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Abstract

In this thesis we address the problem of providing different
ways to see objects in an object-oriented database system. The
thesis first issues the notions of "derived object"."_virtuai object”,
and "virtual schema", then provides a mechanism to construct
user-specific views that simply and naturally extends the
underlying object-oriented data model. User view is constructed
By ojperators defined in this thesis, which are powerful enough
to capture the esseﬁtial feature of data abstraction and
inheritance in the ‘underlying data model. The method of
mapping from the vi‘ew definition to the conceptual schema is _

presented by examples.

Key Words and 'Phrases:'object-oriented model, semantic data

modél. view, derived object.
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Chapter 1. Introduction

1. 1 Introduction

Relational systems have been successful in commercial
business appiicati-ons. However they are subject 'tor the
limitations of a finite set of data types and the need to normalize
data. Thus, prevent them to be uséd in the area that are compiex
related, large scale, dai;a intensive applications 'such as CAD,
Office Automation.l Since real world objects usually have to be
decomposed c;nto different relations in relational database
systems. Few of one_to_one correspondence between real world
entities and database elements exists. This makes the database
an unnatural model of real world. Further, the relationship of the
tuples of the {rafibus"felations iS achieved via user—genei'atedA
attribute values. In othef words.'thé.relationéhips among tables
are not expliciﬂj_f expressed in the schema ievel, instead are
implicitly represented via user-generated attribute values. This
makes it difficultly fo intefpreter the database by the database

user, because it.requires an intrinsic knowledge of the

underlying schema definition.




The richer expreésive-capability_ of a.data model will ease
the work of database design and gives a natural model of real
world. Object-orientation is getting ever popular in computer
' éciencg as a concept {o better capture the semantics of soffware
systems and their applications. Iﬁ recently years, there are some
proposals for systems which merge the object-oriented
programming language concepts and semantic data modeling
éapabilities to form an object-oriented environment supported
by a database. Examples of this trend include several systems:
(1).Gemstone [CM§4]. which incorporated class modulation and
type hierarchy conlcepts from- Smalltalk language[GR83] to
support a. set-theoretic data model in an object-oriented
programming e&m’ronment. (2).Iris [Fish87], which is based on a
semantic data model that supports abstract data types. Iris
co.ntai'ns- three important constructs: objects, -types and
functigns. Properties “of objects, relationships among obj.ects.
and- computations on objgcts are expressed in terms of
functions. (3).ORION [BCIGKB'?].. which incorporated thé concept
of composite objects as -an enhancement to the standard
Smalltalk_like object-oriented data model. A composite object is
a collection of related instances that form a hierarchical

structure that captures the is-part-of relationship between an
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object and its parent.

Therelare several important characteristics offered by
object-oriented database systems, whéﬁ comparing it with
rec’ord-oriented database systems. First, inforiﬁation about
"schema” and "data" is modeled using the single éoncept:
object. Thus, management about meta-data and database itself is
all the same. Second, object-oriented database systems support
the direct represeﬁtation of two essential data abstractions,
namely aggregéﬁon and generalization. This two abstraction
mechanism together "with classification, which assembles the
same concept of objects into classes, provides a natural,modular
framework for modeling the basic structure of those applications
like CAD/CAM or office automation. And third, object-oriented
database systems model an object as an abstract data type with
1dent1ty This allows the ablhty of easy sharmg of objects and
prowdes a mechanism to encapsulate data and updating
operations. Finally, objec_t oriented database systems open a
potential door to allb{x{._various kinds of changes to the
~ conceptual database structure. This function is especially
desirable for those applications whose environments are

irregular,unpredictable,and evolving [LMS88].
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This research investigates an approach to provide
user-oriented views of objects as a semantic hierarchy schema. A
semantic hierarchy schema is composed of virtual classes which
then are structured by the two abstraction mechanism:
generalization and aggregaﬁon. This éemantic hierarchy schema
'foﬁns a virtual database about the objects of an application and
the constraints on those objects and their relationships. With

this approach, the system is able to:

(1) provide different user groups with their own subschema of

the total conceptual schema,

(2} allow different user groups to have different perspectives of

some aspects of the conceptual schema.

Anocther impoftani .goal of our work is that we expect to find
fhe semantic operations of an-object-on‘ented. data model, that
is, operations that manipulate the seman'tlic components of a
data model. This goal deeply affects the approaéh we adopt to

define the user view.

Although several object-oriented data models have been
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- proposed, to our knowledge, a few of papers cover the topic of
views in the object-oriented data model. This motivates us to

study the topic of this thesis in depth.

Now, we give a brief review of the object-oriented data
model that we base on to design the view mechanism. The data
model mainly borrowj_s from -the,_paPer: "Object-oriented
Database Approach to Multimedia Applicéﬂtioris%'.‘ [WKL886]. Objects
in a multimedia database have various properties and participate
in a number of relationships w1th other objects. The semantic
data model concepté:‘attribute aggregation(an object contains
other objects) and relation aggregation (an object is related to
. another objecti are adopted to solve this compiicated situation.
The essential concepts of Smalltalk-80 language including
object identity, abstract data type, -generaliz.ation hierarchy
among'objects, and -property inheritance are all important
concepts in this model. The two abstraction mechanism:
generalization and aggregation permit the user to model and
view the data on'xﬁany levels, which is consistent with the way
people modeling the real world. The detailed description of

object-oriented data model concepts is presented in Chapter 2.




Views have been formally treated in relational database. A
view is defined in a relational model as a query over the base
relations, and_perhaps also over other views. In other words,
view is implemented virtually, that is, view as a table has.
attributes but no data populates it. A mapping is available when
transform use'r-operations on views into operationé over the base
data. The final result is obtained by interpreting the combination
of view definition and ﬁser query, usirig the description of the

database stored in the database schema.

Following the idea of relational view when considering the

problem we address. Some new research issues arise:

(a) Since view is a subset scope of the conceptual database.
Objects in view should be treated as they are in the conceptual
database. In other words, the concept of object identity must be

preserved in the virtual database.

(b} For the samé reason, classes defined in the virtual database
should have the concepts of attributes, is_a relationship, and
part_of relationship. Hence, the rule to define mappiﬁgs

between the conceptl.ial database and the virtual database are
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needed.

(¢) Since the schema in an object-oriented database is
structured (based on is_a and part_of relationships). Rules to

define the structured schema of the virtual database are needed.
1.2 Related Works

Intuitively, it is natural to extend the relational View and
accommodates it to the object-orieﬁted database system). With
this basic idea, the notion of "schema virtualization"[TYI88] had -
been issued. In that, a virtual class is defined by associating a
conceptual or virtual class with a predicate, and the is_a
relatibnships between classes are declared by the virtual schema
designer. The speciflcation, -a virtual class is a set of objects
subjéct t.o\ a predicatel. induces the number of attributes of a
virtual class to be unfixed. Thus, leads the way to contradict

with the definition of a class in the conceptual database. The

introduction of is_a relationship provides users to specify their

own virtual schema, however it does not consider the attribute
inheritance aspects of a virtual schema. Related to the work of

schema virtualization, it also worth noting the following works: '
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(1). In Superview[Motro87], Motro provides an .integration
language to construct user views that access multiple databases.
The database model is based on the functional approach. It
allows users to integrate data with the same concept on different
databases. The emphasis is largely on database integration, but

less on restriction or exposing the data that user is fa\;rorite.
| Since the underlying data model is a semantic data model, some
of the integration language are suited"for our work. (2).In the
ORION project{BKK88] schema evolution was investigated, that
is, the ability to dyn_amically make a wide variéty of changes to
- the database schema. ORION provides a variety of 6perators to
change a database schema and a set of rules to construct a valid
database scheﬁa.Howev’er, operators in this paper do not
concern the reconstruction of the data schema, nor support to
define ml;ltiple schema virtuailj. But the taxonomjr of over 20

- schema changes gives the hint of the taxonomy of our operators.
1.3 Organization of the Thesis
Chapter 2 is a survey of object-oriented' data model

concepts. The data model provides the context to discuss the

view facility in the obje’ct—oriented database system. In Chapter
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3, operators are defined by carefully exposing the relationsﬁips
among the basic components of the data model. These operators
shield the complexity of programming in deriving views of the
database and serve as a specification c;f.derivate views. In

Chapter 4 , mapping of views is discussed. Chapter 5 gives a

conclusion.




Chapter 2. Object-Oriented Data Model

In this chapter we first discuss the encountered problems
in using the relational model to capture the semantics of
applications that are complicatedly related, and highly
structured. In the second section, the csséntial ‘features of.
object-oriented pfogrammir;g are reviewed and adfantages to
‘use object—oriented_approach are listed. At the last section, the
modeling power of object-oriented data models is thoroughly
discussed. This section is the fundamental theory we base on in
order to introduce the view concepts in object;oriented models.

-~

2.1 The (Pure) Relational Database System

In the commercial world, relational database systems have
recer;tly become popular for data processing applications.
Relational model is more flexible and easier to use than previous
database models. It is more flexible because inter-record
relationships do not have to be pre-defined. The relatiocnal join
operator allows a user to relate records dynamically based on
attribute values. The relational model is easier to use because of

its more intuitive metaphor of tabular data and because of
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foﬁrth-generation query languages, lwhich allows a ﬁser to pose
ad hoc retrieval requests to the system. However, these DBMs
are subject to the limitations of a finite set of data types and the
need to normalize data. Thus, prevent it to be used in the area
that are complex related, large scale, data intensive applications
such like CAD, and Office Automatmn Example to show the
~unnatural modehng behavmr of the relational model is the

following,

Examplel[KW87]:

real world objects usually have .to be decomposed onto
different reldtions (subject to simp'le data type and
normalization) in the relational database model. Let us illustrate

this on a relatmnal BR( bracket- boundary representatmn]

schema that is descnbed below




Mech_Part FACES

ID 1 ID |EDGES
cuboid , i1 | ed
cubo:d. - £ 62
pyramid
EDGES VERTICES
1D VERTICES DI X | Y} Z
el | vi o vilo{o o
el v2 v2
e2 v B IRVAC

| Table Q.l Bracket Tables

~We notice that this representation is broken up into four

different relations, where .t.heArelationship of the tuples of-the

it i

various relations is achieved via user-generated attribute values.
This makes the model difficult to use by the database user, that
is ',the'.engineer, in order to retrieve and manipulate the data
because it requires an intrir_lsic knowledge of the underlying

schema definition. In order to retrieve all the bounding vertices

. of the mechanical part "cuboid”, one could formulate the




following SQL queries:

select Mech_Part.ID.X,Y,Z

from Mech_Part,FACES,EDGES,VERTICES
where Mech_Part. FACES = FACES.ID

and FACES.EDGES = EDGES.ID

and EDGES.VERTICES = VERTICES.ID

and Mech_Part.ID = "cuboid".

These queries involve Joining the four relations Mech_Part,
FACES, EDGES, and VERTICES. Adequately supporting such
frequent join operations seems to be the major issue in

extending the (pure} relational model.

2.2 Object-oriented Programming

‘Object-oriented 1anguéges have been available- for many
years. The productivity increases achievable through the use of
such languages are well recognized. Although the object-oriented
paradigm has many different uses and thefefore many different

definitions, the folléwing aspects are recognized as being

2- 4




essential:

(1) Data abstraction and encapsulation

Every object comes with a set of operations which are used
to operate upon and to change the object. Moreover, the object
consist of a public interface and a private implexﬁentation part.
This. pfovide a way to reduce interdependencé between software
components. thus, niodiﬁability and reliability is enforced.
(2) Object identity

The object idenﬁfy is independent of (mutable) values of

‘properties which makes a representation into a real-world

entity. Once it has an object-id it can be referenced by it

regardless any change.

(3} Megsages
Contrary to high_level programming languages, objects
communicate by passing message. Each message consists of a

receiver object identity, the particular message name and the

arguments for the message.




(4) Property inheritance "

| Objects are organized into classes, which in turn are
organized in class hierarchies. The way of economy specification
is achieved by giving a single description of the generic object
properties and by automatic inheritahce of properties defined at

a lower level of abstraction:

(5) Overloading

Operators (function and procedure} cén be overloaded. Both
the operator name, the argument types, and the class of the_
receiver in the type hierarchy .determines the specific operator

definition. .

(6) Late binding
-Moving the binding of variables to runtime improves the
expressiveness at the cost of loosing compile-time error

checking capability. - - o

(7} Graphics
The dialogue with modern graphic workstations require _
- loose control over the input sequence. An object-oriented

approach is best suited to model this manipulation of individual
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objects presented on a screen.

Since class hierarchy is a natural form to model the
application domain. Object-oriented programming differs from
éonventional control-based programming by encouraging you to
concentrate on the data to be n;anipula‘ted rather than on the

code that does the manipulation. .

Object-oriented languages have many advantages over more

traditional procedure-oriented languages. We list it below.

(a). Data abstraction is a way of using information hiding, which
increasé reliability and help decou_plé procedﬁral and
representation specification from implementation.

(b). Inileﬁtance permits code to be reused. This has attendant
advantage of reducing overall code bulk and increasing

programmer productivity.

(c). Software economy is achieved. Programs are developed first
for general cases, by defining methods for general classes, then

these methods are refined by adding new subclasses only when

27




strictly necessary.

2.3. Object-Oriented Data Model Concepts

There is an informal definition of an object-oriented
database system: it is based on a data model that allows to
represent one real-world entity (whatever its complexity -and

structure} by exactly one object (in terms of the data model

. concepts). of the database. Thus no artificial decomposition into

simpler concepts is necessary unless the database designer
decides to do so [Ditt87]. Generally speaking, an object-oriented
data model is a kind of semantic data model having specific
attractive poinfs 'on_ modeling power and implementation

aspects.” -

In the object-oriented data. model, there are four

‘cofnponents: Objects, bbject Identities, Classes, and

Relationships. We discuss it detailedly as follows:

(1). Object

An object is a real-world element or concept which can be

’
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distinctly identified. A person identified by his name (B. W. Liu)

. and a course identified by title (Compiler) are examples of

objects. In object-oriented systems, an object is an encapsulated
* abstract data type, and as such its attributes need not be single
values, But can be other entities of arbitrary complexity. This
alIowé us to ereate a one-to-one mapping between objects and

the entities we are trying to model.

The behavior of an object is encapsulated in methods.
Methods consist of code that manipulate or return the state of
- an object. Methods are analogous to procedures and functions,
and represent_the external interfac.e to objects. So, in these
systems, attributes and methods (collecﬁedlycalled properties)
completely define the semantics of -objects. |
(2) Object identity. ,
An object has an existence and an identity which is
independent of its value. Identity is that property of an object
which distinguishes each object from all others [KC86]. Once it

has an object-id it can be referenced by it regardless any change.
Objects are chfferent from their 1dent1ty they are all distinct and

they rmght not have an external reference such as key,that
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stands for them.*

The main concept of object identity allows objects to be
shared, and associations among entities can be modeled by

relating the corresponding objects and not external references,

- such as user-defined attributes. When objects are updated their

modification is reflected in all others objects in which they

appears as components.

(3) Class
' Objects are cléssiﬁed into different classeé in terms of their
properties. All objects: belonging to the same class are described

by the same set of attributes and methods. Objects are said to be

1nstances of their classes. Classes are also used for object.' .

creatlon and for determmatmn whether a request to apply a

particular method to particular objects is Iegal.
In object-oriented systems, classes provide a natural basis
for modularizafion becausé they are commonly used to model

entities in the application domain.

An example of a class definition is given in table 2.2. This
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template defines a class wﬁose name is Card. An instance of class
Card can be used to represent a card in a game program.

Class Card has instance variables named suit,rank,and faceup. A
new instance is created by sending class Céred the creation

message suit:rank:. For example

faCard |

aCard<- Card suit: 'heart' rank:7.

creates a new insténce of Card that represents the seven of
hearts. In the method‘for suit:rank:, the message new creates an
uninitialized instance. The internal message setSuit:setRank:
sets the suit and rank fields and initializes the ﬁew instance to
be "face down". Given an instance of class Card, we can
deternﬁne its' suit,rank,and oﬁentétidn, and change the latter
using the exté:nal’ messages specified in the class definition.
Becéuse we do not want to be ablé to change the suit and rank of
an instance once it has been cre;ated. we do not include a

message for doing this operation in the set of external messages.




class name Card
_superclass Object
instance variable names suit rank faceup
class messages and methods
suit: aString rank: aninteger | aCardl|
aCard<- self new.
aCard setSuit: aString setRank: anlnteger.

instance messages and methods

externat

suit | | t suit.

rank | I t rank.

turnFaceup | | faceUp<- true.
tunl.lFacedown‘"l ! faceUp <- false.
turnOver | | faceUp <- faceUp ﬁot.
isFaceUp | | { faceUp.

' isFacéDown I | + faceUp not.

internal
setSuit_: aString setRank: anlnteger | |

suit <- aString. rank <- anlnteger.. self turnFaceDown.

Table 2.2 Class template for class Card..




(4) Relétionships

There are two important type of relationships:
generalization and aggregation. All relationships existing in
database construct the 2-D hierarchies: generahzatlon hierarchy

and aggregation hierarchy.

The generalization hierarchy permits the inheritancé of
properties between different entltxes in the system. A
generahzatlon hierarchy is a hierarchy of classes in which an
edge between a.pair of classes represents the is_a relationship;
that is, every element in the lower level class is also an element
of the higher level class. For a pair of classes on a géneralization
hierarchy, the higher level class is called a superclass, and the
lower level class is called a subclass The attributes and methods
specified for a class are inherited by its subclasses. Further,
multiple inheritance is_allowéd by having a class be a subclass of
more than one class, thus inheriting the properties of all its

parents.

Aggregétion is a user defined relationship. An edge in the

aggregation_ hierarchy represents the concept of "participate .
In", " an attribute of *, or " a part of". For instance, a certain

relahonship between a person,a hotel,a room,and a date may- be

abstracted as the aggregate object “reservation”. Thus, the name
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‘reservation” may be used to identify the relationshfp, and hide

all underlying semantic.

These two abstraction mechanism: generalization and

‘aggregation permit the user to model and view the data on

many levels, and is consistent with the way people modeling the

real world,

As an example[SMF86], consider how a "computer” might be
represented using aggregation and generalization. A computer is

made up of several functional units (e.g. CPU, Storage, 1/0).

- Thus, a computer is an aggregation of these sub-systems.

Similarly, each sub-system is an aggregation of other units. The

storage system, for instance, might be composed of a data

register, error correctxon logic and a data array. Fig. 2. 1 shows

- the abgregatlon hzerarchy for computer

‘we can also think of the term computer as a generalization
of several types.of machines. For eﬁample, an IBM 4341, a
VAX11/780 and an MV10000 are all computers. Each of these

computers, in tern, may be a generalization for several models

in a family (the IBM4341 family includes the IBM4341-2, the
IBM4341-11 and the IBM4341-12). Fig. 2.2 shows the

generalization hierarchy for computer.
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Computer

; CPU I
n e Memory /O

~Data Reg - ' ECC Data Array

i ) Fig 2.1 Aggregation Hierarchy for Computer

Computer
VAX}l/?BQ_ IBM{1341 MV10000
'IBM4341-11 : IBM4341-2 IIBM4341-12

B Fig 2.2 Generalization Hierarchy for Computer
In summary, In an object-oriented database objects are

organized into classes, which in turn are organized in class
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hierarchies. Hierarchies of classes express the semantics of "is
a", "is instance of", and "has part of' between classes or objects.
Classes are therefore logically organized by these explicitly
stated semantic relationships rather than being a collection of

independent data types.

In conceptual modeling, an object-oriented database differs

from a relétional database is noted below.

(1) Class extensibility

With a relational database, there .is only a single
parameterizable type, Relation. The operations on all relations
are limited to get-field—value and set-field-value. In the
object-orienteci. approach, each object is associated with a class.
User defined types, or classes, are at the same semantic level as

the built-in types. Providing uéer defined data type, make it

' natural to model the complexities and variations that occur in

real data.

(2) Object is a semantic unit
In the relational model, to reflect that two people have the

same set of children requires either a relation representing

named sets .of children, or a rather complicated data

dependency. In the first case, the indirect reference to the set
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is visible to users. In the second case, the set of children cannot
be referenced as a unit. Object-oriented data model provide
object identity and user defined data type ease the modeling

problem.

(3) Semantic Enhancement

Hierarchies of abstract data type express the semantics of
"is a", "is instance of’, and "has part of' between classes or
- objects. The abstract data type are therefore logically organized
by these explicitly stated semantic relationships rather than

being a collection -of independent data types.




Chapt-er 3.

Forming Virtual Classes And Views

The approach to developing user-oriented views of abstract
objects as presented in this Chapter is centered around the
notion of virtual class. A virtual class is the window. through
which a user sees a set of abstract object existing in the
conceptual database. The virtual classes of a particular user
group is strﬁcture_d by the two abstraction mechanism:
generalization and aggregation to form a semantic virtual
schema. This semantic virtual schema is the user view of the

conceptual database.

3.1 Definitions

[definition 1] A virtual class is a class, but no instance that
populates this class. A mapping is available from this class into
other classes to extract the properties. in other words actual

class are <property,instances> pairs, virtual class are

<property,mapping> pairs.




: [deﬁnitioﬁ 2] A virtual schema is defined as a schema .in which
one or more classes are virtual classes [TYI88]. We ‘consider
every valid virtual schema should satisfy the is-a condition in
generalization plane and the part-of condition in aggregation

plane.

[definition 3] Actual objects are real-world inrdividuals. The
. concept of derived object which.is the different view of an
object, however provides a second way to see an actual object. A
derived object still has object identity and attributes but both are
extracted. Cleariy' speaking, an actual object and its
corresponding derived objects denote the same 'real-world

individual but hold different attributes.

[definition 4] A virtual obj'ect is defined as a new object, which
is created by join or;cartisian_product operator. Intuitively,
virtual objecfs are dependent objects. We can denote it by the
system_generate surrogate or just the set of identities involved.

3.2 Operator Approach

In our work,we use "operator” approach to derive virtual -
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class an‘d virtual schema._'This approach is the same as using
relational algebfa to derive user view in rélational database
systems, but the "operator" presented here keeps more
semantic_oriented théﬁ the relational operator does. It is mainly
because the based data model has semantic enhancement. The
spirit behind defining "operator” is to expose the'tx_vo Easic
semantic concepts in object-oriented data models, i.e. object

identity and abstraction hierarchy. -
3.3 Taxonomy of Operators

O‘p‘eratotg are defined by carefully exposing the
relationships among the basic components of the
obje_ct-oriented. data model. The basic components include 4
relementls, 'namely -o-b;jects. object identities, classes, .and
relationslﬁps. The functionaiity of operators include that restrict
‘inst'ancJ:es of a class, change the structure of two Hierarchics,
cbnstruct the is_a and part_of relationships betweeh classes,
change attributes into'a class, move class referenc.es along the
' generalizétionétmcture, and do subset or reorder the attributes
of a class. The user view is constructed by issuing a éequencé of

operators over the cohceptual schema. These operators not only
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are used as an interface to the system but also serve as a
specification of derivate views and will shield much tedious

programming efforts in deriving views from a database.

Since "operator” can be combined to create higher level

operators, we discuss only basic operators. Ignoring relation join

-.and cartisian_product operators, there are four types of basic’

operators.

(A). extension operators which create a virtual class by

| extracting instances from actual or virtual classes.

(B). generalization hierarchy operators which create sub/super
mrtual c:lass by exposmg the is- a relatmnship imphed or

declared in the conceptual schema

(C). aggregation hierarchy operators which' scope the attributes
a virtual class has.

(D). reference operators which specify where the attributes or

participants of a class come from.
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In restructuring a ‘datz;base schema, it is better fo divide the
database, from the beginning, into two separate domains:
database extension domain and database intension domain. In
the fofmer, problems appear to care the database itself. In the
specification, it becomes to find ways to restrict or.select
insténées from specific classes. Operators in (A} and (D) are
dedicated to this kind of problems; In the latter, problems
appear to-change the definition of the schema, or modify the
structure of the abstraction hierarchy. In the specification, it
becomes to find ways to reorder or hide the attributes of objects,
or change the structure of abstraction hierarchies. Operators in
(B) and (C) are addressed to these problems. Sinc¢ the data
schema is changed after restructuring the intension domain of a
databaée. the variation of extension domain cannot be forbidden

after we mbdify the data schema.

We describe notations used in the following sections as

~ follows:

attribute(aClass): all attributes of aClass.

all_inst(aClass): all instances of aClass.




In the following examples we assume a database (Fig1}

which contains four classes: person,student,advisor and
assistant. In that, person.is a generalization of student and
advisor. Assistant,student and advisor form a multiple
inheritance hierarchy. The instances and the corresponding

attributes of each class are listed as follows:

attribute(person);-pid.age,sex,facﬁlty.-
(*all attributes of the person class®).
all_inst(person)=01--07.

(* all instances that belong to the person class*). |
atmbute(gtudenfhpid.age,seﬁc,faculty.s#,sname,degree._ | i
all_inst(student)=03--05. ,
attﬁbute(advispr)=pid,age.se}_c.faculty,a#.aname. i
ail_inst[advi;or)=05-—07.
attribute(assistani];

pid,age,sex.faculty,s#,sname,degree,a#,aname.

all_inst(assistant)=05.




pid : age
01 O— person }— sex

o2 Q faculty
) | /\
: . —— a#

sname —— student advisor
—— aname |
degree
Jd J o
03 04 assistant 06 Q7
|

osd

Fig 1 A Conceptual Database

3.3.1 Extension Operators

Th‘ese"operators apply on the instance domain of an
actual/w.rtual class. They are the familiar set operators, and are

used ﬁndmg the extension domain of virtual classes.

(a) C select: all_inst' ‘ i
(*select all instances bélong to the class C*).
This operation returns an unnamed virtual class, The Ef

instances and the corresponding attributes of the virtual class

(if named V) are listed as follows:
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attribute (V): the same‘as C.
all_inst(V): the same as C.
Example:
person select: all_inst.
(*return a class whose instances are the same as the

instances in the person class*).

(b) C select: direct_inst -

(*select all instances belong to C but does not belong to
subclasses of C*). -

This operation returns an unnamed virtual class, The
instances and the corresponding attributes of the virtual class
(if named V] are listed as follows:

attribute(V): the same as C.

all_inst(V): all_inst(C) - all_inst(subclasses of C)..

Example 1:
person select: direct_inst.
- (*return a virtual class whose instances are the same as the

instances in the person class *.
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Example 2:

student select: direct_inst.

i
|
|
|
|
|

(* return a class whose instances are students and not

e

assistants *).

TR AR

{c} C select: aQualification

(*return a subcollection each of whose elements satisfies a

Quualification*). ——-
Example 1: | |
person select: {:x! x age < 30].

(*return young person®*

Example 2:
student select: [x! x not in assistant].
(* return a class _Whoé;e instances are students but not ' |
assistants *). ' -:I'
"i‘his operation returns an unnamed virtual class, The
, instances and the corresponding attributes of the virtual class

(if named V) are listed as follows:

attribute(V): the same as student.

all_inst(V): all_inst(student) - all_inst(assistant)._




Example 3: (*employee is a class*).

student select: [:x! x in employee].

(* return a class whose instances have two roles: student
and employee *). |

" This operation returns an unnamed virtual class, The

instances and the corresponding attributes of the virtual class
(if named V) are listed as follows:

attribute(V): the same as student.

all_inst{V): intersect( all_inst(student), all_inst(employee}).

Note that operator (c) (select: aQualification) is more
general than operator (a) and (b). Note also set operators such
like intersect, difference are simulated individually by "in" and
"not in" in the expression: (select: aQualification) in the above

examples. -

{d) rename Ato B

(* change the name of class A*)

3.3.2 Generalization Hierarchy Operators
Since generalization hierarchy is a fundamental conceptual

structure in object-oriented data models. It is important to
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identify basic operations' for restructuring a éeneralization
schema such that the same information contained in the
generalization schema can be represented differently in the
same data model. Hence, redundance is inhibited and data

integrity is preserved.

Another important reason of providing generalization view is
that abstraction is supported. Thus objects in a virtual
generalization schema can have different levels of p.erspective,
that is, objects can be perceived by a usér at different levels of
detail in different time, or may be looked at by a user from

different éngles, in different situations.

Now, we begin the description of the individual
restructuring operator, then provide examples to show the

construction of virtual schemata from Figl.

(a) partition aClass into (classes) {with discard} as select:
Qualifications.
(*according to Qualifications partition aClass*). _
This operatiﬁn creates virtual classes:(classes] by

partitioning aClass according to some attributes. The optional
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expression "with discard" means to delete Qualification

attributes.

Example 1:

partition person into (Young,Old) as select: [x:| x age<30,x

age>=30].

This operation returns two virtual classes: Young and Old,

- The instances and the corresponding attributes of each virtual

class are listed as follows:
| attribute{Young)_--pid,age.séx.faculty,rank.

(*rank is a catalog attribute which value is some name of
subclasses. In this example rank value may be “student",
"advisor”, or both depending on the class to which the instance
belongs.*).

. a.ll__inst(Young)=brogng person}.
attribute{Old)=pid,age,sex,faculty,rank.
.all_inst[Ol'd)=[old person}

Example 2:
partition Young into (Youngman,Youngfemale) with discard
as select: [x:] x sex=man, x sex=female].

resulted virtual classes descriptions:
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attribute(Youngman)=pid,age,faculty,rank.

(* the qualification attribute: sex is dis-carded*).l
all_inst(Youngman)={young man}.
attribute(Youngfemale)=pid,age,faculty,rank.
all_inst(Yoﬁngfemale):L}roung female}.

(b) Gen (subclasses) into Superclass

(*create a generalization schema*)

This operaﬁon creates a virtual class: Superclass, which is a
generalization of subclasses ‘and declares is_a relatiohships
between Superclass- and subclasses. The instances arnd the
corresponding attributes of Superclass ére listed as foliows:

attribﬁtg(SLperéiass)_: intersect attribute(subclasses).

all_inst( Supérclass_ ): union all_inst(subc{asses).
Example: | |
Gen_, (student,advisor) into person.

Result: as Fig. 1.

(¢} Object-join {superclasses) into Subclass
(*setup a multiple inheritance hierarchy*)
This operation creates a virtual class: Subclass which is a

specialization of superclasses, and declares is_a relationships
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among superclasses and- Subclass. The instances and the
corresponding attributes of Subclass are listed as follows:
attribute{Subclass): union attribute{superclasses).

all_inst(Subclass): intersect all_inst{superclasses).

Example:
VObject-join fstudent,advisor) into assistant,
Result: as Fig.1.
Resulted assistant desériptions:
attribute(assistant}):
pid.age.sex,facult;‘y,s#,sname.degree,a#.-aname.

all_inst(assistant):

{instances | those are both student and advisor].

(d} merge (classes) into C

(*merge (classes) which has the same attributeé .
Resulted virtual élass C descriptions:

attribute(C): the same as (classes).

all_inst(C): union all_inst(classes).

W
]
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(e} subtypingAtoB
(* B is the super class of A%

Precondition: every instance of A must also exist in B.

(f) specialize Superclass into {subclasses) {withdiscard} as
select: Qualifications.

(*according to qualifications create a generalization
schema®). |

Note that specialize is a composite operator, which can be

realized by partition and Gen operator.

In Fig.li person is divided into student, advisor, and
assista.ﬁt. If we are interested in the faculty that every person
participates in. We can partition person (according to the
attribute "faculty") into CSfaculty,EEfaculty,and Linquistic as
shown .in example 1. -

Exainple' 1:

(1}. paftition person into (CSfaculty,EEfaculfy,Linquistic) with
discard as select: [x:| x faculty=CS, x faculty=EE,

X faculty:LinQuistic], |

(2). Gen (CSfaculty,EEfaculty) into Engineer,

{3). Gen (Engineer,Lihquistic) into person. .
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apply (1),(2),(3) we get a geheralization virtual schema (Fig. 2)

from Fig. 1

1Y —

person

age
- rank

Engineer

Linquistic

| Fig. 2'A Generalization View of the Conceptual Database

If we are interested in the age of a person and the sex of a -

person. We can partifion person (according to the attributes

"sex" and "age") into Young, Old, Youngman, and Youngfemale as

shown in example 2:

Example 2:

(1). partition person into (Young,Old) as select: [x:] x age<30, x

age>=30],
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(2). specialize Young into (Yoﬁngman.Youngfemale}-\_mth discard
as select: [x:] x sex=man, x sex=fernale].

(3). Gen (Young,Old) into person.

apply (1).(2),(3) we get another generalization virtual schema

(Fig. 3) from Fig. 1.

age
pid—— person (—— rank

/\ faculty

; \ _ - Young Old —— sex
Youngman \_’oungfemale | “

. Fig. 3, Another Generalization View of the Conceptual Database |

From example 1&2 we acquire different virtual schemas
from the.same source of conceptual schema by applying a

sequence of operaiors on Figl.

] In summary, Partition and specialize operators are needed
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 when. users want to comsider objects which heve certain
| properties as a whole new class. For example, the person class
can be divided by marriage_status, by age, by sex,or by
profession depending on the user's intention. Note that they are
composite operators and may be simulated by extension
operators and Gen operators.

It is useful to discover thoroughly the power of iject—jom
in findiﬁg the reIationship among objects. We know entitiee in
real world may have different roles in different situations. For
example: a Person rriay be an Employee in broad day and is a
Student‘at night. In the database, we can model this situation
easily by the declaration of some objects in Em;ﬁloyee and
Student having the same object identities. The Object-jom
operator. eases the way to relate these same 1dent1ty objects
Moreover if the conceptual model does not support the mu1t1p1e
inheritance funetlon, this operator will serve the work, that is,
we can use the object_join operator to construct the desired

multiple inheritance schema in the virtual database.
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3.3.3 Aggregation Hiera.rch'y Operators

It is well known that the real world can be carefully
modeled in terms of two types of primitives: entities and
relations. Relations mentioned in this section has the same
meaning as the relationships in Entity-Relationship models.
Entities correspond to real-world objécts which can be regarded
as individual for modeling purpose. Relations are a formalization
of relevant real-world relationships in which the entities
participate. Aggregation abstraction allows a relationship
between named objects to be thought as a higher-level named
object, that Is, relation is a higher-level object that has objects as

its attributes. We distinguish two kinds of aggregation: attribute
| aggregation and relation aggregation. Attribute aggregation is the
activity -.to associate attributes in a class template. Relation
aggfegation is the activity to expose relationships among objects.

The forme:_proﬁdes the ability to model composite objeéts, and
| the latter represents the i'elationship among objects as an
abstract object. For conveniénce sake, the participants of an

abstract object may be i‘égarded as the attributes of that abstract
object. ' '
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The remainder section is the description of the individual
aggregation hierarchy operator and examples to show the

construction of aggregation virtual schemata.

(a). Typing S(aj...am) into C.
(* apply attribute aggregation to form C class, then remove

aj...am from S, and then construct a relationship between S and

C *.

This operation creates a virtual class C by grouping some

attributes:{aj...apm) of S, (assume. in the beginningl

attribute(S)=aj...am am+1...) and declares the "part_of"

relationship between S and C. The instances and the

corresponding attributes of the virtual class are listed as follows:
attributé(C): ay...ap.
-~ all_inst(C):

{instances | those derived objects that come from S class ).
attribute( Sj: C,am+1.... |

(*C is an attribute which value is some instance of the Class C*).

all_inst(S): no-change.
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Example:

thesis(s#,sname,degree,a#,aname,title) is a class.
Apply
. (1) typing thesis(s#,sname,degree) into student,

(2) typing thesis(a#,aname) into advisor.

on class thesis, we get an aggregation virtual schema as follows: ‘

student advisor
1 ]
- 8# sname degrge | a# aname

Fig, 4 An Aggregaﬁon Schema

(b). expand S(A)
(*transform the relationship between S and A into an
attribute aggregation*) |

This operation modifies the S class into a new S by

replacing the object identities of A with the attributes of A, and

‘the relationship among'S and C are also deleted. The instances
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and the corresponding attribgtes of the resulted S are listed as

follows: |
attribute{new S): (attribute(old S}-A ) union attribute(A).
all_inst(new S): the same as {old S}.

Example:

apply

(1) expand thesis(studerit)

(2) expand thesis{advisor)

on Fig4.

we get the initial class: thesis( s#,sname,degree,a#,aname,title ),

Since there are attribute— aggregation and relation
aggregation involved in the typing operator. Two different usages
appear when we only care partial functionality of a typing
operator. First, consider only attribute aggregation which has
the fm;ctionality of formihg attributes into a virtual class. Hence,
we can use it to hide the unnecessary attributes of a class.
Second consider only relation aggregation which constructs a
.relationsﬁip among clésses. We can use it to 'introduce a new
relationship that is not reéorded in the original schema. For
example, attribute(student)=s#, sname, course, teacher, grade.

This statement says that class student has 5 attributes:
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s#,sname,course,teacher,and grade. If we issue casel and case2
as follows to the student claés.v It will create two virtual classes:
enrollment and course_taken in that some undesired attributeg

of student are hidden. . .

case 1. typing student(sname, course,grade) into enrollment,
case 2. typing student{sname,course) into course_taken.
case 3. rename student to record,

typing record(s#,sname) into students.

In case 3. a virtual class Students is created by grouping
attributes: s# and sname as a class. More of this, g relationship
between students and attributes of record is added. The fiﬁal
schema of case 3 states that record is a class, which associates

students with 3 attributes: course,teacher, and grade.

Since relationships are abstract objeéts, the above
mentioned operators can apply on them. In the paper of "Object
Integration in Logical Database Design-“ [ENSéL] the author
| provide a figure that shows a few relationship transformations in
an extended E-R model. In Fig. 5 we do the same

transformations by operators defined in this thesis, and show
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how such restructure equivalent views may arise.

In Fig. 5, a uni-direction edge between two schemata
represents a kind of transformation. For each edge, a sequence
of operators which does the task of transformati(;n is presented
aside. As-for label [1} marked in Fig.5 the presented operator
' .sequence- changes the attribute "a" of class R into é virtual class.
As for label [2], splifting a ternary relationships to two binary
relationships is done. As for label [3] the presentedl operators‘
will merge the “splitted schema to the original tenary
relationships. In label [4] hiding a certain attribute is done. In
label [5] the relationship is absorted. As for the last labell6] is-a

relationship is represented by aggregation relationship. -
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rename Rto S
typing S(A,B) into R

- /@\ (* delete R(a)*) . /q
a '

[4] -
A B A B
expand R(A) |
’?‘“?me R to. S [5] expand R(B) |
§ [1] | typing S(a) into R | | rename R to AB .
i | $ | | a8
A B
R
F : — A
oo s imocr [ 4 Cemosi O1G2 Gt
| typing S(C1(R),B) into C2 expand C2(R B) | _' 1 B N ,}
:|! 4 : : ]Object_join (C1,G2 ) into S (att(A)=attribute(A)" !
: 2 3]typing S(att{A)) into A | s
(2] tgging S((att((R)))) o g [61] R < B selectall inst ‘
; typing R(att(A)) into A"

yping S(att(B)) into B typing R(others) into B'

LR i

A | R B I~ | |®B

T O R S R T R

E Fig. 5 Relationship Transformation’ l“]

3 25 | g




3.3.4' Reference Operators'

In generalization hierarchy an object may have many levels
of abstraction, so objects will hold different number of attributes
when reference from the different abstraction level of the

generalization plane. This motivates us to discover operators to

easy the task of usmg an object up/down the generalization

plane. In the followmg description, changing the scope of
reference means changing the reference of objects on different
levels of abstraction, and this will affect the number of attributes
of an object's own when we display it.

{a). dot operator: "."

(*denote the aggregation ‘componenf-: which may be an

~object or a whole class depending on the context*).

Example:

thesis.student denotes the students who are participating in the

thesis.

(b}. super_ref

(*change scope of reference from subclass to superclass*j.
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{c). sub_ref
(*change scope of reference from superclass to subclass and

restrict all_inst of superclass to subclass*).

Example: In Fig.4 classes: thesis, student, advisor form an
aggregation hierarchy. If we want to create a virtual schema in
which .virtual classes: phd_thesis, phd_student, phd_advisor
form an aggregation hierarchy (Fig.6). We can apply operaﬁons
. (1}--(6) listed below on Figl &Fig4.

(1). phd__studeﬁt' <- student select:[:x| x degree="phd"]

(2). subtyping phd_student to student

(3). phd_thesis'<- thesis  select:[:x| x.student sub_ref
phd_étudent] | |
{4). phd_advisor <- phd_thesis'.advisor select:all_inst

(5). subtyping phd_advisor toradvisor |

(6]: phd_thesis <- phd_thesis' select::x| x.advisor éub_l_-ef

phd_advisor]




pid ' age

person |—— sex
/ \ faculty
student advisor
sname s#degree .{ a# aname

¥*

phd_student *iphd_advisor

Fig. 6 A 2-D Schema

In the next example we show the effect of using sub/ super
reference when expanding a composite object. Expand operator
will be used if all the participant's attributes is required when
. we display the object. Since objects in an generalization

hierarchy have different levels of view. Change the reference

3- 28




class of a participant/ corriponent object to its sub/super class
will change the number of attributes being expanded.
For example: A schema include 4 class: Part,Price, NT$,USS.
Part(p#,price) is a class has .attributes: p#.price.
price is a composite object whose class is Price.
- Price has attributes: unit,cost.
cost is an attribute whose class is Cost.
Cost has two subtypes: NT$ and USS.
nt$ and us$ are the individual attribute of NT$ and US$.

case 1. (a) Part_nt$_charge <- Part select: [:x| x price.cost
sub_ref NT$I. |
(b) expand part_nt$_charge(price).
(* show part in NT$*).
case 2. (_a) Paft_us$_charge <- Part select: [:x| x price.cost
N sub_ref US$]. | |
(b} expand part_us$_charge(price).
{(* show part in US$*).
In user's perspective, casel displays Part as a class has
attﬁbutes:(p#,unit,ﬁt@, but in case2 it shows Part as a class has

attributes:(p#,unit,us$).




Chapter 4. Mapping of views

In this Chapter we provide methods to translate user's

query on the virtual database into query operations on the

‘conceptual database. The query translator first constructs the

derivation of virtual schema as a query graph,-then query on the

virtual database will impose on this graph. ' o

4.1 Query Graph and Translation Method
We representha‘class and the domains of all its attributes

involved in a query in a form of a directed graph, which we will

call a query graph. Each node on a query graph represents a

‘class-set, and an edge from a node A to a node B means that the

class-set B is derived from the class-set A. For each edge in a
query graph there is anrope-rator adhered with, which we call a
derivation operator. An example of a query using the Partition

operator is in the followiﬁg:

(partition Person into ( Yoﬁng.Olcl) as select: [x: | x age < 30, x
age >= 30]) -

The query graph corresponding to this derivation will have
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only two nodes, the class Person as the leaf, and the class-set
(Young,Old) as the root. It states that the virtual class-set

(Young,Old) is derived from the class Person, and the derivation

operator is (partition Person into { Young,Old) as select: [x: | x .

age < 30, x age >= 30]).

Since for each edge in a query graph there is a derivation
operator adhered with. During query processing, each edge in
the query graph is associated.with an individual derivation
procedure. The individual derivation procedure is obtained by
interpreting the combination of user's query and the derivation
operator on the query graph. The resulted query program is
synthesized by concatenating the associated derivation
procedures in the query graph. Two examples of retrieval

queries using select_all_inst are illustrated .in the followﬁig:

Exain;ile 1: (Young select:all_inst).

This 'sta'.tement retrieves all the inétances belonging to Young (
see the above example to get the derivation operator of the
virtual class Young).- Obviously, the derivation procedure between
(Person,Young) for this select_all_inst query is (select:[x:] x é.ge

<30]). The result of this query is the same as doing the
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operation: (Person select:[x:| x age < 30] select:all_inst). -

Example 2: (phd_thesis select:all_inst).
This statement retrieves all the instances of the virtual class: |

phd_thesis in Fig6.

Fig. 7 a Query Graph

The query graph of this virtual schema is shown in Fig.7. The

individual derivation operator for each edge(see example about

w . Fig.6) are listed, for convenience, as follows:
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(1). phd_student <- student select:[:x| x degree="PHD’]

(2). subtyping phd_student to student |

(3}). phd_thesis' <- thesis select:[:x| x.student sub_ref
phd_student]

(4). phd_advisor <- phd_thesis'.advisor select:all_inst

(5). subtyping phd_advisor to advisor

(6). phd_thes-i.s <- ‘phd_thesis' select:[:x! x.advisor sub_i‘ef

| phd_advisor]

The corresponding derivation procedures are listed ioelow:
1. select:[:x] x ciegree:'PHD']

see below | ‘
select:[:x|x.student sub_ref phd_student] _ : \
select:all_inst - :

see below

2B

“select:[:x| x.advisor sub_ref phd_advisor]

Note that there are not any derivation procedures associated
to operators (2) and (5), for they are only declaration operators
and would be transforme‘d into internal schema constraints.

Results of this example is the same as doing the operation:
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thesis select:[:x| x.stud.ent .sub_ref (student select:[:x! x
degree='PHD'] )] select:[:xi x.advisor sub_ref

{ .

(thesis select:[:x! x.student sub_ref (student select:[:x| x
degree="PHD'}}]

).advisor select:all_inst

}1]

4.2 Translation of Retrieval Queries

We can distinguish retrieval queries into three basic queries:
case 1. select:all_inst.
éase 2. select:[:x|x attribute op a_value].

case 3. display:[:x| x attribute].

In casel, all the instances (including attributes) belonging to the .

receiver class is returned. In case 2, the operation restricts the
set of ol’ajects to be returned by some qualified attributeé. In case
3. the operation displays the specified attribute values from the

receiver class.

A complex retrieval query may be regarded as the
combination of these basic retrieval queries. For example, a

‘query to list the names.of students who received the grade A in
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u f - the course CS100 may be regarded as the combination of case 2

and case3 queries. The combined statement is shown as follows:
(enrollnient select:[:x|x course="CS100" and x grade="A"]
. display:[:x! x ‘

student namel]). : , — - S _ : ‘

According to the above query mapping method.. when we

l apply retrieval queries on virtual classes which was-defined by a
[ sequence of operators as presented in Chapter 3, then for each 1
E combination of derivation operator and retrieval query there is a | “
E- derivation procedure needed to be developed. Since the

formation of derivation procedures are obviously in most cases.

i {4
l - We only descnbe the formatlon of derivation procedures on Gen .
- and Object- join in the followmg S T SRR

(1). Gen (AB) into c.

case 1. C select:éll_inst. :
the derivation procedure is:
|} Cl union C2. (* union on object_identity *).

C1,C2 is defined as follo_ws:
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typingV(A select:all_inst)(att(C)) into Cl.

typing(B select:all_inst}(att(C)) into C2.

Example: assume that person is the Gen of student and advisor.
The answer to show all_inst{person) is the union of the answer

to show all_inst(student) and all_inst{advisor).

case 2. C select:[:x1x attribute op a_value].
the derivation procedure is:

C1 union C2. (* union on object_identity *).
C1,C2 is defined as follows:

typing (A select:[:x|x attribute op a_value])(att(C)) into C1.

typing (B select:[:xIx attribute op a_value])(att(C)} into C2.

Example: person selecf:ix| x age = 30]. This statement will
select someone whose age is 30 from person. The answer is

obtained by union the qualified person from student and advisor.

case 3. C display:[:x! x attribute].

the derivation procedure is:

(A display:[:xlvx attribute]) union (B display:[:x! x attribute]).

(* union on object_identity *).




T S e

(2) Object-join {A,B} into C

case 1. C select:all_inst.

the derivation proceciure is:

(A select:all_inst) object_join (B select:all_inst).

(*object-join means first to perform intersect on

object_identity, then perform union on attributes*).

Example: assume that assistént is the subtype of student and
advisor. The ansu;er' of all assistants will come from instances
who are both student and advisor.

case 2. C select:[:x|x attribute op a_value].

the derivation procedure is:

(72 seiect:[:ﬁclx attribute op a_value]) object-join (B select:[:x]x

- attribute op a_value]). -

case 3. C display:[:x!| x attribute].

the derivation procedure is:

(A display:[:x| x attribute]) object-join (B display:[:x! x attribute]).




4.3 Discussion

We have talked retrieval queries in the above section. In
general, retrieval queries are easier to be treated than insert or

delete queries. Because ambiguities may occur in the translation

‘of delete or insert queries. For example: Gen(student,advisor)

into person. This statement creates a virtual class: person by

- generalizing student and advisor. If we insert an instance into

person ,then some ambiguity occurs. We do not know where to
insert the instance. The place may be student, advisor or both.

An ambiguity also appears in the delete operation, If the instance

‘to be deleted has both role of student and advisor. The ambiguity

is that we do not know which one to be deleted.

Note that the mapping method described in section 4.1 also
serves for delete and insert queries. -Now, We giﬁe a brief
discussion on the updating problems of virtual database. From
the definition of basic operators we know an one to one mapping
between a derived object and its corresponding real object is
well preserved(except Gen). Due to this fact It is no doubt to
update (including retrieve,insert,and delete) a virtual database

created by the four kinds of basic operators except Gen as

4-9




mentioned above. The main reason is that each object in the
’Virtual class,\a}hich was defined by basic operators, is a derived
object. In- the following examples we show some update
operations on this kind of virtual classes. Examplel:
Object _join(student,advisor] into assistant. This statement
creates a virtual class: assistant, and spemﬁes there is a multiple
mhentance hierarchy among assxstant student and advisor. If we
insert an instance mto assistant, it would be translated to insert

the instance into student and advisor. Example 2: Young <--

'person select:[x:| x age <30]. This statement creates a v1rtua_1

class: Young by placing restriction on the instances of person. If
we insert an instance whose age larger than thirty into Young, it

would be rejected by the system because instances in Young

- must have age under 30.

For those so called virtual objects, the associated updating
problém is the same as in the relational model, but something is
preferred in object-oriented approach. Recall that an object is a
well defined ADT(abstract data type). We can use ADT approach
[RS79] to define the set of allowed updates and thelr translation
operatlons on virtual objects so that update is no longer

anomalous and ambiguity is avoided.
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Chapter 5. Conclusion

In this thesis operators are defined by carefully exposing the

relationships among the basic components of an object-oriented I
data model. The functionalities of operators include restrict ‘
instances of a class, change the structure of two hierarchies, 3
,construct the is_a and part_of relationships betweén classes, 7
chaﬁge attributes into é class, move class references along the !

generalization structure, and do subset or reorder the attributes

of a class. The user view is constructed by issue a sequence of

operators over the conceptual schema. These operators not only - r:

are used as an interface to the system but also serve as a : ‘
~ specification of derivate views and will shield much teadious |

programming efforts in deriving views from a database.

Constructing the semantic virtual database (user view) as a
2-D hiérarchy strucfure, we obtain several advantages described
as follows: First, in user's perspective a semantic virtual database
has the same architecture as the underlying conceptual database,
so the same query language will works. Second, in .a semantic |

virtual database, the basic construct: virtual class provides a

second way to see usei'-specific objects without costly data i
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redundancies. Hence, updaﬁng a database is simplified and data
integrity can be enhanced. And third, the 2-D hierarchy of
virtual schemata structures user's data with levels of abstraction.

This gives user a wholly concise view of a virtual database.

. In. previous chapters, we do not mention any inheritance of
methods between view objects and real objects, for there are not
a straight inheritance rule if it is not obvious, and occasionally
the inherited operations are not well suited for the new view
objects. If inherited methods are required, It is no doubt we can
cover it using the abstract data type approach by declaring
methods to be inherited or even including .the newly

encapsuiated operations in the definition of virtual classes.

In summary,'we conclude the works in our research as
follows: (a.) Use_r views is defined as a semémtic virtual schema, |
which no data populate, but instead mappings are available from
the'virtual schema into the conceptual schema. The mapping of

: the virtual database into the conceptual database is transparent ]

R

to user, so the usage of user views is the same as it being in the I
conceptual schema. The main reason is that the structure of the

virtual schema is designed as close as the structure of the
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conceptual data schema. (b.) The operator, which \;;re define to
construct a virtual schema, exposes the semantics between data
explicitly at the schema level. This will ease the control and
management of user's favorite data. The operator in this respect
serves as a low level definition langﬁége in the construction of
user's view. Like the relational. algebra,‘- the operator will be the
central components when develop or process a high level query
language such like OSQL in an object-oriénte.d database system.
(Object SQL was deveioped in the Iris project.) (c.) Query

translation and update method is discussed.

Further researches are needed for coping with the following

problems:

1. Oberators defined in this thesis have it's syntax in low level. A
high le\;el syntax is needed for supporting declarative query
language like Object SQL. Nevertheless, the data model of Object
SQL based upon is on functional approach. Research is required
when we want to design the high level database language for the

model we adopt.

2. As mentioned in the Introduction, it is another goal of this
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thesis to find the basic operations for the underlying'data model.
Operators defined in this thesis are all ceﬁtral around the virtual
class concept. Changing the ‘target from classes to objects that
operators apply on, we can find some useful operators that help
to manipulate objects in the database. |

for example:
a Reference a class to its sub/super type will introduce the
issue of up/down operators, which change the abstraction level

of an object to its éorresponding sub/super object.

b. Typing operator will be useful in hiding the undesired

attributes of a class. it introduces the issue of scope operator -

.,which only binds the interested attributes to an obj ect.

c. Object_join operator helps to define the unite operator,

which merges all attributes of an object who has many types.

However, more operations to manipulate objects, or

. operations to act on object identities, and operations to define

integrity constraints are still needed.
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