TR-94-008
Minimom Delay of Nonpreemptive
Real-Time Schedulings

Chia-Hsiang Chang, Jan-Ming Ho
- Ming-Tat Ko, Kuc-Hui Tsai, DaWei Wang

SR ERADER

. |\Il\llﬁﬂllllll\\\ll\\\l\II\IIIIIIHIIHIH\IIH\ i s

0330 03 000378

Minimum Delay of Nonpreemptive Real-Time
Schedulings *

Chia-Hsiang Chang, Jan-Ming Ho, Ming-Tat Ko, Kuo-Hui Tsai
' Da-Wei Wang
Institute of Information Science

Academia Sinica, Taiwan
R.O.C.

Abstract

In traditional hard realtime scheduling problems on a set of periodical tasks, de-
noted as {7;}, deadline for the CPU to complete the computation of a particular request
i of task ; is usually defined as being the same as its period. A feasible schedule satisfying
this type of deadline constraint tends to under-utilize CPU bandwidth especially when
the tasks are non-preemptive. For realtime applications with less stringent deadline
constraints, e.g., a worst-case delay guarantee rather than a hard deadline constraint,
better utilization of CPU bandwidth is achievable.

In this paper, we study a family of non-preemptive scheduling algorithms in which
no inserted idle time are allowedyi.e., CPU is activated as long as computation requests
are pending. We show that a request always receives CPU service in a finite delay,
T denoted as quening delay, if and only if CPU utilization is no greater than 1. The
! " FCFS discipline is shown to minimize maximum queuing delay. Queuing delay of other
| scheduling policies, e.g., rate-monotonic, fixed priority, and earliest deadline first, etc.,
are also analyzed.

1 Introduction

In this paper, we consider nonpreemptive periodic task scheduling problem. A periodic task

is an infinite series of requests for the same computation with a constant inter-arrival time.

*This work has been supported in part by National Science Council under Grant NSC83-0408-E-001-001.

A peribdic task 7 is denoted by a triple (T,¢,s), where T is its period or the inter-arrival
time of requests, ¢ is its computation time for a request and s is its initial request time. Let
7 = (T, ¢1,8:),1 = 1,2,- -, n be a set of n periodic tasks. In traditional realtime scheduling
problems, a deadline d; is given for each 7; and the problem is to determine if the task set is
schedulable, i.e., there exist a schedule of tasks such that any request of 7; released at time ¢
is processed and completed before time t + d;. Deadline d; is typically defined as the period
T; of task 7.

In the hard real-time applications [4], the schedulers must guarantee the given deadline of
each periodic task at the cost of sacrificing CPU untilization. However, in some soft rea.l—‘tirne
applications, such as continuous media communication and video-on-demand services {6, 5,
1, 2], any request missing its deadline just causes unpleasant results. If is proper to refer-
deadline as delay for soft real-time applications. For ‘soft real-time applications, a less strict
bounded delay is tolerable and usually these delay bounds are several times larger than the
periods of the ’r}asks. These two t}r};es of realtime applications will be referred to as realtime
applications with hard deadlines, and with soft deadlines, respectively. For the soft-deadline
applications, we are going to show that a utilization factor of 1 is achievable. Note that an
obvious necessary condition for a task set to be schedulable is that the wtilization factor,

» 1 ¢/T;, be no greater than one; otlerwise, it can be shown that the queue of requests

waiting for processing grows indefinitly. It implies that at least one of the tasks can not meet

any finite deadline. For the hard-deadline realtime scheduling problem, one wants to find

a feasible schedule satisfying respective deadlines for each task such that CPU utilization
is maximized; while for the soft-deadline problems, we regard deadline as a minimization
criteria.

In this paper, we study a family of non-preemptive scheduling algorithﬁs in which no
inserted idle time are allowed, i.e., CPU is activated as loﬁg as computation requests are
pending. We show that a request always receives CPU service in a finite delay, denoted as
queuing delay, if and only if CPU utilization is no greater than 1. The FCFS discipline is
shown to minimize maximum queuing delay. Queuing delay of other scheduling policies, e.g.,
rate-monotonic, fixed priority, and earliest deadline first, etc., afe also analyzed. In practice,
these algorithms are preferred because they are simple and are easy to compute on-line.

In section 2, we show that a request always receives CPU service in a finite delay, denoted
as queuing delay, if and only if CPU utilization is no greater than 1. In sections 3, 4, and 5,
delay bounds of several popular scheduling policies are given. Specifically, we show that the

delay bound of the FCFS policy is a global minimum..In section 6, concluding remarks are
/

given.
2 Upper Bound

To guarantee fully utilization of the processor, scheduling strategy not allowing inserted idle

time is prefered. For any scheduling strategy not allowing inserted idle time, we have the

following general upper bound of the minimum delay.

Theorem 1 The minimum delay is less that or equal to the least common multiple (LCM)

of thelperiods.

Proof: Suppose the contrary. Let r be a request of 7; released at time ¢ which is the first
request of response time longer than LCM. Without loss of generality, we may assume that
before time ¢ there is no idle time and the initial time is 0. Let kKLCM <1 < (k+1)LCM
and is the sth request of 7. Thus, s < (k+1)LCM/T;. By the ‘assumption, in the time
interval [0, (k + 1)LCM), there are at most (k + 1)LCM/T; requests of 1; are completed
for j # 1, at most s — 1 requests of 7; are completed and the Sth request of 7 is processed
partially. Thus, the total used time of the processor in the time interval [0, (k + 1)LCM)
is less than 2 ;i &'—"l%?@—lcj + s¢; < (B'+ 1)LCM. Tt means that there is idle time of the

processor in [0, (k 4+ 1)LCM) which is a contradiction. Q.E.D.
3 First-Come-First-Serve Strategy
Theorem 2 1*401' the first-come-first-serve strategy, the minimum delay is i G for all 7.

Proof: Let d; denote the minimum delay of 7. By considering the case that all the tasks
come to give a request at the same instant, ¢, the latest processed request is completed at
time ¢ + %, ¢ Thus, we obtain that d; > 52, ¢;. In the following, let us prove that each
request can be completed in d'= Y%, ¢ time. In other words, if d is set to be the deadline,
the task system is schedplable. Suppose the contrary. Let 7; be the first task misses the
deadline at time t. We may assume that from the beginning, there is no idle time. Otherwise,

4 .

e

we consider all the réquests from the end of the latest idle time. Without loss of generality,
assume the starting time is 0. Let J be all the requests issued at or before time { — d. Since
the first task misses the deadline at time ¢, thus the missed request is issued at time ¢ — d
and the scheduling rule is ﬁrst-come-ﬁl;sbserve, only the requests in J are processed during
time 0 to time d. From time 0 to time — d, a task 7; issues at most L%J + 1 requests.

Thus, the computation time for the requests in J is at most

Xﬂ:(LE;TdJ%Ll)c;ézn:(t—%éﬂ)cz-st—ﬂiqgt.

f=1 i=1 t i=1

Since the last request of task 7; misses deadline and there is no idle time from time 0 to time

t, we obtain a contradiction. Q.E.D.

4 Earliest-Next-Request-First Strategy

In the earliest-next-request-first strategy (ENRF'), a request of higher priority if its next
request time is garlier. For a peri;dic task system in which the deadline of each task is
equal to its respective period, the ENRF is the same as the well-known earliest deadline first
scheduling (EDF) [4].

Let tasks 77,7 = 1,2, -+, n, be indexed such that T} SIT,-.H. For the special case that the

deadline, d; equal to T}, Jeffay et al proved the following theorem [3].

Theorem 3 ([3]) The task system is schedulable if and only if

foralli,1 < i <n;for all LTy < L< Tt I 2 e + T i) os.

5

—

In addition, it is proved that if the task system is schedulable, then the earliest deadline

first strategy can always give a proper schedule [3]. However, it is also shown that there are

“unschedulable task systems of arbitrary small utilization factor. Even for the task system

of constant computation time, the atilization factor needs to be less than or equal to 1/2 to

guarrantee schedulability.

Theorem 4 Let {r:}%, be a task system of constant Fomputation time. If the utilization

factor, U < L then the task system is schedulable by EDF.

Proof: Let ¢ denote the computation time. Since the utilization factor is less than or
equal to 3, 2¢ < Th. The theorem is followed by verifying the condition in Theorem 3. Let
u = ?;11 € Ii“:l and let Lo be the solution of equation I = ¢+ 2}‘;{ 5(1,_',,—:5 Since u <3,
Ly = £2 <2 < T,. It is obvious that for L > Lo, L 2 it il %7;1—_[(35. Thus, the
condition in Theorem 3 is satisfied. ' Q.E.D.

An casy exarhple shows that 1 / 2-’is an upper bound of the utilization factor of a constant
computation time task system to be schedulable. For a number u = 1/2+,z >0, consider
a constant computation time task system of two tasks. The computation timeis 1+ 2 and
the first task is of period 2 and the second is of a very long period. When the secoﬁd task

release a request just before the frst task does, it is obvious that the first task will miss its

deadline.

Theorem 5 The minimum delay d; for 7; is less than or equal to the mazimum, mj, of T;

and

max _max {Z

k>7 Ti<T<T;

Proof: For any request r of task 7;, we will prove that its response time is less than or
equal to m; for alli = 1,---,n. Let [t, %] be the maximum time interval having no idle time
in which the request r is processed.

Case 1: There is no request of next request later than r + T is processed before r is
processed . All the computation time required by the requests with their next requests

earlier than r +T; — 1 1s

'r+T

I

i=1

Thus, the response time of r is less than

ELT+T e+t —r.

i=1
Since 37, & < 1, the response time is less than Tj. |

Case 2: Thefe are some requests of their next requests later than r 4+ T; are processed
before r is processed. Suppose that request 1 of task 74 is the last such request and let s be
its starting time. Notice that all the requests processed later than s + ¢ are released after
time s and all the requests of task 7,7 > k are not processed before r is processed. Thus,

the response time of r is

T, —s—1
ZI_T+ Jep+ ek + 5~

p<k P

Let T = r + T; — s. The response time becomes to be

T-1
oI

p<k P

lep+ e+ T —T.

Since r is later than s and there are only one request of task 7y is processed, Tj < T’ < Tk

We have that the response time is less than or equal to m;. \ Q.E.D.
5 Rate Monotonic Scheduling

The rate monotonic scheduling is a fixed priority scheduling strategy [4]. For a set of periodic

tasks, in the rate monotonic scheduling, a task of longer period is of lower priority. Let tasks
71,6 = 1,2, -+ ,n, be indexed such that T; < T;41 and m is the largest index that {r}%, is
rate monotonic schedulable as a preemptive task system. Let M; = max;»i{c;} for ¢ # n

and M, = 0.

Theorem 6 The minimum delay , di, of 7, fori=1,++,m, is the smallest solution of the

-

following equafion

i—1 ‘t_c‘ t}
t"'Ci=M£—1+E(|_'—T‘_——J+1)Cj. (1) |
=1

J |

Proof: For any request r of task 7, we will prove that its response time is less .than d; for

all i="1,-",m. Let [ts, 2] be the maximal time interval in which the request r is processed.

has no idle time. Let r be released at time ¢. Time t; is the end 6f the last idle time before
timé t and . is the start of the first idle time after time .

Case 1: There are requests of lower priority processed before ¢ in [to, te)-

8

Let r', a request of 7, be the latest request of lower priority than 7; processed before
time £. For simplicity of notation, assume that the execution of r’ starts at time t; = —1.
The requests processed from time ¢; — 1 to the start time of r are of priority higher than or
equal to 7;. Let the reque.st r is the sth request of 7; processed in [to,?). In the following,
we will prove the theorem by induction on s. When s = 1, the completion time of 7 is the

smallest solution of the following equation

Ci-1

t—a= a1+ Y (2] 4 1),

i=1 T;
where s; > 0 is the first release time of 7; in the time interval. Since ¢; < M; and s; > 0, the
smallest solution, ¢;, of the above equation is obviously less than d;. If the release time of r
is later than ¢; — c;, a request of lower priority or an idle time interval starts at 77, which 1s
contradicts the assumption. Thus, the release time of r is at or earlier than ¢ — ¢; al;_d its

response time is less than d;. Let ¢,, be the smallest solution of

-1

,d—c,—-ck—l-i- “1)C:+Z([= SJJ-I—I)C_,

T;
By induction assumption, time ¢,_; is the completion time of the (s — 1)tk request of 7; and
the response time is less than d;. We proceed to prove that the response time of the sth
request of 7; is also less than d;. In fact, we will prove that ¢, <t,_; +T;. Let t, =t,_1+d.

Thus, d > 0 is the smallest solution of the following equation

=1 +d—
k-1+sc=+E kil b

= % 4 1)¢; — o — d = 0. 2)
=1 7

L
b
N
i
1
b

The left side of equation 2 is equal to

—ti—8 i1 d+AS
o — 1+ (s — Do + A (|B25575] + Dy + SRR +a—d - ()
d+A2
- 1M -4,)

where 0 < Al < T; is the remainder of t,_1 —¢; — 8; divided by Tj. Let -A_j_ = T; —A$. Notice
that d—}?i is not an integer, since d is the smallest solution of equation 2. We obtain that
LEiT?-;'—_] = [d—"T—?i] The equation 4 is equal to

_1d

2=

j=3 J

]c_,—i—c,-—d (5)

Since {7:}i_; asa preemptwe task systemn is rate monotonic schedulable, the smallest solution
of equation 5 is less than or equal to T.. Thus, the proof of the case 1 is complete.

Casé 9: There is no request of lower priority processed before ¢ in [t te]-

Notice that in the proof of case 1, the argument is true for all ¢; > 0. The proof of case

2 follows the same argument of that of case 1 with ¢; = 1. Q.ED.

6 Condluding Remafks

In this paper, the minimum delay objective was proposed in the discussion of the schedul-
ing strategies for nonpreémptive soft real-time periodic task systefns. In the soft real-time
scheduling, high utilization bounded delay is preferred rather than the strict deadlines which
usually causes low untilization of the processors. We have given an upper bound for arbitrary
scheduling strategies of no inserted idle times and showed the formulas of the minimum delay
of first-come-first-serve, rate monotonic and early-next-request first scheduling strategies.

10

References

[1] D.D. Clark, S. Shenker, and L. Zhang. Supporting real-time applications in an intergrated
services packet network: architecture and mechanism. ACM Computer Comm. Review,

22(4):14-26, October 1992.

[2] H.Schulzrinne. A transport protocol for audio and video conferences and other multipar-

ticipant real-time applications. Technical report, 1992. Internet Draft.

[3] D. F. Stanat K. Jeffay and C. U. Martel. On non-preemptive scheduling of periodic
and sporadic tasks. In Proceedings of IEEE Symposium on Real-Time Systems, pages

129-139, 1991.

[4] C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogramming in the hard.-

real time environment. .Journal of ACM, 20(1):46-61, 1973.

(5] P. Venkat Rangan ‘and Harrick-M. Vin. Designing an on-demand multimedia service.

’,

IEEE Communications Magazine, July 1992.

[6] W. D. Sincoskie. System architecture for a large video on demand service. Compuier

Networks and ISDN Systems, (22), 1991.

