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ABSTRACT

This report proposes a new closed—form solution using a single calibration point for identifying
the kinematic parameters of an active binocular head, which is based on the complete and parametri-
cally continuous (CPC) kinematic model.A This method can be applied to any kind of kinematic pa-
rameter identiﬁ_cation problems with or wifhout multiple end—effectors, providing that the links are
rigid, the joints are either revolute or prismatic and no closed-loop kinematic chain is included.
However, as a practical example, this report focuses on the calibration of a binocular head having
four revolute joints and two prismatic joints. In general, it is more difficult to estimate the end—effec-
tors poses (both positions and orientations) than to estimate their positions only. Therefore, this
method chose to use the 3D position measurements of a point on the end—effector in the design of the
algorithm for kinematic parameter identification. Theoretical analysis for the estimation error is
included. This analysis gives us a method to reduce the estimation error by controlling the factors
found in the derived error variances of the estimated parameters. Simulation and real experiments

.

have shown that'the proposed method of using point measurements can achieve much higher accura-

cy than that of using pose measurements.
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I. INTRODUCTION
Many computer vision problems that are ill-posed, nonlinear or unstable for a passive observer

become well-posed, linear or stable for an active observer[2]. Being able to acquire information
actively, the active vision system has more potential applications than a passive one has. Inan active
stereo vision system, the cameras are able to preform functions such as gazing, panning and tilting.
To perform experiments on active vision, we have builta binocular head (referred to as the ITS head).
This IS head has four revolute joints and two prismatic joints, as shown in-Fig. 1. The two joints on
top of thé 1IS head are for camera vergence or gazing (referred to as joint 5L and joint SR). The next
two joints below them are for tilting and panning the stereo cameras (referred to as joint 4 and joint
3). All of the above four joints are revolute, and are mounted on an X-Y table which is composed of
two prismatic joints (referred to as joint 2 and joint 1). Since the IS head is built with off—the—shelf
components, its kinematic parameters are unknown. Our goal is to calibrate its kinematic parame-
ters for controlling the‘orientations and positions of the stereo cé.meras.

We have been considering two approaches before using the one proposed in this report. The
first .approach combines the kinemf;ltic calibration problem together with the head/eye calibration
problem. Methods proposed by Zhuang and Roth{23], Shihet. al. [15] and Younget. al.[21] can be

used to solve the combined problem. However, there are two major problems encountered when

Fig. 1. A picture of the 1IS head




adopting this approach. The first problem is that it is necessary to determine the poses of the cameras
on the binocuiar head with respectto a caIibraﬁon object. With our experience, the pose estimation
techniques available in the literatures are not good enough for obtaining highly accurate estimates of
the camera poses, especially when the distance between the camera and the calibration object is larg-
er than 1 meter. The second problem is that it is difficult to keep the calibration object in the field of
view while rotating the cameras. Even if we can keep the calibration object in the field of view while
rotating the cameras, it will restrict the motion range in the calibration. Hence, after the calibration,
the binocular head would have large probability of working outside the small calibration range,
which may lead to larger kinematic inaccuracy in general. There is no such problem of keeping cal- |
ibration object in the field of view in [10], Where offset caused by the revolute motion can be com-
pensated by the prismatic joint. However, since there is no vertical translation joint in our IIS head,
there is no way to compensaté the tilt axis rotation to keep the calibration object in the field of view.
In addition to the two problems, we may occasionally need to change the zoom and focus setting of
the lens which would result in a new camera coordinate system. With the first appfoach, the tedious
procedure for calibrating the head kinematics is needed for obtaining the new héad!eye relation. To
avoid the above problems, we chose the second approach described below for calibrating our binoc-

ular head.

-

The second ?pproach is atwo-stage approach. Atthe first stage, the two cameras on the IIS head
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are replaced by two small end—-effector calibration plates having nine circles (see Fig. 2). The posi-
tions of the calibration plates, or equivalently, of the end—effectors, can be estimated using the stereo
vision measurement system or other more accurate 3D measurement system, such as the theodolite,
CMM (Coordinate Measuring Machine}, ..., etc[ 12].. Since the stereo vision measurement system is
set apart from the binocular head and look back to the calibration plates mounted on the head (as
shown in Fig. 2), it is much easier to keep the calibration plates in the field of view while moving the
joints of the head. The acquired positions of the calibration plates are then used to calibrate the kine-
matic parameters. In the second stage, the cameras are remounted to the IIS head as show in Fig. 3.
We can then use either of the methods proposed by Tsai and Lenz[18] or Shih et. al.[14] to calibrate
the head—eye relation. Afterthe two—stage calibration, the robot kinematic and the head/eye relation
are combined to provide a complete kinematic model for motion control. This report will focus on
the first stage of the calibration, i.e., the head calibration. However, the method can be applied to the

kinematic calibration of general robots.

Existing techniques for robot kinematic calibration can be classified into two categories de-
pending upon that the solution is in closed—form or in iterative-form. Most of the iterative tech-
niques are based on the linearized error kinematic model [4][5][6](7][8][91{111[20][22]. Kinematic
paramete\rs are obtained from iteratively evaluating Jacobian matrices and solving linear equations
by using least squareztcchniques. This kind of methods would provide accurate results if the initial
value of the kinematic parameters are close enough to the true values and the calibration configura-
tions are carefully selected such that the singular conditions of the Jacobian matrices are avoided.

Iterative kinematic calibration problem can also be solved as a large—scaled nonlinear optimization

problem, as stated in [1].

Another category of calibration techniques provide closed—form solutions. Both the methods
proposed by Zhuang[23] and Shih[15] give direct solution to the CPC kinematic parameters[22], by
using the end—effector’s poses measurements. However, most of the other closed—form solutions,

e.g., [10][16][17] [21], do not estimate the kinematic parameters directly. - Instead, the kinematic
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. parameters Were extracted from the estimations of the orientation and location of the joint axes.
Stone[16] and Sklar[17] estimate the joint axis from the measurements of the 3D coordinates of a
calibration point attached to the robot arm, while moving each robot joint one at a time. When mov-
ing a revolute joint, the trajectory of the calibration point forms a 3D circle. First, 2 plane is fitted to
the measured calibration points by least—square technique. The resulted plane normal defines the
orientation of the revolute joint axis. The measured calibration points are then projected along the
plane normal onto the plane. A 2D circle is then fitted, again by least-square technique, to find its
center which defines the location of the joint axis. In this approach, the orientation and location of
the joint axis are separately estimated without using the information contained in the amount of rota-
tion angles. Lenz and Tsai[10] and Young et. al.[21] estimate the joint axis f;om the measurements
of the end—effector’s poses. Lenz and Tsai’s method[10] wére developed for calibrating a Cartesian
robot. When collecting the calibration data, Lenz and Tsai’s method[10] allows all of the prismatic
joints plus one revolute joint to move atatime. Young’s method[21] employed a2 measurement strat-
egy by whicheach joint is individually moved. However, in practice, it is more difficult to accurately
estimate the end-effector’s poée than to estimate the 3D coordinates of a single calibration point on

the end—effector.

In this report, we shall present a closed—form solution based on the CPC kinematic model using
single calibratior}"point. The advantages of using the CPC kinematic model are described in [22] and

[23]. Four main features of our new method are described below:

1). With our new method, the kinematic parameters estimation problem is decomposed into many
subproblems of single joint axis. Hence, the complexity is reduced and an easier implementation is
derived. Also, this decomposition leads to a general solution for any robot with arbitrary combina-
tion of prismatic and revolute joints. Notice that this does not mean that only one joint can be moved

at a time. Instead, all the calibrated joints can be moved to gather more information.

2). It is easier to obtain an accurate point measurement than an accurate pose measurement. More-

over, the calibration object can be of smaller size when using point measurements, instead of pose
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measurements, which allows larger range of joint movement in calibration and leads to more accu-
rate and robust estimation of kinematic parameters. While most methods using single calibration
point cannot provide the transformations from tool to end—effector and from world to base, as de-
scribed in [12], our method can obtain the transformation from world to base by treating itasalink
matrix (i.e., ¥ in Fig. 7). Once the transformation from world to base is known, the transformation

from the last joint to the end-effector can be easily obtained.

3). With our method, each joint is calibrated in the order of from the base to the end—effectors. There-
‘fore, it is very suitable for kinematic calibration of robots having multiple end—effectors. On the
contrary, if we calibrate a multiple end-effector robot from the end—effectors to the base as those
methods described in [15] and [23], then at the link having two branching kinematic.chains, we need
to estimate an additional transformation matrix for unifying the coordinates systems from different

end—effectors[13].

4). Theoretical error analysis are provided such that optimal calibration setup can be determined by

minimizing the derived theoretical error variance.

In addition to the development of an accurate approach for the kinematic parameter identifica-
tion problem, this report has two other important contributions. The first one is that we have derived
an accurate and rObl;ISt 3D circle fitting method which uses the rotation angle information and is ap-
plied to the kinemg.tic calibration problem for a revolute joint. The second one is that we have
derived the theoretical error variances for the estimates of the kinematic parameters obtained by us-
ing our method. Computer simulations have shown that the derived theoretical error variance is con-
sistent with the experimental results. This- report is organized as follows. The kinematic calibration
problem is formulated in section II. The new calibration method is described in section ITI. Results

of the theoretical error analysis are shown in section IV. Experimental results are shown in section V.

Conclusions are given in section V1.

II. PROBLEM FORMULATION

Consider Figs. 4 and 5. The CPC kinematic model we use for a revolute or prismatic joint is as
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Joint Axis i+1

Joint Axis i+1

Fig. 4. CPC modeling convention for a revolute joint Fig. 5. CPC modeling convention for a prismatic joint

follows (see [22] for more details).

Tip1 =Ty "Tigq, 1
where T, = Q;, (2)
Ty =V, | (3)
Rot{q;), for revolute joint,
Q; = Trans([() 0 qi]T), for prismatic joint, )

cos(d) — sin(@) 0 0

/ sind) cos() 00
Rot,(6) = .

ot:(0) o 0 10

0 0 01}

100x

T 0106y
Trans([xyz])so()lz,

0001

4i=siq'i’sie{+1’ -1}, &)

q';is the ith joint value,

T
V; = R; Rot,{8)) Trans([l,-x Ly l,-,z] ) B 6)
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Fig. 6. The skeleton diagram of the IIS head.
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Notice that we have made some modifications on the notations to accommodate our situation: cali-
brating a binocular head from base toward the end—effectors. Because the CPC convention requires

that any two consecutive joint axes should have nonnegative inner product,ie., b;; = 0.In general,

this requirement can be achieved by changing the sign of one of the joint values of consecutive joints.
This is because changing the sign of the joint value is equivalent to reversing the joint axis for both
revolute and prismatic joints. Therefore, we have slightly modified the convention of the CPC mod-
el by including a sign parameter, s; , as shown in equation (5). Furthermore, for convenience we
have introduced an intermediate coordinate system between ith and (i+1)stframe, ie.,thei’ framein
equation (1‘). From the frame i to the frame ', it is either a rotational or a translational motion matrix
depending on the joint type, and from the frame i’ to the frame i+1, it is a fixed link matrix (referred

to as “shape” matrix in [22]) as defined in equation (6).

Different coordinate systems associated with different joints of the IIS head are shown in Fig. 6
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The coordinate frames {6L} and {6R} are the end—effector coordinate systems. As shown in Fig. 7,

we have the following relations:

“Terla; “Tso(9) Targ)
”ngqﬁ = wT11T2(¢Ij)2T3(Qj)3T4(Qj) 4T5R(qj_)5RTﬁR(q;) 8)

where ;= [qu 9y 93 94 9sgj qSLj] denotes the joint values for the jth robot configuration, iTk

denotes the transformation matrix from frame i to frame k. For convenience, each of the transforma-

tion matrix is written as a function of the joint value vector, ¢; , instead of gj;.

Suppose that the fixed coordinates of the calibration points mounted on the left and right end—ef-
fectors are y; and yp with respect to LECS (left end-effector coordinate system) and RECS (right
end—effector coordinate system), respectively. Let *p;; and “p;p denote the coordinates of the cal-
ibration points, corresponding to the jth robot configuration ¢; , measured in the WCS (world coordi-
nate system). Transforming the coordinates of the calibration points, y; and yg , from LECS and

RECS to the WCS, we have
oo =W lg)y &)
1473 6L\9i) Y

and MPir = "Tex(g}) Ix (10)

7

where "p;; , wﬁjR , ¥, and yp are the 3D homogeneous coordinates of "p;; , ¥p;r, ¥, and yg,

respectively.
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T, /'—ﬂ'
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Fig. 7. Kinematic Reference Frames of the IIS head
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Fig. 8. Relation between 3D coordinates of a
calibration point at the jth configuration with
respect to different reference frames

With our néw method, each joint is calibrated from the base toward the end—effectors. Consider
Fig. 8. Without loss of generality, we assume that the kinematic parameters of the joints from the
base to the ith joint have been kIlOW‘I“l when calibratin g the ith link matrix, i.e., V;. Only those joints
with known kinematic parameters plus the (i+1)st joint are permitted to be moved. For example,

when calibrating ¥,; , joints 1,2, 3,4 and 5L are allowed to be moved. From equations (8), (9) and

(10), we have
i'i;jL =T, i+1T(i+1)’ ¢+, (11)
and/or Pir = "Tig MMTgpqy €5, : 12
where T, =V;
l+1T(i+1)' = Qi1
, ,,_- -1
. -1 | |
‘Pir = war(qj) Pir (14) !
€05, = TG g) 5,
and C+)yp = (i+1)’T6R(‘Ij) YR

Note that if the ith link is a common links, i.e., a link between the world reference frame and joint 4,
then both of the above two equations are valid; otherwise, only one of the equations (11) and (12) is

valid.

From equations (11) and (12), we have
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Vilipy = Qi @5, (15)
and/OI‘ V_l FFJR = Qi-!-l (i+1)3;R . (16)
If link i is shared by both the left and right kinematic chains, then we take the average of equations

(15) and (16), which yields

‘ Vil g = Qw1 “O0r, (17
where iFjLR = (i'I;jL + irﬁj}{)/ 2
and : (i+1)')7LR = ((£+1)5;L + (i+1)'j,'R)/2_
G @+ - @+1yy  iflinkiis shared by the left
P = "Pip YLR  and right kinematic chains

i'g. =1tp. (+1)y = (+1)§ if link i belongs to the left
P ’ )
Let { 1T P Y L branch only
"p; = "pipe €Dy = (+V5., iflink i belongs to the right
branch only

Then, equations (15), (16) and (17) can be unified as the following
Vit By = 0y OV a8)

The unknown parameters to be estimated are the link matrix, V;, and the vector, (+1)'y  Forthe case

-

of IIS head, our goal is to estimate the kinematic parameters: Vy, V3, V5, V3, ¥, and Vp, using
f Al B

equation (18). Estimation of ¥y, and V55 will be handled differently as described in Section ITL.3.

II. NEW METHOD FOR THE KINEMATIC PARAMETER IDENTIFICATION

Using equation (18), our new method will calibrate the ith link matrix by moving the (i+1)st

joint (joints 1, 2, ..., i can be moved too). For convenience, let Ry, , R;and Rot,(6) be the 3X3

rotation matrix of ¥;, R; and Rot,(6), respectively, and let ¢}, be the 3X 1 translation vector of ma-
T
trix ¥;, and J; = [li;c Ly L ,z] . Using equation (6), we have

Ry, = R; Rot,{;), (19)

=11 -




and V; = Ry, Trans(l;), 1)

which will be used in the following derivation.

III.1 Kinematic Parameter Identification for a Prismatic Joint
The redundant parameters and the unknowns for a prismatic joint are listed below for clarity of

our derivation:

i). Four given redundant parameters (typically set to zero if not pre-specified for specific reason): B;
and I;.

ii). The unknowns: R;, ¢*1)’y and the sign parameter, 5; .
Consider equation (18). For a prismatic joint, we have

T
Vi—l 'p; = Trans([O 0 q(i+1)i] ) +1y (22)

or, using (21),

o . B T i .
R gy~ = @0y + [0 0 dgrry] - @3)

"’ 3! . - 3 -
Notice that the value of * p; depend on the movements of joints 1, ..., i and can be computed using

equations (13) and/or (14).

Multiplying RV‘, to both sides of equation (23) and noticing that

0 0
R 0 |=R. Rot,(B)] O |=gq.1v bis (24)
i lggsry : Rotp) 9 +1) Qerty 7

4T
where b; = [b,- x biy D;, | is the third column vector of the rotation matrix R;, we have

pi=a+quqy b (25)
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where @ = RP} (l,- + (H'l)'y) is independent of j. It is obvious-that /; is redundant, since I; and

(i+1)'y can not be independently estimated. Therefore, [; can be set to zero if it is not pre-specified

for specific reason.

Suppose there are M measurements from M robot configurations, i.e., i'pj and g; 1y ./ = 1,2,

..., M. The kinematic parameter b; can be estimated by minimizing the following error

M 2
e= 2|7 -a-aey bl (26)
j=1

subject to b7b; = 1.

i

The solution is (refer to Appendix A for the proof)

M
Z(APJ' AQ(:‘H)]‘)
P , @7
M
LZI(AP,- AfI(f+1)f)
where . dp; = Pp,- -p, (28)
Aqga1y = D1y — Ta+1y (29)
- M
/ = (30)
j=1
M
and qi+1) = 1%’4 lq(£+1)j' 3D
i=

Notice that if the third component of b; is negative, in order to be consistent with the CPC con-

vention, we should change the sign of b; and let s;=—1; otherwise, let s,=-+1. Once the unit vector b;
is obtained, the rotation matrix, R;, can be computed with equation (7). Finally, G+ 1)'y can be solved

by using equation (23). However, we do not have to calculate (+1)'y if it is not of interest.

ITI.2 Kinematic Parameter Identification for a Revolute Joint

-13 -
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The redundant parameters and the unknowns for a revolute j oint are listed below for clarity of

the derivation:

(1). Two given redundant parameters (typically set to zero if not pre—specified for specific reason):

B; and the z—component of ;.

(2). The unknowns: R;, the sign parameter, §; , ("“)ry , and the first two components of I; .

For a revolute joint, the calibration equation can be derived from (18) that

R, ipj = b = Rot{qq,1y) €V, (32)

by using equation (21). For convenience, we decompose @+ 1)'y into two portions as follows. Let

(i+1)'y = [yl Y3 Y3 ]T’ and

€Dy =ys +,, (33)
T T 5 | o
where yg = [y1 ¥ 0] andy, = [ 00 y3] . Note that for any y; and y,, y7 + y5 #= 0, there

exist a scalar ¢ and a rotation angle w such that

Ya = @ Roty(w) ey, (34)

4 T
wheree; =[1 0 0] ,¢ = /y? + y2, wis the angle between the vector y, and the x—axis. Sub-
stituting equations (33) and (34) into equation (32), we h.‘ave {(by noting that y, = Rot,(-) ¥y
Ru;j+t=pv, (35)

where R = Rotz( —ﬁ,- - cu) RT gy, = ‘pj,f = — Rot,(— w) I; — ypand

= Rotz(q(i_l_l)j) e.

R, t and @ can be solved by minimizing the following error using the least square method.

Il

[

M 2 ,
DIR uj+ -0 v (36)
j=1
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The procedures for calculaﬁng a closed—form solution to équation (36) are listed in the following

(refer to Appendix B for more details).
M M

uj s 12
j=1 j

vj,gj=uj-uand
=1

2=

%’=Vj—v.

2=

Step 1: Compute & =

Step2: Let 4 = [11 e Vi gM]andB = [gl o Uy o EM]-

Step 3: Compute the matrix C = B AT,
Step 4: Compute the singular value decomposition

5100

c=v|0s,0 VT,wheres123223320.
0 0 s4

OO =
Q= O
IOO

Step 5: If det(V UT) = +1, then compute R=V UT, otherwise, let R=V [

UT,
1

-1

=1

M 1M
Step 6: Compute g = ul Ry, vy,
I P

7

/

Step7: Compute t = o V- R ..

We now show how to compute the kinematic parameters, R;and l;, from R and f. Remember
that R = Rotz( —B; — a)) R;fr, as defined following equation (35). It is obvious that the third rows

of Rand R,-T, ie., b?, should be the same. Therefore, b;-‘r can be obtained from the third row of the

matrix R. Notice that if the third component of b; is negative, in order to be consistent with the CPC

convention, we should change the sign of b; and let 5; =—1; otherwise, let s;=+1. From equations (6)

—-15 -




and (7), we can compute R, from b;and B; Then we can compute Rot,(w) using the following

relation:
Rot,(w) = R';',"i RT, (37)
' T
Remember that £ = — Rot,{— ) I; — y, and y, = [ 00 y3] , hence

where the z-component of [; is a given redundant parameter, and y,, should be determined to make

the above three equations of three unknowns consistent.

1113 Estimation of the End-Effector Frame

Unlike the joint axis of a robot, the position and orientation of the end—effector has no physi-
cal meaning. The end-effector frame is simply a definition by the manufacturer. Therefore, when
calibrating a binocular head, the link matrices of end—effectors, i.e, Vs, and Visp, can be set to identi-
ty matrices. However, when calibrating a robot manipulator, it is usually necessarj to calibrate the
end-effector frame. Mechanically, it is possible to produce a calibration tool having at least three

“non—collinear measurable points and the 3D coordinates of each calibration point with respect to the
“end—effector fran{e is known. Suppose there are X non—collinear calibration points on the calibra-
tion tool and the 3D coordinates of those calibration points with respect to the end—effector frame are

known tobe y, k=1,2, ..., K. Attherobot configuration j, let the measured 3D coordinates of the
calibration points with respect to the WCS be p’l'c, k=1,2, .., K. Notice that before célibrating the
end—éffector frame, the kinematic parameteré from WCS to the last joint should have been calibrated
by using our kinematic calibration method. Therefore, the transformation matrix ""TN,(qj) from

WCS to the last link frame can be computed from the kinematic model. Here, {N'} is the last joint
frame (i.e, {SL'} or {SR’} in our case as shown in Fig. 7). Transforming y, to the world frame, we

have
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P = "Ty(g;) Viy v . (39)
where V), is the last link matrix (i.e, V5, or Vspinourcase). By moving robotto M different config-

urations and taking 3D measurements of the calibration points, we have totally M X K pairs of 3D
coordinates, (yk, “’Tg,l(qj) p’k), k=1,2,..,Kandj=1,2,.., M. Thenthe unknown link matrix ¥y,

can be solved by using the Arun method[3].

IV. THEORETICAL ERROR ANALYSIS

This section will present the approximate error variances of the estimates for the kinematic
parameters. -The error variance is a function of the amount of measurement noise, the number of
calibration data and the calibration range of the corresponding joint value. In addition to the above
three factors, the parameter estimation error of a revolute joint is also affected by the distance be-
tween the calibration point and the joint axis. The derived parameter error variances are based on the

following assumptions.

Assumption 1. The error of the joint value is negligible. In general, there are a scale factor and an
offset parameter to be calibrated for transforming the reading of the motion transducer to the joint
value, where in most cases the scale factor of the transducer can be obtained from the sensor
manufacturer. H;mce, we may assum;: that only offset parameter is necessary to be calibrated. Al-
though the motion transducer is usually designed to be vary accurate, the joint value may not be accu-
rate enough due to the estimation error of the offset parameter. However, one advantage of using the
CPC kinematic model is the elimination of the offset parameter for converting the transducerreading

to the joint value. Therefore, we assume that the error of the joint values of the robot is negligible in

the error analysis.

Assumption 2. The error of ¥ p ; due to 3D measurement noise is the 3x1 random vector dp;, and the

measurement errors op i j=1,2,..., M, are independent and identically distributed Gaussian with

zero mean and covariance matrix ¢ I 3% 3 where I5 5 is the 3x3 identity matrix.

-17 -




When calibrating the ith joint, let the range of joint motion during data collection be A4Q (which
will be referred to as the calibration range; hereafter). Within the calibration range A4Q, we suppose

totally M data points are sampled for the calibration and the data points are uniformly spread apart.
For deducing the estimation error variance, we need the following two lemmas.

Lemma I. Let X, X5, .. X, be mutually stochastically independent random variables having,

respectively, the normal distributions n(pt P cr%), n(uz, 02) ,and n(,u ms Um) The random variable

m
z , where ky, ky - . k,, are real constants, is normally distributed with mean

1
m
= Z ; 4; and variance oy = Zkz o7,

i=1
Lemma 2. Let SRbea 3 X 3 rotation matrix corresponding to the smail X-Y-Z Eular angles, 3¢y,

S¢py and 6¢p, where we define an angle 8¢ to be small if cos(dp) =~ 1 and sin(6¢) = 0¢. Then 6R

_ T
is approximately equal to [ + Skew([agﬁx, Oy, 6¢Z] ), where

Oy 0 —3d¢: o9y
Skew||00y1| = | O¢: 0 - d¢x|. (40)
6¢'z - - 6¢y 6¢x 0

[)l'
IV.1. Error Analysis for a Prismatic Joint.

Define the estimation error of the kinematic parameters of a prismatic joint as follows.
ob; = b; — by, ’ (41)
where b; and b; are the estimated and true kinematic parameters for a prismatic joint i, respectively.

From equation (27), we have
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) (42)

(Al?j Ag 1.1y + O4P; AfI(i+1);‘)

Ngl

where Ap; is the true value, and the measurement noise 6 4p; = dpj — Op (refer to equation (28)).

M
Let P = ' (4p; 4q4, 1) 43)
j:

—

and oP = (a A A gry) (44)

INNE

Substituting equations (43) and (44) into (42), we have

I;‘__P+6P

T (4

It can be shown that if the amount of effective noise, 8P, is relatively small comparing to the true

value, P, the denominator can be represented as follows.

1 1 6PTP |
= |1 - + 02 46
[P+ o] LLPII[ ,|P||2] @ (#6)
Substituting equation (46) into (45), we have
/ \

b; = b, + 6 — (bY 0B)b; + O(2), (47)
where 8 = ILP“ IS the effective noise vector,and b; = |lP|| = is the true kinematic parameters since Pis
noise free.

From equations (41) and (47), we have
8b; = o8 — (b7 6B )p; + O(2) . (48)

Notice that in equation (48), 8b,, is approximately equal to the component of 88 perpendicular to b;

as shown in Fig. 9. Therefore, the size of 8b; is proportional to and bounded by the size of 6. Mini-
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Fig. 9. Parameter Estimation Error of a Prismatic Joint
mizing the amount of df is equivalent to minimizing the amount of parameter estimation error.

Hence, we would first derive the covariance matrix of the random vector 883, to find the factors that
affect the calibration accuracy.
Suppose that in the calibration process, the joint values corresponding to the M measure-

‘ments were uniformly taken from the region [Ql, 0+ AQ]  Le, gy = o, +(—-1)0

40
M-1

where Q = is the constant movement of joint (i+1) between two consecutive measure-

ments. Then the covariance matrix of 8 can be derived as follows (refer to Appendix C).

0'2 2
b 2 = 98 = T (M) -2 (30
where 4 ILPIIz ﬁ( ) 407 (50)
, - 12(M — 1
and / Tﬁ(M) = HL(}:m)_) (51)

- The function Tﬁ(M ) is plotted in Fig. 10. According to equation (50), it is clear that the estimation

error can be made smaller by making AQ or M larger or by making the measurement noise smaller.
Also from equation (50), for minimizing the estimation error, increasing size of the calibrationrange

AQ is more efficient than increasing the number of measurements M.

IV.2. Error Analysis for a Revolute Joint.
Suppose that in the revolute joint calibration process, the joint values corresponding to the M

measurements were uniformly distributed within the region [Ql, Q,+4 Q]. Because the length
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of a vector is preserved by any orthonormal transformation matrix. Therefore, minimizing equation

(36) is equivalent to minimizing the following error function

M
2
e = >R u+t;—ovyl, (52)
j=1
where R, = Rotz(— o —_’422) R,y = Rotz(— 0, - ‘%) t,
/ 40
. and yjl = Rotz(— Ql - ‘_‘2‘") Vj.

Now the original revolute joint calibration problem is transformed into ah equivalent problem where
the joint values corresponding to the M measurements were uniformly distributed within the region
{—AQ/2, AQ/2]. Therefore, without lost of generality, we may always assume that when cali-
brating a revolute joint, the joint angles are all kept within the region {— 4Q/2, 4Q/2}.

Recall that the kinematic parameters of a revolute joint is solved from R and £ in Section IIL
Therefore, minimizing the kinematic parameter estimation error for a revolute joint is equivalent to

minimizing the estimation error of R and £. We shall show the result of error analysis for the esti-

—-21 -




mated parameters, R, £ and g, which are obtained by minimizing equation (36). Let ORbea3 X3

error rotation matrix composed of the small X~Y-Z Eular angles, ¢y, 6¢y and 6¢,. Let the esti-

mated parameters be
R =0RR" = I3y, + Skew(3p)| R, | (53)
=1t +6t, (54)
and o=0 +0do, . (55)

* *x * T T
where R, ¢ and g are the true values, d¢ = [dqu Oty 6¢z] , 0t = [étx oty 61}] and Jg are

the estimation errors.

From assumptions 1 and 2, we have that v;in equation (36) is noise free and more explicitly

COS(‘I(:'H);)
= SiD(Q(H_l)j) , (56)
0
and i; = u; + duy, : (57)
where TS f’pj,
and | / du; = Op; .
Rewrite equation (36) as follows
M 2
e = z]lR u; + du';j +t—o vj“ . (58)
j=1

where dn’ j =R 6uj. As stated in assumption 2, each two components of the random vector du; are

independent and identically distributed as Gaussian, which yields (by noting that R is an orthonor-

mal matrix}

Cov[éu'j] = 0% 33, (59)
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To minimize the error defined in equation (58), it is required to have that (refer to Appendix

B)

t=p7—RH. (60)

Substituting equation (60} into (58), we have

. 2
e= 2 |Ru+ou;—ow oy, (6
j=1

]:

M M
whereEE—I—Zu- v —1—21:- u;=u; —mandy; = v; — 7.
N i’ NL T = i =57
1 j=1

For mathematical simplicity, d&’ is assumed to be negligible. This assumption is practically true
providing that the number of measurements is not too small. Therefore, the above equation can be

simplified as follows.

M 2
= Sl u+ou -0 @
j=

Substituting the optimal solutions of Rand g in equations (53) and (55) into (62) and omitting the

high order error terms, we have

M
» * 2
e = Zl[Skew(dq&) R'u; + du'; — do 2 (63)
/ =t -
Notice that Skew(d¢) R*gj is actually the cross product of vectors d¢ and R'u;, i.e.,

Skew(0¢) R'u;= 0¢ x R'w; = — Skew(R'y;) 3¢, (64)
Since Q*vj = R'uj + ¢, we have

Ru; = ov; (65)

Substituting equations (64) and (65) into equation (63), we have

M
e = 2”-— Skew(g'gj) 8¢ + du'; — do gjuz. (66)
j=1
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The estimation error d¢» and Jg can be found by minimizing equation (66), and the variance can also

be derived as follows (refer to Appendix D).

0%, = Q;’jw 2L40), (67)

%, = 55 M D,(40Q), (68)

P, = T3 PO, (69)

ot =< TR (70)

02, = OXAQ) 03, + 1 05, + 1 03, (71

crdt (0 ?(40) — )05¢ + ¢2 aé¢, (72)

and 03, = (o PL4Q) - &)’ 0%, + B Oy (73)

where ty, ¢ty and £, are the x, y and z components of the true translation vector t*, respectively,

240

0,40) = 7522 74
PAL) = F5a - 4(1—co§f;%2>)+AQsm(AQ) 7>

P.40) = 2o D] as)

~ and | P(40) = iiEA(AQ%—f). an

Functions @x(+ ), @y(+), D;(-) and P,(-) in equations (74)-(77) are plotted in Fig. 11. No-
tice that when AQ is small, @,( ) is much l&ger than the other two, i.e., ¢y will have larger vari-
ance comparing with the other two ofientation estimation errors, especially when AQ is small. This
is because when AQ is very small, the trajectory of the calibration point will be very close toa
straight line (denoted by L). Therefore, small amount of measurement noise would cause Iargé

amount of error rotation angle corresponding to the rotation axis parallel to the line L (see Fig. 12).
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According to equations (67)-(69), to minimize the parameter estimation error for a revolute

joint, we can make as large as possible the calibration range AQ), the number of calibration measure-
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ments M, and the radius ¢ (i.e., the distance between the calibration point and the revolute joint
axis). It is obvious that the more efficient way to reduce the calibration error is to make the calibra-
tion range AQ or the radius @ larger instead of increasing the number of calibration point. For
instance, when the calibratioﬁ range AQ is approximately 30° and @,(AQ) will be approximately
10,000 (see Fig. 11), then we may choose a radius @ which is much larger then 100 millimeters to
reduce the error. On the other hand, if we want to reduce the error by choosing a large number of M

to achieve the same effect, then we would have to take much more than 10,000 measurements.

Orientation error is inversely proportional to the radius @, but according to equations (71)-(73),
the translational error is not. Due to the quadratic term of the radius g in equations (72) and (73),
there is a range of the radius g, determined by AQ and #, in which the estimation translation error is
minimized. The error analysis results presented in this section can be used as a guide line for deter-
mining a proper size of the radius g, the number of measurements M, the calibration range AQ, and

the accuracy of the coordinate measurement device.

V. EXPERIMENTS

To evaluate the accuracy of robot calibration, we use the positioning error defined below as the
error measure. The positioning error is geﬁned as the Euclidian distance between the measured posi-
tion of the end—effector (or more precisely, of the single qalibration point) and its predicted position
using the identified CPC kinematic model. The specifications of the architecture of IIS head are
shown in Table 1. The 3D measurement system we use is a stereo vision system with baseline of 0.5
meter, which provides the accuracy of 0.4mm in z—direction and 0.2mm in x— or y—directions if the
object distance is approximately 1.5 meters and the deviation of the 2D observation error is 0.1 pixel.

Table 1. Specifications of TIS head

Joint #| Type Range | Resolution | Calibration Range
1 |Prismatic | 0— 1000 mm 0.003mm 250 — 350mm
3 |Prismatic | 0—500 mm| 0.005mm 200 = 300mm
3 |Revolute 0-180° 0.004° 61 —121°
4 |Revolute 0—60° 0.005° 10— 50°
5L |Revolute 0 -90° 0.0036° 10 =70°
5R  |Revolute 0-—90° 0.0036° 26 — B6°

— 26 —




The calibration objects are shown in Fig. 2, where each calibration plate has nine white disks. For
each measurements, the estimated 3D coordinates of the nine disks are averaged to obtain an accu-
rate estimate of the end—effector’s 3D position, which has approximately 0.05 millimeter standard

deviation in each direction.

In general, if the expectation value of an error is nearly zero, then its variance would be close to

its RMSE. For convenience, we define the predicted radius, translational and rotational RMSE fora

revolute joint to be respectively g, \/ng + 0% + 03 and o§¢ + o§¢ + o2 4, and the pre-
* y z x 'y ;1

dicted RMSE for a prismatic joint to be Osp- In the following, we shall first present some results

obtained from the computer simulations for verifying the predicted RMSE derived in the-previous
section. Then we shall show the results of both the computer simulations and the real experiments on

calibrating the kinematic parameters of the IIS head.

In the first experiment, the RMSE of the parameter estimates for a prismatic joint are com-
puted from 100 random trials. There are three factors govern the estimation error for a prismatic
joint, i.e., the number of measurements, M, the standard deviation of the 3D measurement noise, 0,
and the calibration range, AQ. As stated in section IV, the RMSE of the orientation parameter esti-

mates are bounded by Osp- The results obtained from computer simulations are shown in Figs.
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Fig. 13. The orientation estimation error versus the calibration range.
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Computer Simulation: Prismatic Joint, o = 0.1 mm
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Fig. 14. The orientation estimation error versus the number of measurements.
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The second experiment assesses the validity of the derived (or predicted) RMSE for a revo-
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Fig. 15. The orientation estimation error versus the standard deviation of the
measurement noise.

¥ T T T

13~15, which show that the derived variance dose reflect the influences of the above three factors on

the estimation error.

lute joint. Each data point shown in Figs. 16-27. is computed from 100 random trials. The four
factors which govern the estimation error for arevolute joint are the number of measurements, M, the
standard deviation of the 3D measurement noise, 0, the calibration range, 4Q, and the radius, o (i.e.,

the distance between the calibration point and the joint axis). This experiments shows that the
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Computer Simulation: Revolute Joint, M =20, ¢ =0.1 mm
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Fig. 16. The translation estimation error versus the radius length
Computer Simulation: Revolute Joint, M =20, 6 =0.1 mm
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/ Fig. 17. The rotation estimation error versus the radius length.

derived RMSE is very close to the simulation results. However, the derived estimation RMSE will
not be accurate when the rotational RMSE is larger than 0.2 radian (or approximately 10°). This is
because the error variance is derived from a locally linearized model. Therefore, when error is too
large, the predicted RMSE would be inaccurate.

From the first two experiments, we find that the error analysis presented in Section IV are
reliable. Therefore, we can use these equations for determining a good conﬂgura.tion for kinematic
calibrations to nlinimjze the parameter estimation error.

In the following, we will present the results of applying the proposed method to our IIS head.

- 29 —

e ————



Computer Simulation: Revolute Joint, M = 20, 0 = 0.1 mm

0.14-
g 0.12- AQ = 40°
=1 o
€ o010 \,/ \/\/ \/\/
= 0.08-
g B 7 \/ \__/
£ 0.06- AQ = 60°
Z 4

0.04
e —— RMSE
=
e 0.021 —— Predicted RMSE

0 T T T T T T T T T T T T T
20 40 60 80 100 ' 120 ' 140 T 160 180 2
Radius (in mm)
Fig. 18. The radius estimation error versus the radius length.
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Fig. 19. The translation estimation error versus the number of measurements.

For comparison, we have also implemented a kinematic calibration method using pose measure-
ments{15]. To obtain the pose measurements, a fixed coordinate system called the left (right) cal-
ibration plate coordinate system (LCPCS, RCPCS) is defined, on the left (right) calibration plate.
The coordinates of the centroid of each disk on the calibration plate with respect to LCPCS or
RCPCS are known a priori. The pose measurements are obtained by applying Arun’s Algorithm[3]
to the 3D coordinates of the nine disks measured in the LCPCS (RCPCS) and the WCS, respectively.
For convenience, the method using pose measurements[15] will be referred to as trhe Eose—Method,

and our new method will be referred to as the Point—-Method.
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Computer Simulation: Revolute Joint, @ = 50 mm, 0= 0.1 mm
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Computer Simulation: Revolute Joint, o = 50 mm, 0 =0.1 mm
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In the third experiment (real experiment), twenty measurements are taken for each joint. Also,
for testing the calibration accuracy we have taken extra nineteen measurements with arbitrary con-
figurations . We then choose M from the twenty measurements to calibrate the robot and use all of
the nineteen testing measurements to test the estimated parameters. The results are shown in Fig. 28
for M =4,6, ...,20. One purpose of this experiment is to determine a proper M such that the position
error is less than 1mm. Fig. 28 shows that the Point-Method can achieve higher accuracy than the
Pose—Method. Notice that Fig. 28 does not show the potential that the position error decreases when

M increases. We believe it is because the non—geometric error dominates and the random noise in-




Computer Simulation: Revolute Joint, M = 20, 0= 0.1 mm
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Fig. 22. The translation estimation error versus the calibratoin rangc.

Computer Simulation: Revolute Joint, M =20,0= 0.1 mm
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Fig. 23. The rotation estimation error versus the calibration range
duced error is relatively negligible. However, whatever M is, the error is less than 1 millimeter. We
" use M =20 in the following experiments.

In the forth experiment, we rui simulations using the kinematic parameters obtained from the
previous real experiment. We assume that the 3D stereo measurement noise is due to the 2D image
observation noise of 0.1 pixel standard deviation. Bach data points in Fig. 19 is the average of fifty
random trials. Notice that in the real experiments, the test data also contain meagurement €rrors.
Also, the joints of the IIS head are not ideal atall. Therefore, the real experimental results (in Fig.28)

have larger position error than the simulation ones (Fig. 29).
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Computer Simulation: Revolute Joint, M = 20, 6 =0.1 mm
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Fig. 24. The radius estimation error versus the calibration range.

Computer Simulation: Revolute Joint, M = 20, AQ = 50 mm
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The last experiment is to test the robustness of the calibration algorithm. The 2D observation
error is assumed to be a normal random noise with zero mean and deviation o,p,. Fig. 30 shows the
results fromn computer simulations with each point is obtained from the average of fifty random
trials, for o,y = 0.0-1.0 pixel. The number of measurements for each joint is set to 20 as in the real
experiment. This experiment shows that tﬁe proposed method is robust against the observation

noise,
V1. CONCLUSIONS
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Computer Simulation: Revolute Jo

int, M =20, AQ = 50 mm
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Fig. 26. The rotation estimation error versus the standard
deviation of the measurement nojse.
Computer Simulation: Revolute Joint, M = 20, AQ =50 mm
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Fig. 27, The radius estimation error versus the standard deviation of
the Mesaurement Noise.
Active vision is attracting more and more research interest in the field of computer vision. Be-

ing able to acquire information actively,

than a pas

the active vision system has more potential applications

sive one has. Specifically, in an active stereo vision system, the cameras are able to per-

form functions such as gazing, panning and tilting. To control the positions and orientations of the

cameras, both the kinematic model and its parameters

of the active vision mechanism have to be

known. Unfortunately, the exact kinematic parameters are usually unknown. In this report we have

solved the kinematic parameters identification

problem for the IIS head based on the CPC kinematic
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Real Experiment:
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Fig. 28. The positioning error of two end effectors versus the
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Fig. 29 The positioning error versus the measurement number

model{22]. With our method, the kinematic problem s decomposed into many subproblems of cali-
brating a singlé joint. This method can be used for calibrating the kinematic parameters of any robot
with or without multiple end—effectors, providing that the links are rigid, the joints are either revo-
lute or prismatic and no closed-loop kinematic chain is included. The proposed closed—form solu-
tion method is applied to solve the kinematic calibration problem with a branched kinematic chain
having two end—effectors. The calibration results has been tested and the results show that the pro-
posed method of using point measurements can achieve much higher accuracy than that of using

pose measurements. Error analysis is also given in this report, which provides the information on
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. Computer Simulation: M 20
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Fig. 30 The positioning error of two end effectors versus the measurement noise.

how to minimize the calibration error. Computer simulations have shown that the derived error vari-

ances are reliable.
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APPENDIX A.

The methdd presented here is for solving b; by minimizing the following error

M
£ le]"'p]. — 8= qg+y billz, (78)
j=
where bérbi = 1. Let the gradient of the error function with respect to & be zero, we have
a="F T4 bi> | (79)
where i'p‘ and J (1) A€ defined in equations (30) and (31), respectively.
By substituting equation (7Qj into (78), we have .
M 2
e= Z“b,. Aqg.1y— 2 (80)

j=1
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where b;-f b;=1,4 p; and Ag i+ 1€ defined in equations (28) and (29), respectively. To solve the
above equation, we first form the Lagrangian

M :
L= Y {87 b, AG% 1y — 267 4p; dggary + 48 dp) +2 (-8 B). @D
j=1

The gradient of equation (81), with respect to b; , is
M _
- 2
Vi =2 Y b Ag .y — 4P Aqgay) 24 by (82)
j=1

By letting VI = 0, we have

i(Apj A‘](i+1)i)-
j=

b, = , (83)
M
2 —
[Z("q (='+1>f) A]
where 1 can be determined such that b; is a unit vector. Consequently, the solution is
M
> (4p; Ag.41y)
=1
M
- LZ(APj A‘I(Hl)j)
7 =1
[; .
APPENDIX B.
Define the error function as follows,
N M 2 .
eEZHR uj+t—gvj“, (85)
j=1

where R, and g are a3 by 3 rotation matrix, a3 by 1 translation vector and a positive scalar, respec-

tively. Umeyama has solved a similar problem [19]. However, their error function is of the follow-
ing form
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M
2
e=DleRu+t-v. (86)
j=1 | '
We shall present our derivation of a closed—form optimal solution of equation (85) in this appendix.

Let the gr_adicnt of the error function (85) with respect to { be zero, we have

t=ov—Ru, (87)
M M
where & = %Z V= %zv] Substituting equation (87) into (85), we have
M 7 5 .
e= YRy -oy]. (88)
j=1

wherey; = u; — & andy; = v; — V. Again, by letting the gradienf of the equation (88) with respect

to @ be zero, we have

o =1 : O ©9)

M .
eEEujng- \ ‘ (90)

Notice that the first term in equation (90) is independent to the unknown rotation matrix R, there-

fore, to minimize the error function (85) is equivalent to maximize the following function

o .
= Zx_’}"R , on
j=1

subject to RT R = I. The solution to the above equation can be computed by following the'
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procedures for calculating a closed—form solution to equation (36) in Section III, Steps 2-5 (re-

fer to Arun et. al.[3], Umeyama{19]).

APPENDIX C.

Assuming that M is an even number, then from equation (29), we have

Aq(i+1);‘ =(- M;- 1) 0, j=12,..M (92)
M M

and OP= dp; Aq(j,1y— OF > Aqgay- - ©93)
j=1 j=1

Notice that the second term of equation (93) on the right hand side is zero because

ES

M
F > Aqgsy=9F 2 (qgsy ~ Tgen) = O S
j=1 j=1

From Lemma 1 and assumption (A.2), we have the covariance matrix

Cov[dP] = Q2 22(} =~ 1) A (95)

which yields
Cov[6P] =025 I35 (96)

where ng =(Q? ¢ w

Notice that Ap; inequation (43) is noise free, therefore, the length of Ap; is exactly Aq(i +1)f
and each vector 4 pj.j= 1,2, ..., M, has exactly the same direction as is the true kinematic parameter

b;.ie, Ap; = Aq(i +1y b;. Hence, from equations (43) and (92), we have

IP| = qu(,+1),-Q2w M. - ©7)

j=
The covariance matrix of 68 can be derived from equations (96) and (97) as follows (remem-

ber that Q = AQ/(M — 1)).
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where

and

Cov[3B] = 035 33 - - (98)

o'g =0_%P_=T(M)_Ui. _ (99)
T — |
_12(M - 1)
TM) = 37 Gr 7 1) (100)

In general, if the number of measurement is odd, the derived covariance matrix for a even measure-

ment number can be used as a reasonable approximation.

M
e ='6¢TZ

APPENDIX D.

Expanding cquation (66) as the follows.

M

T | M
[Skew(g'gj) Skew(g*g,.)] g Slou su)+ Y[oe? o 3]
j=1

j=1

M T M M T .
) 6¢Tz[8kew(g*gj) 6u'j] +2 2[69 6u'}r gj] + 26¢T2[Skew(g*gj) ; 69].(101)
j=1 j=1 j=1 :

Notice that the last term in equation (101) is equal to zero, because

*

Skew(g"g-) v; =0 Y XY= 0. o (102) __

=7

By minimizing the error in equation (101), we have

and

M T M T 3 :
Q*Z[Skew(gj) Skew(v_,)] 8¢ = E[Skew(zj) M}_], -
j=1 P |
Sl aloen Sur)

j=1 j=1 ‘

Note that the left hand side of equation (103) can be approxi;riately represented as follows.

40/2

49

M T oM T '
0 E[Skew(l_’j) Skew(t_’j)]dqﬁz J [Skew(gj(ﬂ)) Skew(gj(e))de]agb, (105)
j=1

—-A4Q/2
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which leads to

[ 1 _ sin(4Q) 1
(i T 240 )5¢x
Ly 2 — 2cos(4Q) — 85111(AQ/2)2 sin(4Q) M
oM (2 402 240 )a¢y - Z[S"ew(zf)Tau’-], (106)
AQ? - 2(1 — cos(4Q)) 56 =1
407 Pz

T T
Lety; = [v_x] Vyi zzj] and ou’; = [6u ; 6uyj 6uzj] , then the right hand side of equation (106)

can be rewritten as follows.

M
Z v, Ou

j=1
M
i[Skew(gj)T 6u’j] = —~ le_fx, Ot : | (107)
J=L
M
;;(_ Yy Oty + Yy 6”)?‘) ~

o

Computing the variance of d¢, from equations (106) and (107), we have

/ 2 2f1. Sm(AQ)
/ o= M (2 T3, = Z (108)
where the right hand side of the above equation can be approximated as follows.
y AQ/2
2 2 _ Mo? 2 _ 2. {1 sin(4Q)
Egyj o =40 J zyj(ﬁ)de-a M(2 240 ) (109)
i=1 —4Q/2
Therefore, the variance of the first orientation error is
2
0%, = ?‘;—M P(40), (110)
240 ' (111)

2:440) = 75— sin(dQ)

where
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Similarly, the second and the third orientation error variance can be computed as follows.

2 _ _0o% |
0'5¢y - 9*2 M ¢_)f’(Z1Q) (112)
3 __0° .
and Top, = o2 M @,(40) (113)
2402
= 114
where PHAQ) = 757 41 = cos(d0)) + 40sin(dQ)’ (1
402
?,(4Q) = . 115
Also, from equation (104), we have
AQ2 — 21 — cos(4Q)) &
J=
The error variance of the estimated radius can be computed from equation (1 16) as follows.
)
03, = gﬂ @,(40) . (117)

- APPENDIX E.

From equations (53), (54), (55) and (60}, the estimation error of the translation vector can be

derived as follows’.

&t =00 7 — 0T + o Skew(r) 8¢ — Skew(t') 8¢. (118)

The average of vectors v;, j=12,..M,is

1 & 1 4
14 :HE:IV]%A'—Q J V(B) do = g I (119)
= -40/2
(22
where v, = 2sm( 2) (120)
X AQ

Therefore, from equation (118), we have

-



5, 7y Or + t; Oy — t, O,
of = aty =] — Q‘Vx O¢; — t; Opx + tx O, |. (121)
6tz Q'Vx a¢y + ty a¢x - tx a¢y

Observe equations (106) (107) and (116). Random variable d¢and Oy are linear combinations of
Sthq, Ol ..., Olipp and 0 and 3¢, are linear combinations of Ou,,, Sy, .., Ou y and 6uy1, (5uy2,
ey Ollypp Since duy;, Ou,; and Su,; are mutually independent random variables, therefore, Ogx or
d¢py and d¢p; or O are independent random variables. Hence, the variance of d¢, can be easily
derived as follows

2

, | *Zsin(ézg-)

o, = |- gtk 0%y, 12 O3y (122)

For deriving the variance of 8¢, we have to consider the effect of dependency of 8¢, and 59. From

equations (106) and (107), we have

M
Q)Z(AQ Z[— vy; Oty + vy auyf]‘ (125)

From equation (116), we have

/ (AQ)E[ ; Oy + vy du] | (124)

Substituting equations (123) and (124) into (121}, and extracting the equations related to 6y, we

= ©,(40) [f( )au +Z(vx T )a ]+tz Sy

have

(125)
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By applying Lemma 1 and using the integral result to approximate the one obtained by summation,
and notice that y,; = cos_(q G +1)j) — ¥, and Vy = sin(q i+ 1),-) are respectively even and odd func-

tions with respect to the joint angle, which yields

N 4002
. Vi = A‘% J vdq) vylq) dg =0, (126)
j=1 -4Qp
therefore,
4sin2(%) ,
0, =7 Okt 0h, %o (127)

Substituting equations (123) and (124) into (121), and extracting the equations related to t,, we

have.

M
oty = Z[-— 2/(40) (0" 7 — 1) vy + PL4Q) & zyj] duy. - (128)
j=1

Similarly, by using‘eqqation (126), the variance of the estimation error, 8t,, can be derived as follows

2si 40
. sm(T) 5 5
/
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