TR--90--001

REPRESENTING LARGE CELL MAPS

i\lltll@tﬁﬂ@ﬂﬁijﬂtl\||\|\\\u"ummumunununmumm s

13

REPRESENTING LARGE CELL MAPS

Y. §. Kuo

Institute of Information Science, Academia Sinica

Address for Correspondence:
Dr. Y. S. Kuo
Institute of Information Science
Academia Sinica
Nankang, Taipei, Taiwan
R.0O.C.

- Tel: 886-2-7822002

Fax: 886-2-7824814

Abstract

Cell maps are widely used in layout algorithms to represent objects in
the plane. They are traditionally implemented as 2-dimensional (2-dim)
arrays, thus are also referred to as cell arrays. The cell map is usually
too large to be stored entirely in the main memory, and must be swapped
between the main memory and the hard disks by the host compﬁter’s pag-
ing mechanism. Routing algorithms based on the 2-dim array cell map
can generate a large number of page faults and result in poor performance
when the size of the cell map exceeds the capacity of the main memeory. In
this paper, we propose a new data structure for the cell map in order to
eliminate the excess of page faults present in the traditional 2-dim array
structure. Experiments have shown that this new representation can effec-
tively eliminate 90% of the page faults. Thus the performance of routing

élgorithms can be greatly improved.

1. Introduction

Computer aided design (CAD) of VLSI circuits is characterized by the
large amount of design data it manipulates. The amount of data is so large
that they can not be stored entirely in the maiﬁ memory. Current com-
puter systems support a paging mechanism by which the design data can
be swapped transparently bétween the main memory and the secondary
storage such as the hard disks. These input Joutput operations due to page
swapping, known as page faults [5], may contribute as great overhead to
the running time of a CAD system. In particular, for low-cost_wc‘)rksta.tions
equipped with limited memories and low-performance hard disks, this over-

head could become prohibitive.

In the layout of VLSI and printed circuit boards (PCB), geometric
objects in the plane must be represented as interng.l structures in 2 com-
puter. A natural and conventional way of representing these 2-dimensional
(2-dim) geometric data i; by using a large 2-dim array such as the cell
map or cell array of a maze router [3). This 2-dim array structure has the
advantage of simplicity and ease of neighbor lookups. However, the 2-dim
arfay‘is usually too large to fit entirely in the main memory, and thus must
be subject to page .fa.ults. In fact, even if the main memory is large enough
to accommodate the entire array, the array still have to compete for the

memory with other data structures in an integrated CAD system.

Studies in automatic layout design and verification have focused mainly

on designing data structures and algorithms that are efficient in terms of
the CPU time. The underlying assumption has always been that the data
structures are stored entirely '-in the main memory or the I/0O time due to
page faults is negligible. This i# not realistic, however. In practice, the
I/O time due to page faults is usually comparable to the consumed CPU
time. For a system with limited memory, the I/O time may even far exceed
the CPU time. Thus, in the current work, we aim fo minimize the page
faults tha.t layout algorithms generate in order to reduce the I/0 fime In
particular, we address the problem of how to structure a large cell map so

that the number of page fa.ults genera.ted is minimized.

-This page fault problem has been considered by Dion [2]. He recognized
the severe consequence a large 2-dim a.rray may result in, and proposed a
list structure to avoid the excess of page faults. However, his data structure
mé.kes neighbor lookup efficient in one dimension but not in the other. Also,

his data structure is complicated in comparision with the 2-dim array.

When a program is executed, the number of page faults it generates is
mainly determined by its locality of (memory) reference [5]. Layout algo-
rithms based on large 2-dim arrays exhibit poor locality of reference since
a.djaf:ent cells in some dimension are far away in memory. In this paper‘, we
will describe a new structure for Ié.rge cell maps with an improved locality
of reference. Experiments have shown that routing algogﬁhms based on the

proposed structure generate much less page faults than those based on the

2-dim array. Thus, using this structure, the_ I/0 time due to page faults
can be reduced dramatically. On the other hand, the new structure still
presérvas those desired properties of the 2-dim array. Neighbor lookups in
both dimensions are so efficient that the CPU time cénsumed by routing
algoriigilms using the new structure also reduces. The proposed structure
is a 1-dim :;era.y. But, the implementation details are largely transparent.
Progra,mmefs, when coding layout programs, can use the cell map as if 1t

were a natural 2-dim structure.

In the next section, we investigate the requirements of this prloblem. A
small set of operations artle identified as necessary and adequate primitives
to support the cell map. In Section 3, the cell map is represented as a 1-dim
array, and the primitives are iﬁlplemented as short macros for simplicity
and efficiency. Two routing algorithms have been coded to test the 1-dim
array structure versus the conventional 2-dim array structure. Test results

of these experiments are reported in Section 4. Finally in the last section,

¥
we make some concluding remarks.

2. The Requirements

" Let us look more closely into the problem. Consider, for instance, a
1024 x 1024 cell map where each cell contains a single word. When this cell
map ié declared as a 2-dim array in a conventional programming language,
the compiler allocates a consecutive piece of memory space for the 2-dim
array in the column—wise.or row-wise order. Fig. 1 shows such a ty_pical
memory allocation. Suppose that each page of the computer consists of
1024 words. Then each column in Fig. 1 occupies exactly one full page.
Two adjacent cells in the samé row are always allocated in two different
pages. Consider a maze router executing the Lee algorithm [3] on this cell
map. On each step, acell is fa.ken from the wavefront, and its 4 neighbors
are scanned. Since the 4 neighbors are located in 3 different pages, the Lee
algorithm references 3 pages“ for each single step. The Lee algorithm thus
démonstrates poor locality of reference on 2-dim arrays for it makes many
page rleferences by iterating the above steps. This has been manifested by

our experimental results to be described in Section 4.

Locality of reference is a term ﬁhich is very hard to quantify. Thus
we propose page reference count as a quantitative indication of locality of
reference. Layout algorithms based on cell maps usually execute within
individual windows. When a la.y'ouf algorithm executes in a rectangular
window, the majority of the cells inside the window are referenced. Given a

representation of the cell map and a rectangular window, we define the page

references as the set of all pages containing some cells inside the window.

‘The page reference count is the number of page references. For example,

for the 2-dim array in Fig. 1, the page reference count for a pXx ¢ window is
p since the window contains p columns each of which accounts for one page.
Given a cell map representation, it is stra.ightforv;é.rd to determine the page
reference cc:;unt. We consider the page reference count generally applicable
to the majority of layout algorithms. The larger the page reference count

is, the more page faults a layout algorithm will generate.

Now let us formulate the requirements for an appropriate representation

of the cell map.

1. The representation must be able to support fast neighbor address
computation. Given a cell’s address in memory, the operations East,
West, South and North determine the memory addresses of the 4
neighbors adjacent to the cell. In the 2-dim array representation,
East(x,y) = (x+1,5), South(x,y) = (z,y — 1), etc. Using these 4 op-
erations, one can easily implement operations Soui‘.heast, Northeast,

etc.,

9. Conversion between the representation and the inherent 2-dim array
representation must be efficient. This is especially important for fast

boundary checks such as = < zq, etc.

3. Using the representation, the page reference count associated with a

rectangular window s_hould be rela,tively‘small.

3. The 1-dim implementation

* Consider a M X N cell map. For the moment, assume that M and N
are powers of 2, say M = 2™ and N =2 We use a 1—di1ﬁ array of size
M x N to represent the 2-dim cell map. Let x and y be the coordinates of
an arbitrary cell in the map. x can be separated into its high-order part
z; and its low-order part =, z = (:Eh,Ig). z; consists of the w low-order
bits of x, and =z, the'remaining m — w bits, where w is a constant fo be
determined 1é.ter. The address z of the cell in the 1-dim array is formed by
concatenating the bit strings zx, ¥ and =, ie.

z= (xf,,y,:cg)..
We use z1(2), y(z) and z;(2) to denote the three parts of z. As an example,
for w = 3, the cell with coordinates x = 41 and y = 73 has its address z =

4731 in the 1-dim array. (All numbers are octal.)

Conversion between the 1-dim representation and the 2-dim represen-
ta.tion’is‘ very efficient si;me this can be done by bit-wise mask and shift
.opera.tions. Given a cell with address z in the 1-dim array, the addresses of
its 4 neighbors can be calculated by the following macros in C language:

§ define North(z) (z + pw)

t define South(z) (z — pw)

4 define Fast(z) ((m(2)! = pw —1)?(2+ 1) : (z +1))
§ define West(z) ({z:(2)! =0)?(z—1): (2 — t))

where pw = 2% andt =N x pw—pw+ 1.

This 1-dim implementation of the cell map is considered to be highly
transparent. Programmers, when coding layout programs, do not have to

know the 1-dim implementation details. They simply use these macros

(make macro calls).

To illustrate the structure of the 1-dim array, let us consider a small
cell map where M = N = 8 and w = 1. Fig. 2 shows the addresses of
all cells in the cell map in this 1-dim representation. For example, the
cell with coordinates £ = 4(= 100;) and y = 3(= 011,) has its address
z = 38(= 100110,). Since a page is formed by a consecutive piece of
memory, a page consistiné of s cells corresponds to a rectangular region in
the cell map with width pw and height ph where ph = s/pw. (Usuallysisa
power of 2.) In Fig. 2, if a page contains 4 cells, then each page corresponds
to a 2 X 2 square region. In general, the cell map can be considered tolbe
partitioned into equal-sized rectangular regions as shown in Fig. 3 where

each region is assbc_ia.ted with a page.

r

Given a p X ¢ window, we c;n estimate the page reference count as
follows: The window must intersect [p/pw](resp.[q/ph]) or [p/pw] + 1
(resp.l'q/ph;I + 1) regions in the x{resp. y) dimension, where [a] is the
smallest integer greater than or equal to a. Thus the page reference count
is a mumber between [p/pw][¢/pk] and ([p/pw] + 1)([¢/ph] +1). Asan
example, consider a cell map with M = N = 1024, and the page size is 1024.

Let w = 5. Then pw = ph = 32. For a window with width and height 200,

the page reference count is no more than 64. This is apparently smaller

than that based on the 2-dim array representation which is 200.

We have made the assumption that M and N are powers of 2. If
this is not true, let r and n be such that (r—1)pw < M < r X pwand
2"“1 < N < 2" The 1-dim array then contains r X pw X 2" cells. Part
of the array is never used. Since the paging mechanism loads pages into
memoﬁ only when they are referenced, only a small fraction of this unused
piece of storage will ever be loaded. The amount of main memory wasted

is thus insignificant.

The value w should be determined according to the width and height
of the window. If the window is square, w should be set so that pw and
ph are as close to each other as possible. In a real CAD system, roufing
algorithms are usually applied to many different windows. Then w should

be a system parameter to be tuned after many test runs.

10

4., Test Results

We have coded two variants of the Lee algorithm in C language in ---

order to test the 1-dim array representation versus the conventional 2-dim

array representation. The major data structure in each algorithm is a
2048 x 2048 cell map. Each cell is a two-byte integer. Thus the cell map
occupies 8 MByte memory space. The cell map vx;as_ implemented as either
a 1-dim array or a 2-dim array. So there are 4 progra.ins in total. These
programs were tested on a popular workstation SUN 3 /60 equipped with 4
MByte of main memory and a 327 MByle ﬁa.rd disk. Since the generation
of page faults and the induced I/O time are greatly affected by the éy;stem’s
work load, each program was run under the UNIX single user mode. In the

following, we describe what these programs do and report their cutcomes.

The first algorithm (coded as two programs) executes the following
repeatedly: Starting from a randomly selected unvisited cell, visit k unvis-
ited cells and mark them visited by the Lee expansion where k is a random
number generated between 3000 and 5000. The algorith.ﬁl terminates when
a given number of cells have been visited. This algorithm mimics layout
prc-agra.ms. that execute certain operations inside a peephole and move the
peephole around. Test résults from the two.programs are summarized in
Table 1. Note that the I/O time can be calculated by

I/0 time = (wall time) — (user time) — (system time).

We have made the following observations: (1) Using the 2-dim array struc-

11

" ture, the consumed I/O time is almost twice the consumed CPU time. (2)

The 1-dim implementation effectively eliminates 90% .of the page faults
preser_n; ih‘théf-vdiiu iiﬁl_)lementa.tion._ (3) Using the 1-dim array structure,
the consumed I/O time is only a small fraction of the consumed CPU time.
(4) Even in terms of the CPU time (user time + system time), the 1-dim
implementation performed slightly better than the 2-dim implementation.
The last point is due to the fact that fetching data in a 1-dim array is more

efficient than in a 2-dim array.

Within 5. specified window, the second algorithm generates a path con-
necting two given cells by using the Lee algorithm. Initially, 30% of the cells
are marked as obstacles randomly. Test results of the two implementation_s
of ti1e algorithm are shown in Table 2. Note the tremendous difference
between the two methods in the wall time and the number of page faults

generated when many cells are visited (The two given cells are far away).

12

5. Concluding Remarks

-_Cell ‘maps have been used extensively in CAD applications such as
various routing algorithms [4] [6], design rule checking [1], etc. As the
dimensions of VLSI circuit elements are getting smaller and smaller, the
cell maps require more memory space to accommodate the fine-grid layout.
The paging traffic thus rises as a crucial overhead to the system’s perfor-
mance. We have presented a 1-dim array fepresenta.tion of the cell map to _
eliminate the excess of page faults present in the traditional 2-dim array
representation. Using this representation, the I/0 time due to page faults

can be reduced dramatically.

-The proposed structure is very general. The majority, if not all, of
layout algorithms based on the 2-dim cell maps can be modified easily
to work with this 1-dim structure. Even though this structure has been
tes;ted only with some Lee-type algorithms, we consider it highly likely to
be effective to other layout -algorithms as well. More experience is still to

be gained.

The performance of layout algorithms using the proposed structure
teﬁds to be less sensitive to the capacity of main memory and the speed of
h;a.rd disks. Thus, the use of this new structure in layout algorithms may
make it fossible to support powerful CAD systems on low-cost workstations

with limited memories and lc;w-performa.nce hard disks.

13

References

1. C. M. Baker and C. Terman, "Tools for verifying integrated circuit -

. designs”, Lamda, vol. 1, No. 3, June 1980.

2. J. Dion, "Fast printed circuit board routing”, Proc. 24th Design
Automation Conf., 1987. |

3. C. Y. Lee, " An algorithm for path connection and its applications”,

IRE Trans. on Electronic Computers, Sept. 1961.

4. T. Ohtsuki (edit), Layout Design and Verification, Elsevier Science
Publishers B.V. (North Holland), 1986.

5. J. Peterson and A. Silberschatz, Operating System Concepts, Addison-
Wesley Publishing Co., 1983.

[=2]

. J. Soukup, ? Circuit layout”, Proc. of the IEEE, Vol. 69, Oct. 1981.

14

K—1 2k —1 | -1
y
2 k+2 (k—1)k+2
1 k+1 (k—1k+1
0 k | (k—1)k
- X
k=1024 .

Fig. 1. Cellmap as 2 — dim array

14 | 15 | 30 31 |48 | 47 | 62 | 63
12113 |28 | 29 | 44 60 - | .61
10|11 |26 27 | 42 53 | 59
g8 |9 |24| 2514 |41 |5 |57
6 | 7 |22 |23 |38 |39 |54 |55
4 | 5 20|21 |3 |37 | 52 | 53
2 | 3 | 18] 19 |34 | 35 | 50 | 5i
o1 | 16|17 |32 | 33| 48

Fig. 2. Addresses in 1 —dim array

pwW
X

- Fig. 3. Rectaing-ular regions associated with pages

-user time (sec) system time (sec)

. I_Ex_. _ _# of visited cells T ~dim 2 -dim 1-~dim 2—dim
4 1,000,000 . 147.86 162.56 4.72 40.52
2 1,200,000 7 192.72 211.10 562 52.38
3 1,600,000 237.38 261.02 8.00 65.54
4 1,900,000 250.80 311.18 8.76 78.00
5 2,200,000 326.82 358.68 12.28 86.30
6 2,500,000 | 370.66 409.34 13.96 102.38
7" 2,800,000 415.80 456.28 16.02 119.24
8 3,100,000 460.70 507.34 18.84 132.16
g 3,400,000 507.26 5589.30 21.04 147.92

Table 1. Test results of algorithm 1.

wall

time

{ hour:min:sec)

of pagefauits

Ex . # of visited cells 4 _ ;i 2 . dim 1-dim 2 —dim
1 1,000,000 00:02:45 00:05:08 372 8,325
2 1,300,000 00:03:34' 00:14:22 487 190,281 ;
3 1,600,000 00:04:33 00:14:17 837 12,934
4 1,900,000 00:05:23 00:16:37 1,081 14,800
5 2,200,000 00:06:25 00:19:45 1,430 17,33§
6 ° 2,500,000 00:07:24 00:22:34 1,819 20,538
7 2,800,000 00:08:20 00:25:37 2,155 23,457
8 3,100,000 00:09:28 00:28:29 2,724 26,2865
9 -3,400,000 00:10:36 00:31:50 3,311 2'9.522

Table 1. { continued)

Test results of algorithm 1.

user time (sec) system time (sec)

Ex .- # of visited cells 4 _ 4im 2 _dim 1-dim 2 _dim
1 27,907 5.42 594 0.02 | 045 -
2 45,469 9.06 9.48 0.22 0.64
3 278,334 55.96 60.16 0,42 1.80
4 383,722 - 77.08 83.72 0.50 13.60
5. 503,444 101.06 111.28 1.18 112.24
6 633,022 127.86 141,60 1.34 260.66
7 777,037 157.96 176.48 1.62 459,38
§ 937,641 190,12 218,26 1.48 679.04

o 30% of grid space are occupled.

Table 2. Test results of algorithm 2.

wall time

of pagefaults

Ex. # of visited colls 1(_2?;“'"1":; 0 1-dim - 2ldim-
1 27,807 00:00:06 00:00:10 21 100
2 46,469 00:00:10 00:00:16 31 148
s 278,984 00100 00:0iH2 130 360
4 983,722 00:01:22 00:04:16 166 1,423
5 503,444 00:01:48 00:20:88 214 15,587
6 633,022 00:02:47 00:47:00 267 40,996
7 777,037 00:02:48 01:20:12 329 78,274
§ 937,641 01:58:05 895 121,662

00:03:23

Table 2. (continued)

o 30% of grid space are occupied.

Test results of algorithm 2.

