TR-94-007

Continuous Media Recording for
Video Conferencing

Meng-Huang Lee, Chia-Hsiang Chang

ng-Chang Chen, Jan-Ming Ho _
Ming-Ta Ko, Yen-Jen Oyang, Kuo-Hui Tsai

R

Continuous Media Recording for Video Conferencing

Meng-Huang Lee!® Chia-Hsiang Chang!+?
Meng-Chang Chen'? Jan-Ming Ho'?
Ming-Ta Ko'? Yen-Jen Oyang® Kuo-Hui Tsailr?

Abstract

in this paper, we present 2 new real-time file system architecture which is optimized for supporting
continuons media recording in video conference applications. We show that this new design optimizes
simultaneously several performance criteria, i.e., minimum buffer size, maximum I/0 bandwidth utiliza-
tion, maximum I/O throughput, minimum I/O latency and minimum response time. Design of this file
system is based on mathematical analysis of a FCFS I/O server for streams of continuous media. Tt
uses a reservation-based admission control algorithm to manage system resources, i.e., I/O bandwidth,
buffers, and disk space. Theoretical performance guarantees are also given. Preliminary experiments
on PC 486’ running Unix SVR4.0 version 4.0 with a slightly modified file system illustrate promising
Tesulis.

1 Background

A distributed multimedia application can be viewed as exchanging multimedia data streams among n parties
where each party generates zero or more data streams (such as video/audio data and shared work space).
Multimedia data are often periodic samples of analog data and thus their processing and delivery usually
have to be completed within a certain amount of time (real-time requirement). Multimedia data is also
known as continuous media. Typical distributed multimedia application examples are video libraries (video-
on-demand) and video conference . On a video library application, a server is used to store video movies and
clients are allowed to connect to the server simultaneously for retrieving video movies. For this appiication,

the server is capable of retrieving data from files, receivinng commands (e.g. to freeze a video frame), and

Institute of Information Science, Academia Sinica, Taiwan, R.0.C.
2This work has been supported in part by the National Science Council under Grant NS(C83-0408-E-001-001.
¥Department of Information Engineering and Computer Science, National Taiwan University, Taiwan, R.0.C.

sending data to networks in real-time. A video conference allows multiple user to communicate visually with
each other through the network. A completed video conference system facilitates multiple groups to work
simultaneously, and it must support movie playback and on-line conference recording. These new types of
services can be made possible through a real-time network with real-time file servers. A real-time system
gnarantees timing correctness as well as logic correctness. Traditional network and file system servers are
not designed or optimized for this objective, and thus it opens an opportunity for new research directions
and possible new products with a potentially large market. Other applications are entertainment movies,
educational documentaries, advertisements, etc.

A file system designed to support recording and playback of continuous media [12, 3, 4] [19, 9] [13, 10]
[14, 15] [2, 22, 16] [8, 6, 1, 21] [18, 7, 20, 11] [17, 5]. e.g., video and audio data, is characterized by continuous
recording and retrieval of multiple data streams at periodical intervals, and usually involves sequential access
of large files at a high I/O bandwidth. For example, without compression the bandwidth of a video stream
is around 15M bytes per second and that of CD quality audio is around 150KBps to 176KBps. In addition,
the real-time nature of continuous media requires the file system to guarantee this bandwidth through the
entire media recording or playback process. This gnarantee is much more difficult to maintain when multiple
streams are being recorded or played, where faach streamn is competing for I/O bandwidth, system buffers,
and disk space. These/system resources must be carefully managed to avoid over-commitment. Thus, when
2 media stream is to be opened, the amount of resources it needs must be checked against the currentiy
available resources in the system. A continuous media stream is admitted only if encugh resource is available.
Otherwise, the request is rejected. This call admission process is analogous to that of a public telephone
system. If the system admits a certain phone call request, it guarantees service quality during the call.
Otherwise, the phone call request is simply rejected.

A continuous media file system basically consists of four design issues: admission control, buffer manage-

ment, I/O scheduling, and disk layout, though buffer management issues are not explicitly addressed. Disk

layout strategy refers to the definition of physical block size of each stream, placement of each block, and
usage of multiple disks. I/O scheduler determines when and how to schedule the set of active requests to
maximize I/O throughput, or to simplify performance analysis. The buffer management strategy determines
the amount of buffers to allocate, and the buffer architecture, i.e., whether the buffers are used indepen-
dently by each continuous media stream, or are shared by a group of streams, etc. The admission controller
negotiates with the above three components to decide whether to accept a new request to playback or to
record a certain continuous media stream or not. It guarantees that the time to process the I/0 requests
accumulated in the previous service cycle does not exceed the length of a service cycle. It also guarantees
that the number of I/O requests flowing into the buffers equals that flowing out.of the buffer, so that the
total number of I/O requests accumulated in buffers is bounded. Notice that these performance guarantees
must remain true in the worst cases. Average-case guarantees are not sufficient.

In most of these literatures, the I/O requests are processed in periodical batches at fixed periods T%. T,
is referred tq as the service cycle. During each service cycle except the first, the file system concurrently
queues the incoming I/O requests to buffers, and processes I/O requests queued in the previous service cycle.
The system guarantees that the total amount of data I; requested by the incoming streams in the previous
service cycle j are processed by the I/O controller within the current service cycle j + 1.

Obviously, thefworst case I/0 latenc;, i.e., the time between a data block is requested until its corre-
sponding physical disk block is accessed, is 27T.. System response time, i.e., the time interval from the user
requests for a continuous media service until its first data block is processed by the system, is between 0 and
T, for write requests, and is between 2T, and 37, for read requests, depending on detailed implementations
and the arrival time of user request. Buffer requirement is between I,.c and 2lmaz depending on variations
in scheduling policies and implementations, where lp.0 = maxj2, l;. Since the 1/0 requests are processed

in batches, a higher I/O throughput is usually achievable. The basic ideas are to minimize disk seek time

by either arranging data of a continuous stream in contiguous blocks or making proper use of the batched

SCAN algorithm and the u.se of RAID (redundant array of inexpensive disks) to multiply disk throughput.

But the I/O throughput could not be fully allocated to the continuous streams since the total amount of
data for I/O usually varies from cycle to cycle. I; is a constant for all service cycles j only when the_service
cycle T, is chosen as a multiple of the period of e.';v.ch stream, i.e., if T, is a multiple of the least common
multiplier LCM{T;}, of the periods T} of the ith continuous streams, where m denotes the total number
of streams. Output bandwidth must be allocated to the input streams according to the maximum data
requirement per service cycle to account for the fluctuation in the aggregate data rate, i.e., I; /T.. In service
cycles where the total amount of data is less than the maximum, the outpﬁt bandwidth is left under-utilized.
In other words, output bandwidth cannot be fully utilized unless 7T, is chosen as LCM{T;}}Z,. Note that an

increase in the service cycle also implies an increase in buffer size.
2 Owur Approach

In this paper, we address the problem of designing a real-time file system for recording of videc conference
applications on a desktop workstation running Unix operating systems. These applications require a write-
once real-time file system for continuous media, and the recorded data is usually playback together. For
applications requiring browsing through the individual continucus streams, media editing tools must be
provided which is beryond the scope of this ;aper.

We also notice that in a video conference application, though it is usually necessary to record a complete
set of audio streams, a complete record of the entire fully animated video streams is not necessary. A series
of still-picture samples of the entire video streams at a lower rate and lower resolution, say a 1 /4 screen-size
picture per second instead of 30 full-screen pictures per second, is usually sufficient. In other words, existing

PG technology is able to support these continuous media applications up to a certain degree of quality. In

table 77 and 77, we list bandwidth requirements of audio and video streams under different compression

schemes, resolutions and frame rates.

Sample Size

Compressed Ratio | Speech | CD quality audio
1 8K 176K
2 4K | 88K
4 2K 44K
8 1K 22K

Table 1: Bandwidth of varieties of audio streams.

Plain/JFEB/MFPEG Frame Size
Frame rate full 1/4 1/18 1/64
30 TEM/1.5M7 200K AM/400K /50K 1M/100K /18K 235K J23.5K/3.2K
15 1IM/1.2M/166K M /300K /4TK TEDR /TSR JITEK 188K /18.3K/3K
20 9.6M/960K /144K | 2.4M/TF40K/a6K EO0K JE0K Jo K 150K /15K 3.2K,
15 T.2M/TI0K /100K | 1.8M/160K/j25K | 450K/45K/6.2K | 112K/ILIK/1.6K
10 1.8MJ4B0K/BTK 1.3M/130K/1TK | SO0K/S0K/4.2K TS/ T5H /1K
5 TAM/SA0K 3K SD-OIK-G_SOK/E.EK LS0K /15K /31K 38K /3.8K /500
1 480K /48K /6.6K 120K/12K/1.9K B0/ I /425 T.EK!T.%O['LOG

T/3 40K 24K J3.3K GOK J6K /838 T5K/1.5R/206 3.8K /380752

Table 2: Bandwidth requirements of a video stream.

We also take a rough measurement of the throughput of the Ethernet connecting PC’s running Unix
operating systems using TTCP package. The test tesults are list in table 1. TTCP was written by Mike
Muuss at the Ballistics Research Laboratory and has been modified at Silicon Graphies. It is a test program
for evaluating the performance of a TCP connection. We.also measured the throughput of a SCSI hard disk,
Seagate ST-2383N, on our PC’s. Its manufacturer’s specifications is given in table 2, and performance data
as measured by Coretest program developed by Core Inc¢. is also given in table 2.

We also measurlg I/0 throughput of a Unix file system on a.‘PC/ 486- with 16M RAM using the performance

test of sequential file I/0 program, also known as JOZONE, developed by Bill Norcott and a procedure which

segment | from to throughput | comments
(PC model) | (PC model) | (Kbytes/sec)
same 486/33 (TH) | 486/66 426 (3¢503 card)
same 486/66 486/33 388
same 486/33 (TH) | 486/33 366
no 486/33 (TH) | 486/33 260 (gateway is 486/66)

Table 3: Throughput of TCP connections on PC’s.

Hard Disk Type SEAGATE S5T-2383N
Formatted Capacity 300 MByte
Spindle Speed 3600 RPM

Manufacturer’s Specification | Coretest Result
Average Latency 8.33 msec 8.33 msec
Track to Tract Seek time | 3 msec 9.8 msec
Transfer Rate 2.25-2.75 MByte/sec 1.3 MByte/sec
Max Full Seek time 33 msec
Average Access Time 14 msec

Table 4: Manufacturer’s specifications and benchmark of Seagate ST-2383N.

probes directly into Unix SVRA kernel. Both shows a throughput of around 120 to 124 Kbytes per second.
Note that the maximum block size of this kernel is only 2k bytes on the system currently running in our
laboratory.

Furthermore, on an open multitasking computer system, CPU switches contexts among multiple user
tasks and is not always available for 1/O processing. Practical programming models and system constraints
should also be taken into account.

For example, we also take practical Unix programming styles into consideration, i.e., the process—kernel
computing model in which the kernel manages every I/O related activities and user processes sit upon the
kernel to perform I(';pmplicated processing-’a.nd computing. As a common practice, Unix operating system
also provides kernel buffers to hold file data submitted by user processes. Control returns to user processes
upon successful allocation of kernel buffer and data transfer of user data into these buffers. The process is
blocked in case of running out of kerne} buflers. This type of operation is usually called asynchronous I/0
mode. |

We then model the real-time file scheduling problem as a zero-response time buffered-I/0 problem in which
kernel buffer requirement is minimized. This approach effectively decomposes the real-time I/O scheduling

problem into two subproblems: performance guarantees for real-time user processes, and design of a file

system for maximum throughput. In other words, we study the problem of providing sufficient amount of

kernel buffer such that user processes are guaranteed to submit file data to kernel without being blocked
due to a shortage in buffer resource. This model is particular useful if the user process also has some other
computing subtasks, e.g., handling and processing éf multiple I/O threads. As will be shown later, our
theoretical analyses guarantee that if the disk I/O server consumes data in the kernel buffer fast enough,
real-time response of the user process is guaranteed automatically.

To achieve maximum I/O throughput, we modify the source code of Unix kernel so- as to allocate a region
of 200 bytes on the hard disk used exclusively for storing data blocks of continuous streams. These free disk
space is online allocated to the continuous streams through the conventional inode indexing mechanism on a
first-come first-serve (FCFS) basis. It guarantees minimum disk seek time in fra.nsferring each consecutive
block of data. We also defer the output of the inode stru.ctures_until the end of recording in order not to
perturb continuous I/QO process.

We can tﬁen take full advantage of the original UNIX file system which is designed for optimal flexibility

and efficiency (through the incorporation of, say, SCAN algorithm for I/O scheduling).

2.1 An admission control/resource allocation algorithm

In the previous section, we introduce our file system design based on a FCFS I/0 server. This server is data-
driven, i.e., data is sent to the disk whenever data is available. It is different from the previous continuous
media file systems “}:hich are basically batch processing systems. The worst-case queuing behavior of this
FCFS I/O server under periodical workload is analyzed in section 5, the appendix. It shows that the
maximum queue length of this server if properly controlled is no greater than the summation of number of
I/O requests per period of each active continuous streams. Note that this upper bound on the maximum
queue length is tight and is guaranteed even when total ut-ilization of 1/0 bandwidth is 100%. This theorem
is the foundation of our admission control algorithm as will be presented in the following.

Let’s denote m as the number of continuous streams currently allowed to the system. A task = for

recording a stream of continuous media is modeled as the release of a series of I/O (wrile) requests for

[y

a fixed number of blocks at constant time intervals. A task 7 is thus described by four parameters, i.e.,
7 = (T, Ni, 6, D;), where T; is the period of 7, N; is the number of blocks to be written to disk at the
beginning of each period T;, 6; is the release time of 1.',-, and D; is the duration of recording for 7. Total
number of block frames in the system buffer is denoted as N, total number of block frames in the disk
allocated to real-time data as Np, and the throughput of the I/Q server is denoted as 1/Tp, . Note that, as
mentloned in the previous section, 1/Ty is approximately 120k bytes, or alternatively 60 blocks per second.

The maximum queue length theorem is stated below while its proof appears in the appendlx

Theorem 1 Let Ty denote the 1/0 service time, and A = {r1,72,+++,Tm} denote a collection of periodical

input sireams, where 1; = (Ti, Ni, &), fori=1,2,---,m. If Sy %ﬂ < ,_,-1.—0, ‘then the mezimum gueue length
1s Ef;l N,‘.

Note that if 3 e, %‘ > 1—1,-0, then the queue grows indefinitely until either the end of the entire recording
process or running of system buffer and a certain I/O requests are forced to wait. Also notice that the
upper bound 3710, N; is tight (consider. the time instance when all the I/O requests arrive simultaneously).
In other words, this is the minimum buffer requirement achievable by any I/O servers for the particular
class of periodical task sets as described above. It is also a reasonable model of the operation of the system
interfaces of a kernel—b?,sed multiprogramming system, e.g., Unix operating systems. Since a 1/O request for
a data block finds itself queued at a position no greater than Ef;l N; in the FCFS queue, the FCFS queuing
policy guarantees that this particular I/O request is processed in at most 3 ;- N;Tp time. Which again is
a minimum due to the above discussions. Since the user processes use asynchronous write requests to send
1/O requests and the amount of resources are always available, the write() system call is never blocked and

system response time is thus minimized. We have the following corollary.
Corollary 1 The FCFS I/O server as described above has the following properties:

1. buffer requirement is minimized;

2. wtilization of I/0 bandwidth is mazimized;
3. I/O latency is 3 ;- N;Ty is minimized;
4. system response time is minimized.

Note that our file system architecture also provides a maximum I/O throughput at the current default block
size of Unix SVR4.0 version 4.0 as was described earlier.
‘We are now ready to present our admission control algorithm. The algorithm involves only three inequal-

ity predicates.

iNs S NB (1)

;'1 N; 1

§ T <% @
SN[2] <o ®

i=1
Note that the first inequality is ;a,lso denoted as the buffer constraint, the second the utilization constraint,
and the third the disk space constraint. In order for a set of m tasks as described above to be admitted
simultaneously, they have to satisfy all the three constraints. In a on-line environment in which the tasks
arrive one by one, Ehe admission control algorithm takes constant time to decide whether to accept a new
request for continuous media recording or not.

In our system, three new programming interfaces are provided for continuous media recording, i.e.,
r_open, r.write and r_close. When a process reques.ts to record a continuous media stream into the file
system, r_bpen is called to perform the admission control algorithm and pre-allocate system resources for
later use once admitted. A descriptor is returned by ropen upon successful return from r_open, otherwise —1

is returned. The second service call r.write also verifies that the user process writes data at the negotiated

rate and amount of data in addition to the normal operations of a conventional wrife system call. The

last service call r_close deallocates the kernel buffers previously allocated to the user process. Qur previous

analysis guarantees real-time behavior of continuocus media recording operated under these prograrmiming

interfaces.
3 Experimental Results

In commercially available Unix SVR4.0 version 4.0 operating system, the response time of wrile system call
is highly non-deterministic. These non-determinism are due to I/O transfer of internal data structures of
the file system, i.e., transfer of superblocks and inodes, the access of indirect blocks for indirect addressing,
and the retrieval of the addresses of free blocks. As mentioned previously, our file system defers the transfer
of superblocks and inodes until the end of entire recording process. On the other hand, since the continuous
data blocks are written to a write-once region in the hard disk, two pointers in this disk region is sufficient
for management of free blocks. :

Each Unix file is associated with a inode structure for mapping the address of a logical block to its physical
address on the disk. An index array in the inode structure is used by the file system to map a logical block
number into a physical block number, where a logical block number is a local index in a particular file and
a physical block number refers to the address of a disk storage area to hold a logical data block. The index
array contains 10 direct pointers to data blo_cks. For a file system with 2Kbyte block size, it allows the first
20kbytes of file datafo be accesses without extra overhead, assuming that the inode block is cached in kernel
buffer previously. The 11th pointer points to an address block containing several, say 256, physical block
number of the 11th to the 267th logical blocks. The 12th pointer is a double-indirect pointer and the 13th
is a triple-indirect po.inter. As a result, it takes two I/O transfers to access the 11th logical block, etc. Note
that once the indirect block is cached, access of the, e.g., 12th logical block takes only one I/O transfer.

In its original design, Unix file system fetches indirect blocks using synchronous 1/0 operations, ie., a
process blocks until the end of the transfer of an indirect block. This design is necessary for a read operation,

but we don’t see any particular reason why it’s necessary for a asynchronous write operation. This waiting

10

no. of | no. of streams measured fizst predicted first mean | deviation
strzeams | miss deadline | deadline violation | deadline violation | (msec) | (msec)
1 0 - - 3.0 0.8
2 0 - - 3.1 1.2
3 0 - - 2.9 4.2
4 4 43 45
5 5 23 22

Table §: frame rate : 10 frames/sec, frame size : 4 Kbytes

time is usually hard to predict and is harmful to real-time performance of a real-time process. So, we
eliminate this nuisance by modifying the synchronous operation of a indirect block to an asynchronous 1/0
operation. Effect of this modification on the response time of an asynchronous write operation is dramatic.

In this following, we present two sets of experiments to evaluate our recording system. In these experi-
ments, the buffer size is configured as 87 for a certain technical reasons which we are not going to address
in this paper. Each experiment had been run for approximately 20 minutes dué to disk space constraint.
Note also that the I/O throughput is 120K bytes per second. The first set of experiments is designed to
verify the effect of satisfying the admission tests and the results of violating the bandwidth constraint. While
the second set of experiment is used to verify.the effect of satisfying the admission tests and the results of
violating the buffer constraint.

To see the effect ofﬁ over committingll/ 0 g;ndwidth, we may consider the scenario of the fourth experiment
in set 1 (see table 3). In this experiment, there are 4 recording streams each sending 4K-byte frames (2 data
blocks) at the rate of 10 frame per second. Thus, at each 0.1-second time interval, buffer requirement is §
block frames and the number of block frames returned by the 1/O server is 6. Number of block frames in
sfstem buffer decreases by 2 for each period of 0.1 seconds. The system originally has 8';’ free block frames
and will last for 43 periods, the processes are then blocked to wait until buffer becomes available again. This

is consistent with the experimental data.

In the second experiment (see table 4), the buffer requirement (104 block frames) is greater than the buffer

11

stream id | measured deadline violations | predicted deadline violations
sl 0,6,12,18,24,%27,30,36,42, 0,6,12,18,24,30,36,42
48,54,60,66,72,78,84,%89,90, 48,54,60,72,78,84,90
s2 - -
83 - -

Table 6: Streams at different frame size and different frame rate. sl: frame size: 44 kbyte, frame rate:
1 frame/sec; s2: frame size: 80 kbyte, frame rate: 1 frame/2sec; s3: frame size: 84 kbyte, frame rate: 1
frame/3sec.

size (87 block frames). Obviously, the buffer is not sufficient when the I/O requests arrive simultaneously,

i.e., at common multiples of the periods of the continuous streams. Experimental result are consistent.
4 Conclusion

In this paper, we present 'a. Unix-based real-time file system design optimized for supporting video conference
applications. We also analyze the maximum queue length of a FCFS server for continuous streams of data.
This bound is shown to be tight. We also conclude that our design uses minimum amount of I;uﬁ'er to achieve
optimum performance, i.e., maximum I/O bandwidth utilization, maximum I/O throughput, minimum 1/0
latency and minimum response time. Preliminary experiments on PC 486’s running Unix SVRA.0 version
4.0 illustrate promising results. -

We also observe t}{at the mathematical analysis we present in this paper can be extended to model a

continuous playback server, and other communication network design problems. Related research works are

still ongoing.
References’

[1} D. Anderson, Y. Osawa, and R. Govindan. Real-time disk storage and retrieval of digital audio and

video. Technical report, U.C. Berkeley, 1991. UCB/ERL Tech. Rep. M91/646.

12

[2] David P. Anderson and Goerge Homsy. A continuous media I/O server and its synchronization mecha-

nism. IEEE Computer, October 1991.

[3] A. Lester Buck and Robert A. Coyne. An experimental implementation of draft POSIX asynchronous

1/0. USENIX, Winter 1991.

[4] N.G. Davies and J.R. Nicol. A technological perspective on multimedia computing. Computer Commau-

nications, 14(5), 1991.

[5] Jim Gemmell and Stavros Christodoulakis. ‘Principles of delay-sensitive multimedia data storage and

retrieval. ACM Transactions on Information Systems, January 1992,

[6] Shahram Ghandeharizadeh and Luis Ramos. Object placement in parallel hypermedia system. In Proc.

1991 VLDB Conf., 1991.

[7} Shahram Ghandeharizadeh and Luis Ramos. An overview of techniques to support continuous retrieval

of multimedia objects. ACM, SIGOPS, 1993.

[8] Shahram Ghandeharizadeh and Luis Ramos. Continuous retrieval of multimedia data using parallelism.

IEEE Transactions on Knowledge and Data Engineering, 5(4), August 1993.

[9] P. T. Zellweger Harrick M. Vin, D. C. Swinchart, and P. Venkat Rangan. Multimedia conferencing
in the Etherphone environment. IEEE Computer, Special Issue on Multimedia Information System,

Qctober 1991.

[10] A. Hopper. Pandora - an experimental system for multimedia application. ACM Operating System

Review, 24(2), April 1990.

[11] D. D. Kandlur, M. S. Chen, and Z. Y. Shae. Design of a multimedia storage server. In IBM Research

Report, June 1991.

13

[12] P. Lougher and D. Shepherd. The design of a storage server for continuous media. The Compuler

Journal, 36(1), 1993.

[13] P. Venkat Rangan, W. A. Burkhard, R. W. Bowdidge, Harrick M. Vin, J. W. Lindwall, K. Chan, I. A.
Aaberg, L. M. Yamamoto, and I. G. Harris. A testbed for managing digital video and audio storage

asynchronous 1/0. USENIX, Summer 1991.

[14] P. Venkat Rangan and Harrick M. Vin. Designing file systems for digital video and audio. In Proc. 13tk

Symp. Operation Syst. Principles, 1991,

[15] P. Venkat Rangan and Harrick M. Vin. Efficient storage techniques for digital continuous multimedia.

IEEE Transactions on Knowledge and Data Engineering, 5(4), August 1993.

[16] P. Venkat Rangan and Harrick M. Vin. Designing an on-demand multimedia service. JEEE Communi-

cations Magazine, July 1992.

[17] P. Venkat Rangan and Harrick M. Vin. Admission control algorithm for multimedia on-demand server.

In Proc. Third Symp. on Operating System Supports for Audio and Video, June 1993.

[18] W. D. Sincoskie. System architecture for a large video on demand service. Computer Networks and

ISDN Systems, (22), 1991.
: /

{19] Harrick M. Vin and P. Venkat Rangan. Designing a multi-user HDTV storage server. IEEE Journal
on Slected Areas in Communication, Special Issue on High Definition Television and Digital Video

Commaunication, 11(1), January 1993.

[20] James Yee and Pravin Varaiya. An analytical model for real-time multimedia disk scheduling. In Proc.

Third Symp. on Operating System Supporis for Audio and Video, June 1993.

{21] C. Yu, W. Sun, and D. Bitton. Efficient placement of audio on optical disks for real-time applications.

Commaunication ACM, July 1989.

14

[22] Philip S. Yu, Mon-Song Chen, , and Dilip D. Kandlur. Design and analysis of a grouped sweeping
scheme for multimedia storage management. In Proc. Third Symp. on Operating System Supporis for

Audio and Video, pages 44-55, June 1993.

15

n = (T1, N1, 6)

1 = (T3, N3, 82)

FCFES

m = (Tin, Nom, 6

Figure 1: Periodical Message Processing System Architecture

5 Appendix

In this section, we study the buffer consumptioxi problem for a periodical message processing system. This
system (see Fig. 1) has a set of m periodical input streams A = {71, 73, +, Tin }. Every T time, each input
stream 7; = (T}, Ni, &;) periodically feeds N; message into the system buffer starting from its release time §;.
This system has unlimited size of buffer, and it takes Ty time interval to process and send a message éut of
system via its output port on first come first serve (FCFS) basis. We shall show that the maximum number
of buffer required is ¥ iw, N; if $yst'em ulilization faclor Z:’;lﬁ'ﬂ?ﬂ is less than or equal to 1.

Before preceding, we define some convenient vocabularies. Let accumulafed input function gf () (re-
spectively, accumulated processed function g5(t)) be the number of messages fed to the system (respec- ‘
tively, serviced by the ‘system) from time 0 to time {. The essential idea of our perof is to show that
g8 () + Lim Ni 2 g (t), for t 2 0. |

Consider the case in which utilization factor is equal to 1 (i.e. 221%‘ = iﬂ), and all the release time
8ls are 0 (i.e. § =0, for i = 1,2,---,m). In this case, system is fully utilized (i.e. hqs no idle time). Lemma

1 shows that this system processes and outputs a message every Tp time.

i6

Lemma 1 Let Ty denote message processing time, and A = {1, 73,--+, T} denole a collection of periodical
input streams, where r; = (T, Ni, &), fori=1,2,--,m. I[fy7 M T- = 7=, and if release time 6; = 0, for
i=1,2,--,m, then g (1) = ’_%;J, fort >0,
Proof: If the system has no idle time, then gf(¢) = I_TLoJ’ for ¢ > 0. Assuming that there exists some idle
periods, and let 2o denote the starting time of the earliest idle period. Then, buffer must be empty at time
to (L. 95 (t0) = 3 (t0)). Since of'(t0) = L7, M; [2] end g2(t0) = |12, then |

11 1
xufz] = [3)

i=1

holds. By mathematical laws and problem assumptions, we have

Thus, we have

m - m
o iy to i
Mooyl b |
.z ! T; E ‘T:' Ty | T
This equation implies that #; is a common integral multiple of T, 77, - - - and Tiy,. However, all input streams
feed Z;’f__lN,‘ messages simultaneously to the system at time ¢,. Thus, there is no idle period starting from

7

fg. A contradiction, ¢/

r

We now continue our argument for the case in which utilization factor is 1 and all the release time &/s

are (0. Consider the following formulas.

gt = ;N[]
< ;}N([J+1)

I
INgER:
=
+
ingE
B

17

Observe the fact that the inequality |zy] > « |y] holds for non-negative real number z and y. Since

S i T = 23 , we have the following formulas.

ZN, _ J +EN;

1A

%] F3ON

i=1

g () + EN,- by Lemma 1 (4)

i=1

From Equation (4}, we have Theorem 1.

Theorem 1 Let Ty dencte message processing time, and A = {my,72,-++,Tm} denote a collection of period-
ical input streams, where 7 = (T3, Ni, &), fori=1,2,---,m. If E:’;l% = %;, and if release time & = 0,

fori=1,2,---,m, then g5 (t) + Lie Vi 2 g (t), fort > 0.

Fig. 2 depicts gf(t) and g4 (t) for the case in which 75 = 1 and input stream set A={n=(N =
2T =4,6=0),T=(N2=4,T2=12,80=0), 3 =(Na=1Ta=6,83= 0)}. It shows that the maximal
number of buffer required is 7 which is exactly 3"5_; N,

We now consider the general case in which utilization factor is less than or equal to 1, and release time
8!s are greater than or equal to 0. Unlike the previous case, system now may become idle for a certain period
of time (see Fig. 3). System is idle if and 01‘1_ly if there is no message stored in the buffer. Consider a busy
interval I; starting from sy, ending at er,. At the time just prior to s5, or immediately after ey, , the buffer
is empty. Let Az, C A be the set of input streams which feed messages to the system during time interval
[s1x,€5,) We define glA!" (t) (respectively, g2A " (1)) to be the number of messages fed to system (respectively,
serviced by the system) from time sy, to time ¢, where sy, >t > er,. Using the same argument used in

proving Theorem 1, we have the following formulas, for all ¢, sz, 2t 2 er,.

18,

35 r

Figure 2: Buffer Requirement

f‘"" B < Z N; [-l as if release time &§is were s,
TIEAIk
<> N (l J +1)
TIEAIk 4
= 2 N._ _S”‘J+ 3N
TiEAL TiEAr,
— 1 . N
) < [kJ Z N; since ZraeAr,‘i‘fSTLo
/ TiEAr,
=9 = @)+ Z N; _ since I is a busy period

Ti€A[,

We therefore conclude Theorem 2. Sorme busy periods of the case in which Ty = 1 and input stream set
A= {7'1 = (N1 =2T =46 = O),T2 = (Nz = 4,T27= 12,8, = 11),T3 = (Ns =1,T3 = 8,863 = 5)} is

depicted in Fig. 4.

Theorem 2 Let Ty denote message processing time, and A = {r, s, +,Tm} denote a collection of peri-
odical inpul streams, where 7 = (T}, N;, &), fori = 1,2,..-,m. If Z:';l% < %u’ then equation g5 (1) +

Soim Ni > gt (t) holds, fort > 0.

19

busy period 1, busy period I

1 1 1 [BRI) 1) t [T IS TR TIPS BESET IS LR L. e
—
0 &n €5 C3 €r,

Figure 3: Busy and Idle Periods

33 ¢

30

shaded area: busy period

Figure 4: Busy Periods

20

