

Table 4.3.1 Syntax of the Primitive Operations in VDL Editing Phase

<EDITOR> :
<ED_COMMANDS> @
<ED_COMMAND:>

<EDIT> [<ED_COMMANDS>| <ED_EXIT>
<ED_COMMAND> [<ED_COMMANDS>]
<ACTION> { <ALIAS> | <CONDITION>
<FILL>| <GOTO> | <SET_ATIR>

<ACTION> ACTION [{IS ARE }]| <statements>
<ALIAS> ALIAS <Regular cxpression> -
<CONDITION> CONDITION [{IS | ARE}] <statciments>
<FILL> FILL <Regular exspression> AZ
<GOTO> GOTO <VFORM_NAME>
<SET_ATTR> SET [ATTRIBUTE] <ATTRIBUTE>
<ATTRIBUTE> BOLD | NORMAL | FLASIT INVERSE

B T T T T O T N T)

<ED_EXIT> BYE | EXI'TI QUIT

The <statements> in the command CONDITION and ACTION
specily the conditions/actions to be taken. At the present stage, the
<slatements> is expressed i the form of the Horn clause [18]. Of course,
natural language other than the restricted first order predicate can be

accepted in the future if the technique has been fully developed.

48

V-Form Definition Language

4.3.2 Primitive Operations of the Editing Phase

Based on the function performed, the above nine primitive
operations of editing phase is further divided into four categories, namely,
content -management, procedure processing, flow manipulation, and

miscellaneous. They are described below.
4.3.2.1 Content Management

There are two commands in this category: FILL and SET. The
FILL command is used to fill values into each atom. The algorithm for
FILL is as follows.

procedure EDT$FIIL
bgein
if the type of the edited V-Form 3 "VFORM' then
begin
set the cursor to the left-upper corner of this V-Form;
while not end_of file do
begin
get a character;
margin control; {control the fillable margin of the
V-Form}
put the character into the content of a MN;
end;
end :
else report the error;
end;

The command SET is used to set the displaying attribute to
NORMAL, FLASH, BOLD, or INVERSE vedio. Let us consider the
template as shown in fig. 3.5.3. The following interactive commands will

generate the V-Form F1 of fig. 3.5.1.

49

V-Form Definition Language

VDL> EDIT Title

VDL$ED> FILL ({cursor is now at the left-upper corner of the
V-Form TEXT:Title, user can now key in text
'Linear Programming' and control-Z}

VDLSED> SET BOLD

VDL$ED> EXIT

VDL> EDIT Snoopy

VDL$ED> FILL

_File Name where the graphic codes stored: snoopy.dat

VDLS$ED> EXIT

VDL> EDIT Head

VDL$ED> FILL

VDL$ED> EXIT
VDL>

4.3.2.2 Procedure Processing

If a V-Form has procedures embedded, then the procedure
processing primitives: CONDITION and ACTION can be used to specify
the conditions and actions, respectively. The algorithm for CONDITION is

as follows.

procedure EDT$Condition;
begin
if the condition already exist then
begin
display the existing condition;
request for change to or add on a new condmon
do the appropnate action according to user's reply;
end
else
begin
prompt ‘Condition:";
accept and save user's input condition;
end;
-end;

The algorithm for ACTION is the same as that of CONDITION

except that all the keyword "condition" is changed to "procedure”.

50

V-Form Definition Language

For instance, when VFORM:No of fig. 3.5.3 is selected, then the
execution of this application is terminated. This situation can be defined
by:

YDL> EDIT No
VDL$ED> PROCEDURE
_Procedure: Stop
VDL$ED> EXIT

VDL>

4.3.2.3 Flow Manipulation

The flow manipulation command GOTO is used to specify the
destination of going to. The condition for this control transfer can be
specified by the command CONDITION. The algorithm for GOTO is as

follows.

procedure EDT$Goto;
begin
set the field of MF to F;
set the field ActPtr of AN to the address of the destination
V-Form; '
end;

. t
This command is quite similar to that of SET NEXT at skeleton

phase except that users are more freely to define the flow in both phases.
4.3.2.4 Miscellaneous

The other four commands: ALIAS, BYE, EXIT, and QUIT fall
into this category. The ALIAS command gives the user an alternative

viewing on the V- Form which will override the name of that V-Form

when at the stage of execution. The algorithm for ALIAS is as follows.

51

V-Form Definition Language

procedure EDT$Alias;
begin
if the type of the V-Form is 'VFORM' then
begin
set cursor to the left-upper corner of this V-Form;
geta MN;
set the field AliasPtr to the address of the MN;
read in the alias; :
store the alias into the content of the MN;
end
else report the error,;
end;

In contrary to the FILL command which operates on V-Forms with
type not equal to "VFORM", the alias command operates on V-Forms

with type "VFORM". For example, consider one of the screens of the
application CAI_Course as shown in fig. 4.3.1.

The content "(1) (0,0)" is the alias of VFORM:1 which is defined by
the ALIAS command as follows:

VDL> EDIT 1

VDLSED> ALIAS {cursor is now set to the left-upper corner of
VForm:1, user can fill in '(1) (0,0)'}

VDLSED> EXIT

VDL>

Finally, the command EXIT saves the edited data and leaves the
editing phase, the command QUIT aborts the modified data and leﬁves the
editing phase, while the command BYE saves the data changed and leaves
both the editing phase and VDL. (Of course, the V-Form instance is also
saved by the BYE command).

52

V-Form Definition Language

i I]] i | I !] 1] | |) |
T T T T T e e T I e T T i TP T T T e sy T T T I T T T T T T T T T Lt Ty v o T
b

F TEXT: Quiz - GRAPH:Fig
+ {Answer the following questicn: Figd.dat

- [Suppose x »= @, y = @,
X +y =120, x - y »= €0,

[{For ax + by = Fix,yJ,
a,b are any real numbers.

- jWhich of the following can NEVER be the
Max iMun?

b VEORH: f———y VFORMI2——— VFORM:3 ¢ VFORMI4 - VFORMIE :
- (1) (&,8) 1(2) (8,60} (33 (70,45) (4) (30,90 (9) (1z¢,0)

’\;DL!ED‘
M B T MW N B IR

Fig. 4.3.1 An example showing the usage of ALIAS
4.4 A ProroryrE Graruics UTILITY

The prototype graphics utility is designed only to provide the
graphical entry of V-Forms for demonstration purpose. It uses the graphic
primitives of VT240 made by Digital Equipment Corporation. The
drawing mode provided by this utility are LOCATE, LINE, ERASE,
TEXT, BLOCK, CIRCLE, EXIT, and QUIT as shown in fig. 4.4.1,
where the cross is automatically generated by the graphic primitive

"R(P(I))" which means "report position interactively".
The window in fig. 4.4.1 is specified by the user which is the same as

the relative position and size of V-Form in the V-Form system. In

LOCATE mode, the cross can be moved to any position within the

53 ~

V-Form Definition Language

window by the cursor key. In LINE mode, lines can be ploted at will by
the cursor key. The ERASE mode supports an eraser for the user to erase
the redundancy plotted. The TEXT mode supports the text entry. While
BLOCK and CIRCLE modes draw a block or a circle by giving two
diagonal points or a center and a point on the circumference, respectively.

After completion, the EXIT command saves the plotted vectors into the file

specified by the user.

L sxxik Craphical Utility V2.2 wexxx

j ANT é?,! O D Exit|Ouit ' LoCATE

Fig. 4.4.1 A typical screen layout of the graphics utility

LOCATE mode is the default as shown in the right-down comer of
‘ fig. 4.4.1. A double-click on RETURN key moves the cross to the menu
' and allows the user to change the graphic mode to the one required by

using the cursor key.

54

V-Form Definition Language

4.5 AN ILLUSTRATIVE EXAMPLE
4.5.1 Problem Statement

Consider a CAI Courseware which teaches the student the concept
of Graphical Solution to Linear Programs in two variables. At the
beginning, a screen is displayed to show the topic of the problem as

shown in fig. 4.5.1(a).

If the user want to use this courseware to explore the concept of
graphical solution, then the touch block "Yes" on the screen is selected
and switched to next screen which shows the problem statement and gives
an example of finding the maximum value of a function on a region as
shown in fig. 4.5.1(b).

After a sequence of trying as shown in fig. 4.5.1(c)(d), a message is
given to ask the user whether he/she is ready for quizzing. If he/she is not
ready, then fig. 4.5.1(c) is displayed for reviewal Otherwise, fig.
4.5.1(f) is displayed. As we know, "(3) (70,45-)" is the correct answer. If it
is selected, then fig. 4.5.1(h) is displayed. If any of the other four answer

is chosen, then fig. 4.5.1(g) is displayed to give an explanation.

Notice that, in fig. 4.5.1(d), the values 45 and 78 are given by the
user when "Yes" of fig. 4.5.1(c) is selected, while the value 168 is
computed automatically. Of course, these procedures must be specified by

the courseware designer.

55

V-Form Definition Language

iIlI:llTl:llll{llll%IIH{Ill||lllll{IIIIEIITIEIH]:llllillll%l”l{lllI%Illl{flll
' Linear Programming
", ? D . . .
. # The following topic is the
@b'_‘)
~—~ 3 Graphical Solution of Linear Programnz
Ty in two variables,
4 [E%Sﬁ 7 Do you want to try it ?
" .
No ’ Yes
(a) F1
::::!::::E::::l::::!....!....!.‘..!....!,..:!:..,'.H.l:..,!....!..1.!....!...‘
H{Problem Statement) Exit
1 'Given 2 close region R enclosed by a '

Llzat of lines; how to find the maximun value

of a function Fix,y) ?

F|Examples

Suppose x »= @, y »= 9, y <= 108,
x +y <= 150, x - y <= 99,

Find the maximum value of F(x,4y} = 2xiy . Ready .

‘ | (b) F2

Fig. 4.5.1 The application CAI_Course

56

V-Form Definition Language

1 | [l ! | 1 [i 1!] i P { ! 1
HHHIHIHI[[EIHIIHIHHlIlHlIIIlIllIHllHIlHIIIHIIHHIIIIHIIll[IIIHH
oY For Fix,y} = &« *+ y, randonly generates
I h | a set of poinis (x,y} in R as follows:
- (5¢, 199)

-[x Y Fix,y)
f A ¢ 76 78
:, (120,39) 50 3 13
5 X 49 it a4
; €9 B 1) 136
- 29 22 g2
190 29 228
120 3% &7
1lHotice that:
270 in the table is maximun
. Any other points inR is
t|less than 270,
" Rave a try to verify 7 Yes : No Review
(c) F3
\ { ! 1 | 1 1 § 1 H 4 ! 1 1]
TR T T TR T T T T A T P T e T L T T T T I T T IT T
Yo ' ' s Flx,y) = 8x t y 4K
13
W {50,199 At x = 45 , y =38
T !
. ’/5/;!/\ Then,
F / 4%?\ (420,30) Fix,u} = 120
i . / > X 0
(9¢,0) : 270 &% vertix (120,30

is MAXIM.I

drother try 7

H . Yes No

4 | | ‘ (d) F4
Fig. 4.5.1 The application CAI Course (continued)

57

[=™

P e

V-Form Definition Language

ot b e bbb

In the following, we will give you a quiz.

ARE Y0OU ~ READY?

Yes

No

T
(e) F5
| | 1 | 1 1 i { ! 1 i |) 1 {
T T T T T T T T e T T T T T T T e T T T T
dnsver the following question:
) A (30,90
Suppoze x »= 9, y = § .
X +y <= 120, x -y »= €D, : ,y\
&6
For ax + by = Flx,yJ, ' /{//f/<%i>“\
- a,b are any real ruxbers.
4| ‘ J '/j\//%\
b {Which of the following can NEVER be the . 20 >
b | max imun? ' ¢
+
{1) e, &) {2) (3,60 (3) (79,45} {4) (36,99) (5 (129,9)
() F6

Fig. 4.5.1 The application CAI_Course (continued)

58

V-Form Definition Language

IIH;HH:HIIIl l f l I } i t | l t i '
| IIHIIHIITHHHI”HHHIIillllllllllHIEIHIHI[IIIIIIIIII”T

T Becauze whast you choce

SORRY, it is a Wwrong answaer,

is 3 point WITHIN R, and

Any points inside region R CAN NUI be the Msximum,

. |Ready
(g) F7
| { | | i 1 | | { i { | | | I
T T T T o T e b
Good |
You gat it Right,
. Retry
b
gz{‘ fq___\ ﬁ'«\/
@
—
a7 ‘ép)
=i A s
g &
C@D ByeBya

Fig. 4.5.1 The application CAI Course (continued)

(h) F8

59

V-Form Definition Language

4.5.2 Start up

To develop this courseware, first, a set of well-written sheets of
courseware is prepared. Second, the Automatic Program-Synthesizing
(APS) system, which is an integration of graphical utility, VDL,

V-Prolog, and some useful commands, is invoked as shown in fig. 4.5.2.

- Third, a VDL is invoked by giving the command VDL after the
prompt in fig. 4.5.2 and fig”4.5.3 is displayed.

Helcome to APS Sysiem, V1.2

#PS>
Heru: BEETE HOER

Fig. 4.5.2 Screen layout of the proposed APS system

60

V-Form Definition Language

| L 1
T I orTT

YL>

. Fig. 4.5.3 Screen layout of VDL

Fourth, the graphics utility as described in section 4.4 can be invoked

after the completion

APS>DRAW

Finally, the mapping and execution of the developed V-Form system
can be done under the command EXECUTE and RUN which will be

discussed in chapter 3.

4.5.3 Interactive

The interactive sequence for the courseware CAI_Course is given in

appendix B. After

obtained. Furthermore, the control flow, which gives the flow of the

sheets of courseware in this example, is automatically synthesized as

shown in fig. 4.5.4.

sx%x% Uelcome to Vicual Definition Language, Vel. 1,0 wuxdd

W R B T B

1 ! 1 1] | i ! 1 i] |
llHlllllllI[illlIITIIIIIIIIHHlIIIHIIIHIllHIIIHITIITH

v D T BB | !

EATERERCHE]

of VDL by the command

Sequence

the completion of VDL, the internal structure 1s

61

V-Form Definition Language

Start

>

Select

Select

Fl

-4

Select

Select

-

End

Select L [Ready
_ F3)4

Select + Yes

Select

O

A

Select

Selectl 1,2,4,5|

Select||Byebye

End

@4— Update data

Select
<
Yes l

'Fig. 4.5.4 Control flow of CAI_Course

62

CHAPTER 5

INTERPRETING V-FORMS UNDER PROLOG

5.1 INTRODUCTION

Using the primitive operations of VDL, we can complete the
sketching of an application program. For example, the CAI courseware
which demonstrates the Graphiéal Solution to Linear Programs in two
variables as shown in section 4.5 can be obtained. In consideration of
the portability, extensibility, and sometimes in need of unification and
backtracking during the execution of a V-Form instance, a current
existing CProlog interpreter with a slight modification is adopted to

interpret the self-synthesized internal structure.

With this approach, a mapping algorithm is needed to translate the
internal structure into Prolog facts and rules. According to this
algorithm, the system proposed by this report can be easily ported to
another computer for execution if there has an available Prolog

intefpreter.

e

[nterpreting V-Forms Under Prolog
5.2 BACKGROUND
5.2.1 Predicate
Computer programming in Prolog consists of:
1. Declaring some facts about object and their
relationships,

2. Defining rules about objccts and their relationships, and

3. Asking questions about objects and their relationships.

where, in BNEF form:

<TERM> .

<FACT> =

<RULE> = <TERM> :- <TERM_LIST> .
<QUESTION> 1= ?7- <TERM_LIST> .

<TERM> = <Atom> [<Argumcnts>]

<Atom> = <Lowercase_lctter> <Alphanumerics>
<Arguments> = (<TERM_LIST>)

<TERM_LIST> ::= <Object> [<Terms>]

<Terms> =, <Object> [<Terms>]

<Object> = <Atom> | <Variable> | <Term>

<Variable> = {<Uppercase_letter> | _) <alphanumcrics>

These threc clements: fact, rule, and question constitute the Prolog
program. After supplying all the facts and rules about objeets and their
relationships, Prolog system will cnable a computerto be uscd as a
storchousc of facts and rules, and it provides ways to make inferences
from one fact to another such that question can be answered, thcoren can
be proved, and goal can be achicved. The name of the relationship, i.c.
the <Atom> i the above BNF form, is called the predicale. For example,
in the fact

04

Interpreting 'V-Forms Under Prolog
likes(john,mary).

which means "John likes Mary", the relationship likes is called the

predicate.
5.2.2 Unification

When a question is asked, Prolog will search the facts through the
storehouse that you have typed in before. It looks for facts that match the
fact in the question. Two facts are said to be matched if and only if their
predicates are the same and each of their corresponding arguments are the

same.

In the formal definition [3], the process of matching is called the

unification.
5.2.3 Backtracking

Consider a Prolog question where a conjunction of goals arranged

from left to right, separated by comimas, are to be matched.
?' gp gg: g3: sery gi_g_a gi__l, gl9 ceny gn-

Suppose g, can be successfully matched for 1 £k £i-1, but the

unification of g fails. In this case, Prolog tries to re-satisfy the goal g; ; by

searching the storehouse to find an alternative unification. If this

unification succeeds, the matching on g; for j21 proceeds. Otherwise,

65

il

PV _ SR

Interpreting V-Forms Under Prolog

Prolog tries to re-satisfy g ,. This unification process will go on repeatly

until the goal o is satisfied or the re-satisfication of g, is failed. In the

former case, the entire conjunction of questlon succeeds and the answers
are given by Prolog. While in the later case, the entire conjunction fails.
This behavior, where Prolog repeatedly attempts to satisfy and re-satisfy

goals in a conjunction, is called the backtracking [6].
5.2.4 CProlog Interpreter

CProlog [20] was developéd at EdCAAD, Department of
Architecture, University of Edinburgh. It is written in C Programming
Language and is complete in view of the build-in function support.
CProlog is almost the same as the core-Prolog described in the text by

Clocksin [6] and runs reasonably fast.

CProlog. offers the user an interactive programming environment
with tools for incrementally building programs, debugging programs by
following their executions, and modifying parts of the programs without
having to start again from scratch. In addition to the integer arithmetic
build-in functions as described in core-Prolog, CProlog also provides real
arithmetic operations. Furthermore, the scientific functions such as
logarithxn, square root, sine, cosine, arc sine, arc cosine, are also

supported which will be useful in developing the application programs.

66

;L

P o

Interpreting V-Forms Under Prolog

5.3 THE V.PrROLOG INTERPRETER

The V-Prolog (Visual Prolog) interpreter is based on the CProlog
with a slight modification to explore the visual properties of V-Forms.
The structure of V-Prolog is shown in fig. 5.3.1.

Fig. 5.3.1 The Structure of V-Prolog

The visual properties of V-Forms are ekplored by the system
predicates added. These system predicates are further divided into two
parts, namely, machine independent predicates and machine dependent
predicates. All the other predicates not mentioned are left unchanged.
For detail information about Prolog programming, please consult the
CProlog manual and the text book by Clocksin.

67

Interpreting V-Forms Under Prolog

5.3.1 The Machine-Independent System Predicates
5.3.1.1 Procedure Evaluation

The embedded procedures are evaluated by the system
predicates: sys$eval_atom_proc and sys$eval_fen_proc according to

the following rules

Rule 1: If the embedded procedure is attached to an atom

then
it is performed AFTER that atom fis

. displayed.

Rule 2: If the embedded procedure is attached to a non-atom
then
it is performed when that V-Form is selected
and BEFORE the sub-VForms of it 1is
displayed. -

In order to avoid the delays during the procedure evaluation process

of the atoms (which may be in a manner of:

display — evaluate procedure —> display — evaluate procedure — ...

i.e., a V-Form is not visible until the contents and procedures of the
previous V-Forms are displayed and evaluated), the embedded procedures

are collected into a set and executed after the V-Forms of the whole screen

are displayed.

68

Interpreting V-Forms Under Prolog
5.3.1.2 Control Strategy

The control strategy predicates handle the selection and flow of
V-Forms during interpretation. The system predicate sys$fen controls

the form control table and causcs the sub-VForms of the sclected

V-Form to be displaycd.

The predicate sys$fired, sys$valid, and sys$positioh checks
the validation of a V-Form according to the input coordinate given by the
user. The predicate sys$goto gives an unconditional control transfer to a

list of V-Forms, while the predicate sys$stop halts the execution of the

Prolog program.
5.3.1.3 Database Management

In Prolog, a collection of facts is called the database [6]. During the
interpretation, V-Forms are divided into two calcgorics: sclectable or
unselectable. The selectable V-Forms, which can be sclected by the uscr,
contains one or more sub-YForms, while the unsclectable V-Forms arc
atoms. The information about the sclectable V-Torms is asscrted as a {act:
workset in the database. The system predicate sys$make_workset 18

used, as the name stands, to make this worksct.

Finally, the sct of embedded procedure, as mentioned in - section”

5.3.1.1, are collected by the predicate: sys$make_procedure_sel.

69

Interpreting V-Forms Under Prolog

5.3.1.4 Window Manipulation

The system predicates of this category display the contents of
I V-Forms according to the following algorithm:

procedure sys$show;
begin
while there are V-Forms on the FCT to be displayed do
begin
case type of
"VEORM":
begin
if there exists the alias then
display the alias of the V-Form
else display the name of the V-Form,
end;
'"TEXT":
begin
display the content using the system predicate:
sys$write_content; |
end;) \ ;
'GRAPH', 'BIT-MAP', 'ANIMATION'™: ¥
begin |
invoke the graphical subsystem to draw by using _ !
the predicate: system; _ 1
!

end; i
'RULE" : !
begin %
interpret it directly '
end; \
end; {case}
end; {while}

end;

5.3.2 The Machine-Dependent System Predicates
The machine-dependent system predicates can also be divided into |
four categories, namely, screen management, vedio control, system |

communication and miscellaneous. The machine factor considered here is !
the VT100 or VT100-compatible terminal.

70

Interpreting V-Forms Under Prolog

5.3.2.1 Screen Management/Vedio Control

The system predicates of these two categories use ANSI standard
escape sequence, which is a sequence of one or more ASCII graphic
characters preceded by the ESC character, to control the screen and vedio
display. These escape sequence applies to VT100 or VT100-compatible

terminals.

The predicate sys$cls clears the whole screen. The predicate
sys$home repositions the cursor to the left-upper comer of the
screen. The predicate sys$draw_margin draws the scaled margin as
shown in fig. 5.4.1. The predicates sys$open_window and
sys$set_cursor, as their names stand, opens the window and sets the

cursor to the required position, respectively.

The vedio control system predicates: sys$flash_text,
sys$normal_text, sys$inverse_text sct the vedio background to flash,
normal, and inverse, respectively. While the predicates
sys$text_mode and sys$graph_meode switch the character sets of the

terminal.
5.3.2.2 System Communication
The predicate sys$get_response rctracts user's input coordinates

upon the selected V-Forms. If other input devices shch as touch panel,

mouse, or pointing devices, are used, then a slight modification on this

predicate is required tolet the system work properly.

71

Interpreting V-Forms Under Prolog

The predicate system provided by CProlog allows the invoking of

the graphics subsystem and the extending of the APS system.
5.3.2.3 Miscellaneous

The system predicate sys$init initiates the screen and divides it into a
scratchpad region, which is the region for V-Forms to be displayed, and an
interactive region, which is used to communicate with the user. The
predicate sys$final restores the screen and halts the execution of Prolog.
Finally, the predicate sys$execute starts the exccution of the mapped

Prolog program.

5.4 INTERPRETING LENVIRONMENT

'V-Prolog ‘interpretér is used as the kernal of the interpreting
environment. - In order to let the internal structure interpretable by
V-Prolog, a mapping algorithm is used to translate the internal structure
into Prolog facts and rules. In this section, a mapping algorithm as well as
an example of the courseware CAI Course will be' discussed and

demonstrated to illustrate the mapping and execution processes.
5.4.1 Mapping Algorithm

The mapping algorithm, which is used to translate the

self-synthesized internal structure into Prolog facts and rules, is a

sixztuple M, = Vi, Vp, P, T, L, S), where

12

Interpreting V-Forms Under Prolog

1. V,is a finite set of nodes and information (about the
'screen margin) in the internal structure,
2. Vyisa finite set of Prolog facts, rules, and questions,

3. Pis a finite set of productions,
4. T is afinite set of strategies to support the generation of
Prolog programs,

5. L is a finite set of production labels, and

6. S is the starting information, S € V.

The productions of My, are of the form

() A—>B Ty SU FW)
as shown in table 5.4.1, where A — B is called the core,
Ae V|, Be -(VI W, VP)*, (r) is the label, re L. U is the success field and

W is the failure field. U, W < L. Ty is the strategy being taken, Tg < T.

Table 5.4.1 The productions of the mapping algorithm M,

(r) Core T, S(U) F(W)
1 §S- Bx (9] {2,3} (@)
2 B- oB {3) 2,3y {g]
3 B P [Al, A2} (3) (4,5}
4 c— cc (@) (4,5} (9]
5 C— (A1, A2,A3) (5) (D)

73

Interpreting V-Forms Under Prolog

Notice that, in table 5.4.1, the notation &, B, 7, X, A, A, and A,

represents:

1. ae V,,and denotes the fact:-
/% 1.1*/ margin(Id, Row, Column, Width, Height).
2. Be Vi1, and denotes the following set of rules and facts:.

J¥2.1% vform(Name, Id, Alias, Row, Column,
' Width, Height, Indicator, Sub_VForm_list).

/¥ 2.2 %/ coordinate(Row, Column).

/%23 %/ workset(VForm_id_list).

/* 2.4, optional, depends on A, */
- procedure(Id) :- conditions & actions.
[¥2.5% go:-sys$valid(d), sys$fen(ld).
3. AS VP*, and denotes the following set of rules and facts:

[* 3.1 % vform(Naine, Id, Alias, Row, Column,
Width, Height, Indicator, Sub_VForm_list).

/* 3.2, optional, depends on A; */
procedure(Id) :- conditions & actions.
/* 3.3,dptional, depends on A;*/
content(Name:Id, ~Type, Attribute,

The_contents).
/* 3.4, optional, depends on A, */
go :- sys$valid(Id), sys$fen(ld).

4. x € V,,and denotes the question:

74

Interpreting V-Forms Under Prolog

[¥4.1 % ?2-sys$execute.

5. A, e T, and denotes the strategy:

if the V-Form has embedded procedure then
begin :

assert the predicate: procedure;

end; '

6. A,e T, and denotes the strategy:
begin
search the sub-VForms that has a direct link to the
V-Form encountered;
append the searched sub-VForms' names and 1ds
into a list;
sub_Vform_list < the appended list;
end;

7. A, e T, and denotes the strategy:

if this V-Form is an atom then
begin
assert the predicate: content:
end)
else
begin
assert the rule: go;
end;

The mapping algorithm operates as follows:

Step 1: Production (1) is applied first,

Step 2: For production (i), i € L,

75

[nterpreting V-Forms Under Prolog

if the internal structure o contains the message A,

AeV,
then
the production (r) A — [Tg is applicd
according to the strategy T and the next

production is sclected from the success go-to
ficld U.
celse

the production (r) is not used (i.e. o is not

changed), and the next production is selected
form the failure go-to ficld W.

Step 3: If the applicable go-to field contains @ then

the mapping halts
else go to step 2.

In this algorithm, the information kept in SN, FCN, MN, and AN
arc dircctly mapped to the predicates: vliorm, viorm, content, and
procedure, respectively. The relationship between thesc four nodes are
mapped into Prolog program according to the productions as shown in
table 5.4.1.

5.4.2 An Example
Consider the courseware CAI_Course of fig. 4.5.1 with part of
he internal structure shown in fig. 3.5.4. Applying the mapping

algorithm to the internal structure, we have the Prolog program (only part

ol it is shown):

76

Interpreting V-Forms Under Prolog

margin(5, 1, 1,77, 18).
margin(9, 1, 1,77, 18).

margin(13, 1, 1,77, 18).

margin(14, 1, 1,77, 18).

margin(21, 1, 1,77, 18).

margin(25, 1, 1,77, 18).

margin(27, 1, 1,77, 18).
viorm('Cai',0,_,0,0,0,0,1,['Title':1,'Snoopy':2,'Head":3,'No"4, Yes
"SD.

coordinate(0,0).

workset([0]).

procedure_set{[]).
go :- sys$valid(0), sys$fen(0).

vform('Title', 1,0, 1,20,40, 1,1,[1). '
content('Title" 1,text,normal,’ Linear Programming~~"),

vform('Snoopy', 2,0, 5, 5,20,10,1,[1).
content('Snoopy':2,graph,normal,'snoopy.dat~~"),

vform('Head', 3,0, 5,35,40,10,1,[]).

content('Head"3,text,normal,'~ The following topic is -
the~~Graphical Solution of Linear Programs~~t').
content('Head":3,text,normal,'n two variables.~~~ Do you want to

try 7~~'}. '

viorm('No', 4,' No'18, 5,10, 1,1,[]).
procedure(4) :- stop.
go :- sysdvalid(4),sys$fen(4).

vform('Yes', 5, Yes',18,65,10,1,1,
['Prob":6,'Ex":7,'Exit':8,'Ready".9]).
20 :- sys$valid(5),sys$fen(3).

viorm('Desc', 17,0, 1,40,35,15,1,[]).

procedure(17) :- value(X,Y),cursor(5,49), write(X),cursor(5,63),

write(Y).

procedure(17) :- retract(value(X, Y)),cursor(9,56), Z is 2*X+Y,

write(Z) .

content('Desc”:17,text,normal,’ >>> F(x,y) =2Xx + y <<<~~At x =
, y=~~Then,~~ F(x,y) =~~s0~").

content('Desc’:17,text,normal,’ 270 at vertix (120,30)~~is

MAXIMUM.~~Another t ry 7~~").

77

T{ ,

Interpreting V-Forms Under Prolog

viorm('Good', 32,0, 2,20,35, 2,1,[})-
content('Good':32,text,inverse,’ Good I~ You got it
Right~~%. ' :

vform('Snoopy’, 33,0, 8,10,30,10,1,1]).
content('Snoop':33,graph,normal,'snoopy2.dat~~).

vform('Retry', 34,' Retry', 8,55,10, 1,1,
['Title":1,'Snoopy':2,’Head"3, 'No"4, 'Yes"5])."
go - sys$valid(34),sys$fcn(34).
vform('ByeBye', 35, ByeBye',17,55,10, 1,1,[]).
procedure(35) :- stop.

g0 :- sys$valid(35),sys$fen(35).

?7- sys$execute.

The facts "margin(id,row,col,width,height)” direct the windowing
during execution. At the beginning, the facts: coordinate(0,0),
workset([0]), and procedure_set([]) give an unconditional display of the
screen shown in fig. 4.5.1(a) and then an unification is initiated by the
system predicate: sys$fen in the rule go. If the V-Form "No" in fig.
4.5.1(a) is selected which in this stage is the supporting of two integer
values by the user, then the embedded pro‘cedure in this V-Form (in this
case, the fact: procedure(4)) is executed to exit from this application. On
the other hand, if "Yes" is selected, then the sub-VForms within

- VFORM:Yes are displayed (by a pointer to FCT (F2) as in fig. 3.5.4). The

user can proceed in this way to "run” the application visually. The resulting
execution flow is shown in fig. 4.5.4. Accordingly, users can program

or run their applications in visual.

The mapping is invoked by using the command EXECUTE in fig.
4.5.2. which is a combination of mapping and running. On the other hand,
the command RUN in fig. 4.5.2 runs a mapped program. Fig. 54.1

shows a typical screen during execution of the CAI courseware.

78

Interpreting V-Forms Under Prolog

oY

(50, 100)

— X

(94,9)

L Motice thatsd

278 in the table is maximum
. fny other points inRis
| 1ess than 270,

Have a try to verify 7

ot

For F(x,4) = 2x + y, randonly denerates
a set of points (x,y) in R as follows:

X y Fix,y}

? 76 76

28 3 42

40 11 9{

g0 16 139

go 22 igz

- 10e 29 229

126 k1) 270
Yes No Revieuw

{(x,4) = 46, 28,
Sensed coordinate! 1B. 45.

Fi g. 5.4.1 A Typical Screen During Execution

79

CHAPTER 6

CONCLUDING REMARKS

In this report, a theoretical sound approach to visual program
synthesizing system as a footstone toward automatic programming for
Non-Programmer Professionals has been presented. The visual
program-synthesizing system contains a V-Form Definition Language, a
prototype graphics utility, and a V-Prolog interpreter. The V-Form
Definition Language offers the NPP.users a programming environment to
define objects of an application program in a manner of
what-they-sketch-is-what-they-get and automatically synthesizes the
sketched objects into a consistent internal structure. The prototype
graphics utility is designed to provide the entry of graphical objects. While
the V-Prolog interpreter provides the users a visual environment to run

their application programs.

The interface between the V-Form Definition Language and the
V-Prolog is a mapping algorithm which transforms the consistent internal
structure of the sketched objects by VDL into an executable Prolog
program which can be interpreted by V-Prolog. VDL, V—Prolo.g, and the
mapping algorithm are all based on a V-Form model in which the contents
and the structure of the objects sketched by the user are explicitly

incorporated. Accordingly, the users can sketch freely the objects whose

Concluding Remarks

contents may include text, static graphics, dynamic graphics, and rules.

The Automatic Program-Synthesizing system provides the user a
feasible environment to program their applications and run the application
programs visually. Users, with or without any programming language
background can focus on describing their specialized knowledge through
the processing of VDL to get the desired applications. This will release the
users from doing ardious and tedious works. Also, because of its sound
theoretical basis, the APS system may be easily extended to deal with more

knowledgable objects.

In formal language aspect, the APS system introduces a visual
programming concept which is used to get the desired application

programs in.a manner of what-they-sketch-is-what-they-get operations.
Through these operations, the behavior of the visual grammar Gy, of a

visual language environment can be simulated. In other words, the visual
programming itself is an interactive process which allows the users to
describe the inference algorithm by themself. Here, the inference
algorithm is a process of describing the positive samples as designed by the
user. In this way, based on the visual grammar which is a context-free
programmed grammar, the context-sensitive applications can be

synthesized by the APS system.

Althounh at the present stage, APS system is only an experimental
system in the study of visual programmmg techniques, it already reveals
its capabilities in flexibility, extensibility, and adaptability for application
software development. However, there is still a lot to do in the future

rescarch. This may include expressing more knowledgable objects and

81

Concluding Remarks

their relations, integrating the APS system into personal computers or even
workstations, supporting more application packages, and so forth. But
first, it is suggested a better understanding on visual perception such that
more knowledgable representations for wider objects can be devised in a

more general manner.

82

APPENDIX A

.INSTALLATION OF APS SYSTEM

A. 1 START UP

To install the APS system, first of all, the following files must be

copied from the distribution directory:

APS.COM - APSLIBSYS APSMENUPAS BOOT.COM
CAIL.DIA CPROLOGEXE DRAW.PAS DRAWMENU.PAS
EDIT.PAS EDTCMD.SYS ERRFILESYS HEAD.PAS
INIT.SYS LIB.PAS LIBDATA.SYS MAPPING.PAS
PLOT.PAS PROTECT.SYS VDLDEF VOL.PAS
VDLCMD.SYS VMSALLSYS

The files with extension .SYS are system files which are needed
during the installation process. The source programs are written in
VAX-11 Pascal under VAX/VMS. The file CPROLOG.EXE 1is the
CProlog interpreter available from DEC. All the above files take about
627 blocks of disk quota (512 byte/block).

A.2 INSTALLATION

Assume all necessary files are copied to your working directory. In
the installation procedure, a temporary space of about 700 blocks is

needed. You can give the following command to start installation:

Installation of APS System

$@BOOT

and you will see:

>>>5> Install APS system, V1.0 P

“Assuming that you've copied all the files from the
distribution directory, this procedure will procede to
install the V-PROLOG interpreter and set up the APS
system and define the APS command accordingly.

First, I'l set up the PRO$LIBRARY logical name to point
to the subdirectory "LIBRARY.DIR" of the current
directory, and Il define the PROLOG command.
accordingly.

(ulimately PROSLIBRARY should point to a central
directory accessible 1o all users, then the files :
"VPROLOG.EXE" and "STARTUP." should be moved there, and
the PROLOG command should be redefined appropriately)

Donel

now then, 'l go through the "Interpreter Bootstrap”
procedure

CProlog version 1.5

This software should not be used for commercial purposes
and should not be distributed outside of Digital
(per Digital's agreement with the Univ. of Edinburgh).

This software is still being field tested.
Contact Michael Poe or Roger Nasr for more information.

[Bootstrapping session. Initializing from file init.sys]
| 7- vmsall.sys consulted 15532 byles 13.316689 sec.

yes
| ?-

yes
apslib.sys consulled 9804 bytes 7.483345 sec.

yes
| 7- protect.sys consulted 372 bytes 10.300003 sec.

yes : .
| 7- libdata.sys consulted 408 bytes 0.350028 sec.

yes
2.
{ closing all files]

84

Installation of APS System

| ?7-
[Prolog execution halted |

The V-PROLOG interpreter should be all set now! {with
PROS$LIBRARY defined as the subdirectory "LIBRARY.DIR"
of the current directory}

please let me know if you have any problems with the
- V-PROLOG installation procedure.

Second, Il set up the APS$LIBRARY logical name to
point to the subdirectory "LIBRARY.DIR" of the current
directory, and I'll define the APS command accordingly.

(ultimately APSSLIBRARY should point to a central
directory “accessible to all users, then all the files

in the subdirectory "LIBRARY.DIR" should be moved there,
and the APS command should be redefined approprialely)

The APS system should be all set now!

Please let me know if you have any problems with the
hootstraping procedure, or with this new version of APS
system that you just installed...

The APS.MAN manual, available frem APS$SOQURCE:, is
still not the latest. You will be nolified when the new
manual is available.

This software is still being field tested. For more
information about APS and this bootstraping procedure,
- please contact:

Mr. Ming-Chin Lu
Department of Electrical Engineering
National Taiwan University

Taipei, Taiwan, 10764
R.O.C

Notice that: If you want to use the APS system, after

this bootstraping procedure and re-LOGIN, you must run

the command procedure named "APS$LIBRARY:INSTALL.COM".
Of course, you can put it in the "LOGIN.COM" file like

this:

"$ @(your aps$library directory)install"

This installation procedure takes about 8 minutes (with CPU time
about 4 minutes and 34 seconed). And finally, a disk quota of 455 blocks is

taken. You can start developing your application programs by giving the

85

Installation of APS System

following command:

$APS

86

APPENDIX B

AN EXAMPLE ON INTERACTIVE SEQUENCE

VDL> Begin Cai_Course

VDL> op text at 1 20 with 40 1 as Tite
VDL> op graph at 5 5 with 20 10 as Snoopy
VDL> op text at 5 35 with 40 10 as Head
VDL> op viorm at 18 5 with 10 1asNo
VDL> op vform at 18 65 with 10 1 as Yes
VDL> set total F1

VDL> set procedure No

_Procedure: stop

VDL> set procedure Yes

_Procedure: assert(error(Q))

YDL> ext Yes

VDL>

VDL> optextat1 1 with45 7 as Prob
VDL> optextat 11 1 with45 6asEx
VDL> op vform at 1 65 with 10 1 as Exit
VDL> op viorm at 16 65 with 10 1 as Ready
VDL> settotal F2

VDL> set procedure Exit

_Procedure: stop

VDL> ext Ready

VDL> op graph at 1 1 with 30 10 as Figl
‘VDL> op text at 14 1 with 30 5 as Desc
VDL> optextat 1 35 with 40 14 as Table
VDL> op vform at 18 35 with 10 1 as Yes

_ VDL> op vform at 18 50 with 10 1 as No
VDL> op vform at 18 65 with 10 1 as Review
VDL> settotal F3

VDL> set next Review goto 2

VDL> ext Yes

VDL> '

VDL> op graph at 1 1 with 30 10 as Fig2
VDL> optextat1 40 with35 15 as Desc
VDL> op vform at 15 1 with 10 1 as Yes
VDL> op viorm at 15 21 with 10 1 as' No
VDL> set total F4

VDL> set next No goto F5

VDL> set next Yes goto F3

VYDL> ret

VDL>

VDL> ext No , :

VDL> op textat 5 5 with 65 4 as Query
VDL> op vform at 15 5 with 10 1 as Yes

An Example on Interactive Sequence

VDL> op vform at 15 60 with 10 1 as No
VDL> set total F5
VDL> set next No goto F3
VDL> ext Yes
| VDL>
VDL> op textat2 2 with 40 10 as Quiz
VDL> op graph at 2 48 with 30 10 as Fig
VDL> op vform at 16 2 with 12 las 1
VDL> op vform at 16 18 with 12 1 as2
- VDL> op vform at 16 34 with 12 1as3
VDL> op vformat 16 50 with 12 1as4
VDL> op vform at 16 66 with 12 1as5
VDL> set total F6
VDL> ext 1
VDL> :
VDL> op textat 5 10 with 60 10 as Desc
VDI> op vform at 18 60 with 10 1 as Ready
‘ VDL> set total 7
‘ : VDL> set next Ready goto F6
VDL> ret
VDL>.
VDL>copy lto 2 4 5
VDL> ext 3 :
VDL> op text at 2 20 with 35 2 as Good
VDL> op graph at 8 10 with 30 10 as Snoopy
VDL> op vform at 8 55 with 10 1 as Retry
VDL> op vform at 17 55 with 10 1 as ByeBye
VDL> set total F8
VDL> set procedure ByeBye
_Procedure: stop
VDL> set next Retry goto Fl
VDL> home
VDL>
VDL> ed title
VDL$ED> fill
Linear Programming
L
VDLS$ED> ex
VDL> ed no
VDL$ED:> al
NO -
. VDL$ED> ex
VDL> ed yes
VDLSED> al
Yes
- VDL$ED> ex
VDL> ed head
- VDL$ED> fill

The following topic 1is the.

Graphical Solution of Linear Programs

88

An Example on Interactive Sequence

in two variables.

Do you want to try it ?
~Z
VDL$ED> ex
VDL> ed snoopy
VDLS$ED> fill .
snoopy.dat
Az

VYDL$ED> ex
VDL> extyes
VDL>

VDL> ed prob
VDLS$ED> fill
Problem Statement:

Given a close region R enclosed by a

set of lines, how to find the maximum value

of a function F(x,y) ?
N7

VDL$ED> ex

VDIL> ed ex
VDLSED> fill
Example:

Suppose x >=0, y >= 0, y <= 100,
x+y<=150,x-y<=90.

Find the maximum value of F(x,y) = 2x+y

AZ
VDL$ED> ex
VDL> ed exit
VDLS$ED> al
Exit
VDLS3ED> ex
VDL> ed ready
VDLSED> al
Ready A
VDL3ED> ex
VDL> extready
VDL> -
VDL> ed yes
VDL$ED> al
Yes
VDLS$ED> action

_Action: cursor(22,1),write('(x,y) = "),read(X),read(Y),assert(value(X,Y))

VYDL3ED> ex
YDL> ed no

An Example on Interactive Sequence

VDL3SED> al
No
VDLSED> ex
VDL> ed review
VDLS$ED> al
Review
VDLS$ED> ex
VYDL> ed desc
VDLSED> fill
Notice that:
270 in the table is maximum
. Any other points in R is
less than 270.
Have a try to verify ?
NZ
VDL$ED> ex
VDL> ed table
" YDL$ED> fill
For F(x,y) =2x +y, randomly generates
a set of points (x,y) in R as follows:

X y Fx,y)

N
VDLS$ED> ex
VDL> ext yes
VDL>
VDL> ed yes
VDL$ED:> al
Yes
VDL$ED> ex
VDL> ed no
VDLSED> al
No
VDLS$ED> ex
VDL> ed desc
VDLSED> fill
>>> F(X,y) =2x +y <<<

Atx= |, y=
Then,

F(x,y) =

90

An Example on Interactive Sequence

SO
270 at vertix (120,30}

is MAXIMUM,
Another try ?

AZ .
VDLS$ED> action .

_Action: value(X,Y),cursor(5,49),write(X),cursor(5,63),write(Y)

VYDLSED> action

_The action to take is: value(X,Y),cursor(5,49),write(X),cursor(5,63),write(Y)
Do you want to A)dd, C)hange, or unchange(<CR>) 7 A
_Action: retract(value(X,Y)),cursor(9,56), Z is 2*X+Y, write(Z)

VDL$ED> ex
VDL> ret
VDL>
VDL> ext no
VDL>
VDL> ed yes
VDL3ED> al
Yes
VDLSED> ex
VDL> ed no
VDL$ED> al
No
VDLSED> ex
VDL> ed query
VDLS$ED> fill

In the following, we will give you a quiz.

ARE YOU READY?
A7, . .
VDLSED> ex
VDL> ext yes
VDL>
VDL> ed 1
VDLSED> al
(1) 0,0)

VDLS$ED> ex i

VDL>ed 2
VDLIED> al
(2) (0,60)
VDL$ED> ex
VDL> ed 3
VDL$ED> al
(3) (70,45)
VDLS$ED> ex
VDL> ed 4
VDLS$ED> al
{4) (30,90)

91

An Example on Interactive Sequence

VDLSED> ex
VDL> ed 5
VDLS$ED:> al
(5) (120,0)
VDL$ED> ex
VDL> ed quiz
VDL$ED> fill

Answer the following question:

~ Suppose x >=0, y >=0,
X+y<=120, x -y >= 60.

“For ax + by = F(x,y),

a,b are any real numbers.

Which of the following can NEVER be the

maximum?

AZ

VDL$ED:> ex
VDL> ext 1
VDL>

VDL> ed desc
VDL$ED> fill

SORRY, it is a wrong answer.

Because what you- chose is a point WITHIN R, and

‘Any points inside region R CAN NOT be the maximum,
AZ _

VDL$ED> ex -
VDL> ed ready
VDLS$ED> al
Ready
VDL3ED:> action

_Action: retract(error(X)), Y is X+1, assert(error(Y)), !, Y > 1, sys$goto(0)

VDL3ED> ex
VDL> ret
VDL>
VDL> ext3
VDL>
VDL> ed retry
VDL$ED> al
Retry
VDL$ED> ex
VDL> ed byebye
VDLYED:> al
ByeBye
VDLSED> ex
VDL> ed good

An Example on Interactive Sequence

VDL$ED> fill

~ Good!

You got it Right.

s
VDLSED> set reverse
VDLS$ED> ex
YDL> ho
VDL>
VDL> ext yes
VDL>
VDL> ext ready
VDL> ‘
VDL> ed figl
VDLS$ED> fill
Figl.dat
"L
VDLS$ED> ex
VDL> ext yes
VYDL>
VDL> ed fig2
VDLSED> fill
Fig2.dat
AN
VDLS$ED> ex
VDL> ret
VDL> .
VDL> ext no
VDL>
VDL> ext yes
YDL> -
VDL> ed fig
VDLSED> fill
Fig3.dat

AZ

VDLSED> ex
VDL> ext3
VDL>

VDL> ed snoopy
VDLS$ED> fill
snoopy2.dat

Az ’

VDLS$ED> ex
VDL> exit

93

1]
2]
3]
[4]
5]
6]
(7]
8]

9]

REFERENCES

“Anderson, J. R., Boyle, C. F. and Yost, G., "The Geometry Tutor,"

JCAI LosAngles, U.S.A.,pp. 1-7 (1985).

Campbell, J. A., ed., Implementations of Prolog, Ellis Horwood -
Series in Artificial Intelligence (1984). |

Chang, S. K. and Charisse, O., "The Interpretation and Construction

.

" of Icons for Man-Machine Interaction in an Image Information

System,” Proceedings of IEEE Workshop on Language for
Automation, New Orleans (Nov. 1984).

Chen, J. C., "A Knowledge-Based Environment on Virtual
Workstation,". M. S. Thesis, Graduate Institute of NTUEE, Taipel,
Taiwan, R. O. C. (June 1985).

Cheng, K. Y., Hsu, C. C,, Lin, I. P., Lu, M. C,, and Hwu, M. S.,
"yIPS: A Visual Programming Synthesizer,” Second IEEE
Computer Society Workshop on Visual Language, Dallas, Texas,
U.S. A. (June 1986).

Clocksin, W. F. and Mellish, C. S., Programming in Prolog, 2nd ed.,
Springer-Verlag, Berlin, 1984.

Ellis, C. A. and Nutt, G. J,, "Office Information Systems and
Computer Science,” Computing Surveys, Vol. 12, No. 1, pp. 27-60

- (March 1980).

Fu, K. S. and Booth, T. L., "Grammatical Inference: Introduct@on
and Survey -- Part L," IEEE Trans. on System, Man, and Cybermnetics,
Vol. SMC-5, No. 1, pp. 95-111 (1975).

Fu, K. S., "An Introdﬁctidn to Formal Language,” Chap. 2. in
Syntatic Pattern Recognition and Application, Prentice-Hall,

Engl_ewood Cliffs, N. J., 1982.

[10] Gray, M. D., Logic, Algebra and Database, Halsted Press, 1984.

References

[11] Harrison, M. A., Introduction to Formal Language Theory,
Addlson—Weslcy (1978) .

[12] Hopcroft, J. E. and Ullman, J. D., Introduction to Automata Theory,
Language, and Computation, Addison-Wesley, 1979.

[13] Hwu, M. S., "A Manipulation Language for Visual Programmings,"
M. S. Thesis, Graduate Institute of NTUCSIE, Taipei, Taiwan,
R. O. C. (June 1986).

[14] Jacob, Robert J. K., "A State Transition Diagram Language for
Visual Programming," IEEE Computer, pp. 51-59 (1985).

[15] Kearsley, G., "Authoring Systems in Computer Based Education,”
Comm. of the ACM, Vol 25, No. 7, pp. 429-437 (1982).

- [16] King, K.J. and Maryanskl F. J., "Information Management trends in
Office Automation,” Proceedings of the IEEE, Vol. 71, No. 4,
pp. 519-528 (1983).

[17] Kitagawa, H., Gotoh, M., Misaki, S., and Azuma, M., "Form
Document Manacement System SPECDOQ - Its Arch1tectu1e and
Implementation,” Second ACM-SIGOA Conference on Office
Informatlon System Vol 5, No. 1 -2, pp. 132-142 (June 1984).

[18] Kowalskl, R. A, "Predlcate Logic as Programming Language,”
Proc. of IFIP 74, Stockholm (1974).

[19] Moriconi, M. and Hare, D. F., "Visualizing Program Designs
Through PegSys,” IEEE Computer Vol. 18, No. &, pp. 72- 85
(1985).

[20] Pereira, F., ed., CProlog User's Manual, Version 1.1 (Dec. 1982).

[21] Reiser, B. J., Anderson, J. R. and Farrel, R. G., "Dynamic Student

Modelling in an Intelligent Tutor for LISP Programming,” IJCAI
LosAngles, U. S. A., pp. 8-14 (1985).

95

