E' ' . TR-94-005
Efficient Algorithms for Data Distribution
on Distributed Memory Multicomputers

Peilong Lee

STEEE

0 IIIIHIMNIIIIIWIIIHNIINHHIIHWHH!IIMIlllmm?lllllllHWHllJ ‘

000375

Efficient Algorithms for Data Distribution on Distributed Memory

Multicomputers?

PeiZong Lee
- Institute of Information Science, Academia Sinica
Taipei, Taiwar, R.O.C.

Internet: leepe@iis.sinica.edu.tw
TEL: 4886 (2) 788-3799
-FAX: 4886 (2) 782-4814

Abstract

Data distribution has been one of the most important research topics in parallelizing compilers
for distributed memory parallel computers. Previous research works either only allow programmers
explicitly to specify the data distribution using language extensions and then can generate all the
communication instructions by compilers, or use compiler techniques to automatically determine
a static data distribution scheme for the whole target program. In this paper, we show that data
re-distribution is necessary for executing a sequence of Do-loops if the communication cost due to
perform this sequence of Do-loops is larger than a threshold value. Based on this observation, we
propose efficient algorithms which can determine effective data distribution schema. for executing a
sequence of Do-loops with a general structure. Our result contributes towards automatic compilation
of sequential programs to message-passing version programs running on distributed memory parallel
computers. Experimental studies on a 32-node nCUBE-2 computer are also presented.

-

4

/ ,
Keywords: component alignment, data distribution, distributed memory computer, dynamic pro-

gramming algorithm for data distribution, parallelizing compiler.

A preliminary version of this technical report is accepted to be presented at the IEEE Inter-

national Conf. on Parallel and Distributed Systems, Hsinchu, Taiwan, Dec. 19-21, 1994.

1This work was partially supported by the NSC under Grants NSC 82-0408-E-001-016 and NSC 84-2213-E-001-003.

1 Introduction

This paper is concerned with designing efficient algorithms for data distribution on distributed memory
parallel computers. We formulate the problem: when given a sequence of s Do-loops with a general
structure, we want to determjﬁe effective data distribution schema for executing this sequence of Do-
loops. This problem can be classified into cases in three levels as shown in Fig. 1: (a) a sequence of s
Dt;:-loops; (b) a sequence of s Do-loops which are enclosed by an iterative loop; and (c) a sequence of
s Do-loops with a general structure, and among them, some consecutive Do-loops may be enclosed by
iterative loops, which, again, with adjacent Do-loops, may be enclosed by other iterative loops, and so

Oon.

[Ll _E Li I;If ;
[12 [L2 E L3
[L3 [L3 C t:
: : B
[Ls _[- Ls l’___: Ls
(2))] (@)

Figure 1: (a) a sequence of 3 Do-loops; (b) 4'sequence of s Do-loops which are enclosed by an iterative
loop; and (c) a sequende of s Do-loops with a general structure.

This problem is quite important, because many scientific programs are comprised of a séquence of
Do-loops or iterative loops, which may contain other sequences of Do-loops with a general structure.
Thus, if a compiler adopts a naive data distribution scheme, this may result in excessive communication

overhead when these programs are run on distributed memory parallel computers.

Data distribution has been one of the most important research topics in parallelizing compilers
for distributed memory parallel computers. In theoretics, Mace first showed that a class of dynamic

data layout problems for interleaved memory machines are NP-complete [24]. Anderson and Lam

then presented another formulation of the dynamic data layout problem to be NP-hard [1]. Kremer

also identified that the problem of dynamic data remapping (the inter-phase data layout problem) is
NP-complete [18]. Li and Chen, in addition, proved that the problem of determining an optimal static

alignment between the dimensions of distinct arrays is NP-complete [23].

Thus, in practice, previous parallelizing compiler research emphasizes on allowing programmers to
specify the data distribution using language extensions and these can then generate all the communica-
tion instructions by compilers [2, 25, 32). It is also possible to use compiler techniques to automatically
determine sequential programs’ data distribution on distributed memory systems. Li and Chen [23],
Gupta :;nd Banerjee [9] formulated the component alignment problem from the whole source program
and used it to determine data distribution. As mentioned in the previous paragraph, the component
alignment problem is NP-complete; nonetheless, Li and Chen have proposed an efficient heuristic al-
gorithm based on applying the optimal matching procedure to a bipartite graph constructed from the
nodes corresponding to components (dimensions) of two data arrays [23]. However, the fixed data
distribution schema they derived may result in a larger communication overhead. Unlike them, in this
paper we will deal with each Do-loop independently. Data distribution schema between two Do-loops
may be different and may require some data communication between them. We will derive efficient

dynamic programming algorithms which can determine whether data re-distribution is necessary.

In addition, there are other research works related to the compilation of programs on distributed-
memory computers. Knobe, Lukas, Steele, and Natarajan provided algorithms for automatic alignment
of arrays on SIMD machines [16, 17). Chapman, Fahringer, Mehrotra, Moritsch, and Zima adopted
Li and Chen’s con’{ponent alignment algorithm [23] for handling distributed data in Vienna Fortran
[3}; in addition, they used language extension for handling dynamic data distribution [4], Kennedy,
Kremer, Meller-Crummey, and Carle proposed an automatic data layout strategy which is implemented
in their D programming tools. For their strategy, they first explored several possible data layouts for
each program phase, and they then defined communication cost between candidate data la,youts. of
adjacent phases. The problem of finding dynamic data, layouts for the entire program is thus reduced
to a single-source shortest paths problem [20]. Kremer also developed techniques for using 0-1 integer

Programming for automatic data layout in the inter-phase data layout problem [19]. Other papers,

which addressed the problem of determining initial data distributions or distributions for temporaries,

include [5] [6] [29].

Furthermore, Hovland and Ni determined data distribution ﬁsing augmented data access descrip-
tors [11]. Kalns, Xu, and Ni suggested a cost model for determining a small set of appropriate data
distribution patterns among many possible choices [15]. Kalns and Ni proposed techniques for logical
processor mapping that minimizes the total amount of data that must be communicated among pro-
cessors [14]. Chen and Sheu [7], Huang and Sadayappan [12], Ramanujam and Sadayappan [26, 27),
and Wolf and Lam [30, 31] determined data distribution and/or degree of parallelism based on the hy-
perplane method. In addition, Gong, Gupta, and Melhem {8] and Hudak and Abraham [13] developed

compile-time techniques for optimizing communication overhead.

With this brief introduction now completed, the rest of this paper is organized as follows. In Section
2, we review some background of distributed memory parallel computers and introduce a primitive
dynamic programming algorithm for data distribution. In Section 3, we introduce another dynamic
progra.mxhing algorithm which is especially suitable for determining data distribution of a sequence
of Do-loops enclosed by an iterative loop. In Section 4, we propose three efficient algorithms to deal
with the three cases mentioned in Fig. 1. In Section 5, we present experimental studies on a 32-node

nCUBE-2 computer. Finally, some concluding remarks are given in Section 6.

2 Background

7

/

In this paper, we are concerned with distributed memory systems. The abstract target machine we

adopt is a g-D grid of Ny x Na X -+ x N processors, where D stands for dimensional and g is less than

or equal to the deepest level of the Do-loop program. A processor on the ¢-D grid is represented by the

tuple ‘(pl, D2y --+3 Pg), Where 0 < p; < N;— 1 for 1 <¢ < g. Such a topology can be easily embedded
into almost all distributed memory machines, including configurably massively parallel computers. For

example, the ¢-D grid can be embedded into a hypercube computer using a binary reflected Gray code.

The parallel program generated from a sequential program for a grid corresponds to the SPMD
(Single Program Multiple Data) model, in which each processor executes the same program but oper-
ates on distinct data items [9, 10, 22, 28]. More precisely, a source program in general has sequential

parts (which must be executed sequentially) and concurrent parts (which can be executed concur-

rently). Each processor will execute the séquential parts individually; while all processors will execute
the concurrent parts altogether by using message-passing communication primitives. In practice, scalar
variables and small data arrays used in the program are replicated on all processors in order to reduce
cominunication costs; while large data arrays are partitioned and distributed among processors [21].
Gupta and Banerjee [9] proposed a data distribution function, which can map each array dimension
to a unique dimension of the processor grid. In addition, the data distribution function can specify

the method of partition to be “contiguous” or “cyclic” or “contiguous-cyclic”.
2.1 A Dynamic Programming Algorithm for Data Distribution

Previously, researchers formulated the component alignment problem from the whole source program
and used if to determine data distribution [9, 23]. When given a program, they first constructed
a component affinity graph from the source program. It is a directed, and weighted graph, whose
nodes represent dimensions (components) of arrays and whose edges specify affinity relations between
nodes. Two dimensions of arrays are said to have an affinity relation if two subscripts of ‘these two
dimensjons are affine functions of the same (single) index of a Do-loop. The weight with an edge is
equal to the communication cost and is necessary if two dimensions of arrays are distributed along
different dimensions of the processor grid. The direction of an edge specifies the direction of the data

communication according to the “owner computes” rule.

The component alignment problem is defined as partitioning the node set of the component affinity
graph into ¢ djsjoinf:ced subsets (g is the dimension of the abstract target grid and ¢ may be larger than
the dimension of the physical target grid) so that the total weight of edges across nodes in different
subséts is minimized, with the restriction that no two nodes corresponding to the same array are in
the same subset. These ¢ disjointed subsets will be used to determine data distributions for all data
arrays. Although the component alignment problem is NP-complete, Li and Chen have proposed an
efficient heuristic algorithm based on applying the optimal matching procedure to a bipartite graph

constructed from the nodes corresponding to components (dimensions) of two data arrays [23].

However, the fixed data distribution schema derived by previous researchers may result in a larger

communication overhead. Unlike them, we will deal with each Do-loop independently. Data distri-

bution schema between two Do-loops may be different and may require some data communication
between them. In the following, we introduce a primitive dynamic programming algorithm to deter-

mine whether the data re-distribution is necessary.

Suppose that a program contains s Do-loops: Ly, Lg, ..., L, in sequence. Let M;,; be the cost of

computing the sequence of Do-loops L;, Lit1, - -+ Litj—1 using the component-alignment algorithm,

and P;; be the distribution scheme, for 1 < i<sandl<j<s—i4 1l Define T} ; to be the
cost of computing the sequence of Do-loops Ly, L2, ..., Liyj_1 with the restriction that it uses the
distribution scheme P;; to compute Do-loops Li, Lit1, .. L;tj—1. Thus, the final data distribution
scheme after computing T} ; is P;;. Initially, T3 ; is equal to My,;.

Algorithm 1: A dynamic programming algorithm for computing the cost of data distribution schema

of executing a sequence of s Do-loops on distributed memory computers is presented.
Input: M;;, P;j, and T1; (= My ;), where 1<i<s and1<j<s—1+ 1.
Qutput: The cost of executing s Do-loops on distributed memory computers.
for ¢ := 2 to s do
forj:=1tos—1i1+1do

T:; = MINy cpci{Ti-k, k + M;,; + cost(Pig,k, Pi,5)} 5
end.for end_for

A o A

Minimum_Cost 1= MINy<k<s{Ts—rt1, + loop_carried dependence(Ts—k41,%)} -

¥

Note: cost(P, ki P;, ;) returns the communication cost of changing data layouts from P;_j i to
F; ;. loopcarried_dependence(Ty_g41,1) returns the communication cost incurred by the loop-carried
dependence, if a sequence of distribution schema are used for computing Ts—k41,%. For example, if
a sequence of distribution schema Py, ;s Phy, o - -+, 304 Ps_gy41, 5 are used for computing Ts— k41, ks
then loopcarried_dependence(Ts—p41, k) returns the communication cost of changing data layouts from

Ps_ky1,5 10 Py, py-

Algorithm 1 can be regarded as finding a single-source shortest paths in a weighted graph. In this
weighted graph, there are two virtual nodes and i(%ll physical nodes. Two virtual nodes include
one source and one sink. 5@;'—1)- physical nodes n;; are numbered by ¢ and j, where 1 < 7 < s and

1< j<s—i+1. Nodes’ weight, edges, and edges’ weight of this graph are defined as follows. (1) The

6

weight of two virtual nodes each is zero. (2) The weight of node n; ; is M; ;. (3) The source has s edges
connected to nodes n; ;, and the weight of these edges each is zero, for 1 < j < s, respectively. (4) The
sink, which also has s edges, is connected by nodes i (s—i+1)s and the weight of these edges each is also
zero, for 1 < i < s, respectively, And, (5) node n;; has s—(i+7) +1 edges connected to nodes Niti) ks
and tﬁe weight of these edges each is cost(P;, Piyj) i), for (i+7) <sand 1<k <s—(i4+j)+1,
respectively. Then, Algorithm 1 is equivalent to find shortest paths from source to sink such that
the sum of nodes’ weight and edges’ weight in each of these paths are minimum. Fig. 2 shows the

corresponding single-source shortest paths problem for s = 5.

Figu{; 2: The corresponding single-source shortest paths problem for s = 5.

The data distribution scheme obtained from Algorithm 1 is at least as good as any static data
distribution scheme, because the cost of any static data distribution scheme is equal to 7y ,. We
now briefly analyze Algorithm 1. The time complexity of this dynamic programming algorithm is
O(s®). However, before applying this dynamic programming algorithm, we need to compute s(s+1)/2
component alignment problems for the consecutive Do-loops L;, Lit1y ooy Ligjq, where 1 < 4, j < |

t+7j—-1<s.

2.2 A Safnple Example

In the following, we use a compiete example to illustrate how to apply the above dynamic programming
algorithm for determining data distribution. Suppose that the problem size is m and the number of
processing elements used is N. Consider the following program which will be executed on a linear

PTOCESSOT array.

1 DO42n=1, OUT_ITERATION 22 DO24j=1m

2 DO6i=1m 23 YH =YW + AGD
3 X =00 24 CONTINUE
4 DO6j=1,m - 25 DO 37k=1 MAX_ITERATION
5 () = X0 + AL 26 DO30i=1m

L6 CONTINUE 27 V(i) =00

= 7 DO 19k = 1, MAX_ITERATION 28 . DO30j=1lm _
8 DO12i=1,m 29 V() = V() + AGD * UG
9 CiH=0.0 30 CONTINUE
10 DO 12j=1m 3l DO34i=1,m
11 ci)= C(1) +AGJ) *BGE) 32 DO34j=1,m
12 CONTINUE .33 Al 1) (AG,D) + V() - YE) / (m * m)
13 DO16i=1,m 34 CONTINUE
14 DO16j=1,m 35 DO37i=1
15 A(l.J) (A(I,J) +CH-X@) /(m* m) 36 Y@ = Y(I) + (U@ - V) T AGD
16 CON‘I’.EN’UE |37 CONTINUE
17 PO19i=1 - 38 DO4li=lm _
18 X(i) = X(x) + (B@) - CEY / A(LD 39 XD(n,i} = X3 + AG,1) * YD)
19 CONTINUE 40 YD(n,i) = Y{) + AG,1) * X()
20 DO24i=1m | 43 CONTINUE
21 Y(i) =0.0 42 CONTINUE

We let line 2 to line 6 be loop L;; line 7 to line 19 be loop Ly; lire 20 to line 24 be loop Ls;
line 25 to line 37 be loop L4; and line 3!8 to line 41 be loop Ls. The component affinity graphs
and the correspondh}g component a]ignn::ent of these five loops are shown in Fig. 3. The weight of
an edge is defined as follows. Because the topology of our target machine is a linear ari‘ay, if the
corresponding array’s dimensionality on the tail of an edge is 1, then the weight of that edge is defined
to be ManyToManyMulticast(m/N, {N PEs}). If the corresponding array’s dimensionality on the
tail of an edge is 2, then the weight of that edge is defined to be ManyToManyMulticast(m?/N, {N
PEs}). ManyToManyMulticast(s, {Z PEs}) has the purpose of replicating data of size s each from
a set of Z processors to each processing element of these Z processors. The communication cost of
ManyToManyMulticast(s, {Z PEs}) is roughly equal to s * Z + Transfer(1), where Transfer(s’) means

to send a message of size s’ from a processor to another processor.

We now analyze the approximate computation time and communication time of these five loops

AI_"X Al""—_C"__B Al

-7 Xl/:l R P
c2
AA—>Y

A2 A2__‘_......_> X
) (L?-) a3
Cl
A1 _ﬁ___,_ - 1 c1 c1—[
x*-’ xm*—' AI—B" YD2 <Y

.-
- - -
- ‘

== V u XD1 A2 YD1
*)

C1 =ManyToManyMulticast{m/N, {N FEs}), or m * Transfer(]1)
C2 = ManyToManyMulticasi(m? /N, {N PEs}), or m?* Transfer(1)

Figure 3: The component affinity graphs and the corresponding component alignment for By, Ls, L,
Ly, and Ls, respectively. Transfer(s) means to send a message of size s from a processor to another
processor. ManyToManyMulticast(s, {Z PEs}) has the purpose of replicating data of size s each from
a set of Z processors on the specified grid dimension(s) to themselves.

depending on whether matrix A is distributed row by row or distributed column by column. Suppose

that the average time of computing a floating point operation is ¢ ¢ and the average time of transferring

a word is f.. Then, Table 1 shows the approximate computation time and the communication time of

these five loops, where K is equal to the constant MAX_ITERATION and

-

/ C, = (mz/N)*tf ‘
Cy = Kx*{((5m*+3m)/N)*1;
C. = (4m/N)+1;
Ci = mx*(logN)*t,
Ce = Kx(mx(logN)+m)+t,
Cy = m=*t,.

Suppose that the cost of performing a matrix transpose operation, Cr, is (m2/2N)+ (log N)*1; in
addition, Cr is very small in comparison with C, (= K *(mx(log N)+m)t,),and C; < Cy < Cp < Ce.
Then, the commumcatlon cost M; ; ! ; required for computing different sequences of consecutive Do-loops
by the component-alignment algorithm is shown in Table 2. Note that, M; ; is the total execution time

of computing the sequence of Do-loops L;, Liz1, ..., Liyj—1. Since the computation of this parallel

oy

matrix A is distributed matrix A is distributed
row by row column by column
computation | communication || computation communication
time time time time
Ll Ca 0 Ca Cd
Lz Ob ‘ 0 Cb Ge
Ls Ca Ca Ca 0
La Ch Ce Ch 0
Ls Ce 0 C, Cy

Table 1: Computation time and communication time of five loops.

algorithm is load-balanced, we only need to consider the communication time M;; here, because the
computation time for all different data distribution schema are tEe same. For simplicity, wé use M; ;
to represent M ;. Similarly, T;; will only represent the total communication time of computing the
sequence of Doloops L1, La, ..., Liyj—1 in this example. Thus, the expectant communication cost

required for computing the sequence of s (= 5) Do-loops can be solved by Algorithm 1 as shown in

Table 2.

From Table 2, we conclude that it requires in total 2C7 + C; communication time for executing an
iteration of the outmost loop. In addition, there is one candidate sequence of data distribution schema
for an outmost iteration. That is, first, data layouts between L; and L, are not changed; next, a
matrix transpose operation for matrix A is necessary before executing Ls; then, data layouts between
L3, Ly, and Ly are nof changed, although it requires transferring m words in Ls; finally, another matrix

H .

transpose operation for matrix AT is necessary before the next iteration.

In the following, we list data distribution functions for each data array. As the iteration space is
rectangular, for the sake of requiring load balance, the distribution functions for all array dimensions are
determined to be contiguous. Suppose that the number of processing elements in the linear processor

array is N and 1 < 4,7 < m.
For Do-loops Ly and Lg:

FaG)= T3 2 = fo) = Fo() = (L))

10

IMl'J' ||j=1]j=2|j=3l j=4 | j=>5 I

i=1] 0 0 Ci | Ci+C.|CitC. |
i=2 0 Cq Ce C.+Cy
=3 0 0 1 ¢
=4 0 | G
i=5 0
i =M1=0
TNia=M2=0
T3 = Miz=0Cy

T4 = Mys=Cs+C,
Tis = Mis=Ca+C.
Toy = T11 + M2y + (cost(P;, Pn)=0) =0
Taa = Ti1 + Moo + (cost(Piy, Paz) = 0) = Cy
Tos = T11 + Mag + (cost(P1y, Pa3) = Cr) = C. + Cr
T34 = Th1 + Mys + (cost(Pry, Pas) = Cr) = C. +Cy + Cr
T3 = MIN{T% + Mz + (cost(Pa1, Pa1) = Cr), Ti2 + May + (cost(Pra, Ps1) = Cr)} = Cp
T32 = MIN{T%1 + M3z + (cost(Pz, Ps2) = Cr), Ti2 + Maz + (cost(Pi2, Paz) = Cr)} = Cp
T33 = MIN{T31 + Mas + (cost(Pai1, Pa3) = Cr), Tiz + Mss + (cost(Pia2, Pas) = Cr)} = Ci+Cr
Ty = MIN{T5; + Myy + (cost(Pa1, Pa1) = 0), Toz + Maz + (cost(Paz, Pa1) = Cr),
Ti3 + My + (cost{P13, Ps1) = Cr)} = Cr
Typ = MIN{T31 + Mayz + (cost(Ps1, Pyz) = 0), Toa + My + (cost(Paz, Pss) = Cr),
Tis + Maz + (cost(Pis, Pya) = C7)} = C; + Cr
Ts1 = MIN{T1 + Msy + (cost(Par, Psr) = Cy), Tz + Msy + (cost(Psz, Ps1) = Cy),
Th3 + Msy + (cost(Pas, Ps1) = Cy), Tia + Msy + (cost(Prg, Ps1) = 0)} = C; + Cr.

LT [i=1 T j=2 [j=3 | j=4 | =5]
1=1 0 0 Ci Ca+C, Cd+C,]
1=2 0 Cq C,+Crp Oe+Cf+CT

Adi=3 Cr Cr Cy+Cr

i=4 Cr Cs+Cr

i=5 C_f-I-CT

Minimum_Cost= MIN1<ik<s{Ts-141, % + loop_carried_dependence(Ts_ E+1,k)}
: = MIN{Ts; + Cr, T4z + Cp,Taz + Cr, Toa + Cr, Ti5 + 0}
= 2Cr 4 Cy.

Table 2: Apply Algorithm 1 to the sample program. M;;: the communication cost required for
computing a sequence of consecutive Do-loops (L, Lit1, - ++, Liy;_1) using the component-alignment

algorithm. T;;: the communication cost required for computing a sequence of consecutive Do-loops
(Lls L2, trtry Li-[—j—l)'

11

For Do-loops L3, L4, and Ls:

Fatin1) = Freolin) = Froind) = (gl £x) = fr () = o) = () = (U

Note: the data distribution function fx(i) = p means that the entry ¢ of the one-dimensional data
array X, X[i], is stored in processing element p. The data distribution function f4(%,7) = p means

that the entry (i,7) of the two-dimensional data matrix A, Alf, 7], is stored in processing element p.
2.3 More Details about Data Distribution

This subsection maybe appears immediately after introducing Algorithm 1; however, we think that
it is more suitable for presenting the sample example first. In this subsection, we describe the data

distribution for each data array in P;; detailedly.

As readers can see from Fig. 3, the component affinity graph and the corresponding component
alignment for each Do-loop only deal with data arrays which are used in that Do-loop. Therefore, if
a data array is used in L, Lit1, « - Ligj—1, then its data distribution can be determined from the
component alignment algorithm and is defined in F; ;. However, if a data array is not used in L;, Lit1,

<oy Ligj—1, then, after applying the component alignment algorithm, its data distribution in P;;is
not defined. In the following, we use a heuristic method to assign a data distribution in P;; for each
data array, if this data array is not used in L;, Liy1, - - Litj-1. This heuristic method includes two

phases.

¥

/
The first phase is applied during constructing the (P;;)-table. Suppose that a data array is not

used in the first e — 1 Do-loops and it is used in the e-th Do-loop, for e > 1. First, we.implicitly
assume that its data distribution during computing the first e — 1 Do-loops is the same as the one
defined in the e-th Do-loop. Therefore, if i + j — 1 < e, then the data distribution in P;; for this data
array is defined to be the same as the one defined in P 3. Second, if this data array is not used in a
Do-loop, we also implicitly assume that its data distribution is not changed during the computation.
That is, its data distribution is still the same as the one defined in the previous Do-loop. Therefore,
if i> e and this data array is not used in L;, Li31, - -+ Litj—1, then the data distribution in P;; for
this data array is defined to be the same as the one defined in F;_1);- For instance, suppose that in

the first three Do-loops, a data array is only used in the second Do-loop. Then its data distribution

12

du.ﬁng computing the first Do-loop and the third Do-loop is the same as the one defined in the second
Do-loop. |

The second phase is applied after performing Algorifhm 1. After performing Algorithm 1, we have
found a sequence of distribution schema Py, .., Pay pps -+ PA& pes for computing a sequence of s Do-
loops. Suppose that a data array is first used in Lags Lag41s « -5 Layqug—1, then its data distribution
in Py,,u, is determined from the component alignment algorithm. First, for i < f, this data array is
not used in Ly;, Lygyas « oy Daggp—1, thus, we can let its data distribution in Py, ,, be the same as
the one defined in Py, ,.. Second, for ¢ > f, if this data array is not used in Ly, Iy41, -« o Dagpp—1,

then its data distribution in Pj;,,; is defined to be the same as the one defined in Py, _, ,, ..

For instance, in the sample example, although data arrays B and C are not used in L3, L4, and
Ls, their data distributions during computing L3, L4, and Ls are the same as the ones defined in the
first two Do-loops. Similarly, although data arrays XD, YD, Y, U, and V are not used in L; and L,
their data distributions during computing L; and L; are the same as the ones defined in the last three

Do-loops.

3 The Case When s Do-loops Are Enclosed by an Iterative Loop

Algorithm 1 works well when a program contains s Do-loops. However, if an iterative loop contains s
Do-loops, we can improve the results. Ihe fundamental rationale behind this improvement is that we
find this sequencejof s Do-loops a,ppear-ing in a cyclic fa,s;lion. Therefore, every Do-loop can be treated
as the first Do-loop. In the following, we introduce a new dynamic programming algorithm, which is

based on Algorithm 1, for data distribution.

Suppose that an iterative loop contains s Do-loops: Ly, Lo, ..., L, in sequence. Let M; ; represent
the total execution time of executing the sequence of j Do-loops (Liy Ligry oo o Ligjm1) i+ 5 ~1 < s,
or of § Do-loops (L;, Liz1y «vvy Ly L1, ooy Liy;1-s)if i+ j — 1 > s, using a static data distribution
scheme F;; , where P;; can be obtained by applying the component-alignment algorithm, for1 < i< s
and 1 < j < s. T} ; is defined the same as that of in Section 2.1. That is, T; ; is the cost of computing
the sequence of Do-loops Ly, Ly, ..., Liy;—1 with the restriction that it uses the distribution scheme P ;

to compute Do-loops L;, Liyq, ... Liy;-1. Thus, the final data distribution scheme after computing

13

T;; is P; ;. Initially, 71 ; is equal to My ;.

Algorithm 2: A dynamic programming algorithm for computing the cost of data distribution schema
of executing a sequence of s Do-loops enclosed by an iterative loop on distributed memory computers

is presented.

Input: M;;, P;;, and Ty (= My;), where 1< i<sand 1<j<s.

Output: The cost of executing an iterative loop which contains s Do-loops on distributed

memory computers.

1. for m :=1to s do

2. /* Compute s sequences of Do-loops. */

3. for ¢ := 2 to s do

4. forj:=1tos—i+1do

3. T:; = MINy<rei{Tior e + Mi; + cost(Pi_g ks Fi i)}

6. end_for end_for

7. Minimum.-Cost(m) := MIN1cr<s{Tsk+1,k + loop-carried_dependence(Ts—k41, 8}
8. /* Shift (M;, ;)-table. */

9. for j:= 1to sdo

10. copy My ; to TempM; , copy Py; to TempP; ;

11. end_for

12. for i:=2to s do

13. for 1 :=1tosdo -

14. feopy M;; to Mi_y; ,copy Fijto P53

15. end._for end_for

16. for j:=1tosdo 7 r
17. copy TempM; to M, ; , copy TempP; to P ; , copy My, ; to Ty;;

18. end_for

19. end._for

20 Final_Minimum_Cost := MINi<m<s{ Minimum_-Cost(m)} .

The algorithm fragment from Line 3 to Line 7 is Algorithm 1; the algorithm fragment from Line
9 to Line 18 implements a data shift operation for (M; j)-table. Fig. 4 shows a complete example by
applying Algorithm‘iz to the sample program mentioned in Section 2.2 for determining data distribution.

We can see that it only requires in total 2C7 communication time for executing an iteration of the

14

outmost loop. This result is better than that of Algorithm 1. From Fig. 4, we conclude that, in an
outmost iteration, Ls, Ly, and L; use a data distribution scheme and L3 and L4 use another data

distribution scheme. In the following, we list data distribution functions for each data array.

For Do-loops Ls, L1, and Lg:
fa(i, 7)) = (I-m/NJ)’ fxp(i,7) = frp(i,i)= ([/N)

Ix(@) = fy(3) = fa() = fe(i) =

t —
mfN
For Do-loops L3 and Ly

1
)

fA(a’J) (I. /NJ): fY("") fU(z) fV(z) (

Because Algorithm 1 is a special case of Algorithm 2, it is possible to obtain a better data distribu-
tion scheme by applying Algorithm 2 than by applying Algorithm 1. We now briefly analyze Algorithm
2. The time complexity of this dynamic programming algorithm is O(s*). However, before applying
this dynamic programming algorithm, we need to compute s? component alignment problems for the
consecutive j Do-loops Ly, Liqq, ..., Liy;1,if i+ j7—1 < s; or for the consecutive j Do-loops L;, Ly,

wLsy L1y ooy Ligjo1os,if 14+ 7 —1 > s, where 1 < i, j < s. In the next section, we will propose a

new technique to improve Algorithm 1 and Algorithm 2.

4 New Efficient Algorithms for Data Distribution
/ .

We now analyze the behavior of the (3; ;)-table. It is clear that M; (,,41) > M, for 1 < 43 < s—i+1.
We define THRESHQOLD to be a value that is equal to three times (or four times) that of the maximal
communication cost between any two distribution schema. The reason why we define THRESHQOLD

to be this value will be clear in Theorem 2 (or Theorem 3, respectively).

We want to show that if M; (1) is larger than M; g plus M(;, g), (y;—p+1) and plus THRESHOLD,
for some B where 1 < 8 < 4;+1, then it is better to use three distribution schema P; g, Plirp), (i-B+1)»
and Py 11), (j—y—1) to compute the sequence of Do-loops Ls, Lit1, - -+ Litj—1, than to use only one

distribution scheme P; ;, for v; +1< j < s—i+1. Therefore, we need not compute M;, j- Based on

15

Define: a= Ci &= Ce a= Cp + Ce
p= Ca 1= C; +Ca k= Ca+ Cp
y= Cr w= Cr + Cr y= Ca+ Ce

i‘._j12345 i‘._j1234

1]ofolpiviY 1lelO0]BivV

2101 piB| ALV alalpisle

3|ofo0}a 1.\:' 3flylylx

4l0falr 'réf'v": 4lyjx

510J0103 RV ol

M;; (before m = 1} Ts (after m = 1)

i“.j 112131415 i".'i 1l273]4

1({olptda]Aaly 1]o|pid v

ajoflojalr v AR E AR K

3]0|alr B:v 3lyixlm

alolofo:pivi e

e et

s{ojJo:pivivy 51
Ty (afterm=2)
S 2 4
1lajojairv |V
2lolalr]
3jalylY
4|l x|k
5y

Ty (afterm= 3

Mj; (before m =4)

N BEIEIEE
ilolololBiv
2lalolslv]v:
slolplafaiv:
4lajo0 a:li:vz.

e ek Mt
5|0fairib:iv:

My (beforem= =5)

Final_Minimum_Cost=

m<

~ila 234 sl]2)314]s
1j0)e 5 110l v
2]l0}0 plv: 2jelylr|®
3lololplviv: 3|lelk|m
40fsa.x':v5 slvle

T et
Soo:a:t:v: 5tz

Tij {after m = 4)

Mp1)2 314
1jologjo v
2lolols
slolp|é&
41y} Y

51y

Ty (after m =35)

1‘;’= CT‘I'CG
n= Cp+ Ca+ Cr
p= Cf-I-CT'l'Cc

= 2CT
¢=| ZCT + Cr

Minimum_Cost(})
= MIN {Tsgrxe +
G<k<6
loop_carried._ dcpcndcnce(Tsysnk) 1
MIN {Tsy+ Cr» Taa*+ Cr» Ty +Cr
Ty + Cr» Tis + 0}
ZCT + Cf

!

]

Minimum_Cost(2)
= MIN {Tsgne *
0<k<6
loop_,carried_dcpe.ndcnco(Togete)1
MIN {Tg# 0. Typ# O, Tag+ Cro

Ty + Cr. Tis +0}

n

1}

2Cy

Minimum_Cost(3)
= MIN {Tsxax +
T o<kt
loop_cartied _dependence{ Tssatx) }
MIN {Ts+ Cr» Tazt Cr, TastCr s

Ty + Cr. Tis*+ 0}

2Cr

Minimnm_Cost{4)
= MIN {Tegax *
0<k<6
]oop_carﬁed_dcpcndcncc(Tsyenx)1
= MIN {Ts+ 0+ T+ Cr» Tua+Crs

= ?'CT

Minimum_Cost(5)
= MIN {Tsxe t
0<k<6
loop,_carried._(dependence{ Tsist,x) }
~MIN {T5+Cr+ Taa#Cro Ta+ Cr»
Ty + 0. Tis+0}

= ZC-,-

{Mmunum Cosym} } = 2Cr

Figure 4: Apply Algorithﬂfﬁ‘z to the sample program.

this observation, we can show that T} (v, 11y > Te4p), (—p+1) 204 T35 > T(i4i1), (j—yi—1)- Therefore,

we need not compute T} j,for ; +1<j<s—i+ 1.

Theorem 1 : If M; (y.4q) > Mip + M1p),(vi-p+1) + THRESHOLD, for some 8 where 1 <
B <+l then Mi; > Mi g+ Mypy, (i—p+1) + Mirmyit), 5-wi-1) + €088(Ps, g, Plisg), (vi—p+1)) +
cost(it p), (vi-8+1)s Plitmidr), G-m-))s for i +1<j<s—i+1.

Proof: Consider the computation of Do-loops Li, Lita, -- - Li4p-1)s Lisg)s -+ L(i-l-“!.i)'-‘ Liymit1)s
ooy Ligj—1. Let cost.é; be the cost of computing the sequence of Do-loops L;, Liyq, ... L)
using the distribution scheme F; ;. Then, cosi_6; is at least as large as M; (4. 41). Thus, cost.§; >
Mg+ M1y, (v—p+1) + THRESHOLD. Let cost-6; be the cost of computing the sequence of Do-
100ps Ligny41)s «++» Litj—1, using the distribution scheme P; ;. Then, cost_§; is at least as large as

M{i4ai11), (j—vi—1)- Therefore,

v -

M; ; cost .1 + cost_§

Mip + Mivp), (vi-p41) + Miizy11),(j-s-1) + THRESHOLD

v Vv

M g+ Mgy, (n—-p+1) + Miigyi11), (i—vi—1) + c0st(Fi g, P(i+ﬁ).('r.'—ﬁ+1)j
+ COSt(P({+ﬁ)‘(1i_ﬁ+1j: P(i+'¥£+1).(j~'w—1))‘ A

Theorem 2 : Suppose that THRESHQLD is equal to three times that of the mazimel communication
cost between any ;two distribution schema. If M; (vt+1) > Mig+ Mgy, (y-p+1) + THRESHOLD,
for some when;,l <8<t then L i)y > TG4g), (vi—pr1) 408 o5 > Tiigmer), (i—v—1)» Jor
Yi+l<j<s—i+1.

Proof: 1. T}, (v:+1) i the cost of computing the sequence of Do-loops Ly, Lo, ..., Liw1, L, Liya,

..y

L(;4~;), with the restriction that it uses the distribution scheme P;, (v 41) to compute Do-loops L;, Ly,

o> L{igns) Then,

T, vit1)

MINy<k<i{Ti-k,k + Mi, (i41) T €OSU Pk, ks Bi, (s 41))}

MIN1<k<i{Tik,k + Mi,p + Mi1g), (—p+1) + THRESHOLD}

MINy<k<i{Tivt,k + Mi,p + Mii1p), (yip1) + cOSH Piok,k, Fi,p) + cost(B;, g, Pliyp), (vi—p+1))}
Lti4), (vi-p+1)-

Il

v v Vv

2. Ty ; is the cost of computing the sequence of Do-loops L1, L2y -+ Li_1, Liy Ligty + -0 Lii-1s
with the restriction that it uses the distribution scheme P, ; to compute Do-loops Liy Lit1y - - - Liki-1-

Let cost.§; and cost_8; be the same ones defined in Theorem 1. Then, -

Ti; = MINjgrai{Tiokp+ Mii ¥ cost(Pik, k> Fi, i)}

MINy<r<i{Ti-kk T cost_8; + cost-b2}

MINy <k<i{Timk,k + Mig + Mt g, (imptt) T Miit+1), (i=7-1) +THRESHOLD}
MIN; <rai {Tick, k + Mi,p + M(itg), (v—8+1) 4 M 41), G-i-1) T cost(Pi—k, ks Bi,p)

v

v Vv

1 cost(Pyps Piap), (ri-p1)) + C0sUPG48) (imp1)s Flits) (i--10)}

Y

T(i+‘¥i+1)= (G—v-1) 0

Suppose that THRESH OLD is equal to four times that of the maximal communication cost
between any two distribution schema. Under the condition in Theorem 1 and Theorem 2, we can
further prove that it is better to use several distribution schema to computé the sequence of Do-loops
Li—a, Licat1y « oo Litj-1s than to use only one distribution scheme Pi—q), (j+0) for 1 € @ < i and
v+1Liss— i 4 1. Therefore, we need not compute Mi_a), (j+a)- Based on this observation,
we can show that T(i-a), (vit1+a) > T(i48), (vi-B+1) and T(;—a), (j+e) = T(i4vet1), (G—r-1)> forl<a<i
and1<B<yu+lcj<s—itl Therefore, we need not compute T(i-a), (j+2)? for 1 < @ <1tand

y+1<j<s—i+ 1

Theorem 3 : S’T’Lpposea that THRESHOLD is equal to four times that of the mazimal communication
cost between any two distribution schema. If M; (qi1) > Mip t+ Mgyp), -8+ T THRESHOLD,
for some B where 1 < B8 < vi+1, then the following four cases are true for 1 < a < iand 7+ 1<
j<s—-1+1.

1. M_a), (+1ta) > M (i—a).a+Mi.ﬁ+M(i+.G),(—r.--ﬁ+1)+c°3t(P(i-a),m P; g)+cost(P;, gy Plitp), (vi—8+1)

2. Mi—a),(i+a) > Mii-a),o + Mig T Mgy, i—ptt) T M), GG-n-1) T cost(Pii—o), o Fi8) +
cost(P:.p» Pirg), (i—p+)) + 05U Py, (imp1)s Llimt), (i—%—1));

3. T(i—a),(m-+1+a) > T{i+ﬁ),(qr.'-ﬁ+1)i

4. Tlica),(+e) > Tlavet1), (-%-1)

18

Proof: We only prove the fourth case in this presentation, other cases can be dealt with using a similar
technique. T{;_4), (j4«) is the cost of computing the sequence of Do-loops Ly, L2, ..« Lica—1, Li—ay - - -
Li—1y Lis Lit1, -« Liggp-1), Lapys - - » L(igv)s Liigpg1)s - - o> Litg-1, with the restriction that it uses
the distribution scheme P(,-_a)'(j,,_o,) to compute Do-loops L;—o, Li—aty1, - - Liyj—1. Let cost_83 be
the cost of computing the sequence of Do-loops L;.n, Livai1, - - - Li-1, using the distribution scheme
Pi_a),(j+a)- Then, cost 3 is at least as large as M(;_q), 4. Let cosi-d4 be the cost of computing the
sequence of Do-loops Li, Liy1, - -, L(j1;), using the distribution scheme Pli—a), (j+a)- Then, cost_84 is
at least as large as M; (y,1). Thus, cost 6y > M; g+ My p), (v—p+1) T THRESHOLD. Let cost.d5
be the cost of computing the sequence of Do-loops L;yy;41)s - - +» Litj-1, using the distribution scheme

P(,-,_o,)‘ (G+e) Then, cost-8s is at least as large as M(,-+.“.+1)’(j -1)- Therefore,

b {3

Tiivay, (5+)

MIN; k< (ima) 1 L (i—a)—k, k + M(icay, (j4a) + COSHPl—ank), k> Pliza), (+0))}
M]I\Ilsk,((,-_a) {T(i'-—a)—k,k + cost_83 + cost_84 + (_:OSt._és}

v

v

MIN; << (i-0) {T(—a)—k,k T M(i=0),0 + Mi, 8 + M(irp), (vept1) + Mityis1), (G—vi-1)
+ THRESHOLD}

v

MIN; ghc(i-a {Tlima)mhob + Mii—a) o + Mi, g + M), cup41) + Mistndn), Goric)
+ o8t (Plica—t), ks Pli-a),a) + €0st(Pli—),ar Fi,) + c0st(Py, g, Fitp), (vi-p+1))

+ cost(Plirp), (ri-p+1)» Flitm+1), (-n-1))}

2 Titr), (j=-1)- 0

7

From the tecﬁniques we used to prove Theorem 2 and Theorem 3, readers can understand why
THRESHOLD is chosen to be equal to three times or four times, respectively, that of the maximal
communication cost between any two distribution schema. Theorems 1 through 3 also suggest an
ordering sequence of computing {M; ;)-table and (T ;)-table as shown in Fig. 5. For instance, if M3,
is larger than Mz plus My, and plus a threshold value, then from Theorem 1, we need not compute
M3,3; from Theorem 2, we need not compute T3, and T3 3; from Theorem 3-(1), we need not compute

M;3 and M, 4; from Theorem 3-(2), we need not compute M, 4 and M, 5; from Theorem 3-(3), we

need not compute 733 and T} 4; and from Theorem 3-(4), we need not compute 754 and 73 5.

Nl1l21314]5
kN 0 |15
5 5715/ 114
3 14113

4 |77

5 |

Figure 5: An ordering sequence of computing (M ;)-table and (T:,;)-table.

4.1 The Case When a Program Fragfnent Contains a Sequence of s Do-loops

This section discusses the simplest case as shown in Fig. 1-(a). Based on Theorems 1 through 3, we can
improve Algorithm 1. Let 7 be the minimum integer such that M; (yi41) > Mig + Mgy, (=841 T
THRESHOLD, for some B where 1 < <7 < s—-1+ 1. Note that, for the boundary cases when
ny=s—ti+lor g=s—1+1,we define dummy values M e—it23 Mgy1,1; 2nd M(iyp), (s—i—B+2)1 so that
the above assumption is satisfied. Let v be the maximal value among i, for1 <i<s. For example,
4 = maxicigs {7}

Algorithm 3: A new dynamic programming algorithm for computing the cost of data distribution

schema of executing a sequence of s Do-loops on distributed memory computers is presented.
Tnput: M;;, P; ;,7and 7i, where1<i<sand1< 7 < T, (= My ;), where 1 < § < y1; and 7.

Qutput: The cost of executing s Do-loops on distributed memory computers.

1. fori:=2tosdo

2 for j := 1 tov; do

3. - L= MIN; <k emingi,+1H{Timk ke T M; ; + cost(Pick, k> Pii)y HES Yi-k} 3
4. end_for end_for '

5. Minimum Cost = MINlSkg'y{Ts-—k+1,k + loop_ca'rried.dependence(Ts_k+1'k),

6. if k< 7s—k+1} ,

We now analyze Algorithm 3. The time complexity of this new dynamic programming algorithm
is O((Tize 17 + 1), which is bounded by O(sy?). In addition, before applying Algorithm 3, we only

need to compute v + 72+ F Vs + s component alignment problems for the consecutive Do-loops

20

———E

(g [[=13=2[3=33=41i=5
i=1 0 0 Cy save | save
i=2 0 Cy C. save
i=3] ¢ | 0 | G
1i=4 0 Cy
i=5 0

Ti1= M =0

Tia=M;2=0

Tia = M1z =Cyq
T2y = Th1 + May + (cost{ P11, Pu) =0) =0
Ton = Th1 + Maa + (cost{Piy, Poz) = 0) = Cq
Ts1 = MIN{T3; + Mz + (cost(Pay1, Ps1) = Cr), Ti2 + Ma1 + (cost(Pi2, Pa1) = Cr)} = Cr
Tap = MIN{T31 + Mas + (cost(Pay, Pa2} = Cr), Ti2 + Maz + (cost(Pya, Pas) = Cr)} = Cr
T3 = MIN{T3; + Mas + (cost(Pa1, Pss) = Cr), Ti2 + Mas + (cost(Pia, Pa3) = Cr)} = C; + Cr
Ty1 = MIN{T5; + My + (cost(Ps1, Py} = 0), Toa + My + (cost(Paz, Pa1) = Cr),
T13 + My + (cost(Pis, Py1) = Cr)} = Cr
Tz = MIN{Ta; + Myz + (cost(Pa1, Pyz) = 0), Toz + Maz + (cost(Paa, Py2) = Cr),
Tis + Mys + (cost(Pia, Pp) = Cr)} = C; + Cr
Ts51 = MIN{Ty: + Msy + (cost(Pa1, Ps1) = Cy), Taa + Msy + (cost(Paz, Ps;) = Cy)} = Cy + Cr.

LT [i=1] j=2 [j=3 [j=4[j=5]
i=1 0 0 Cq save | save |
i=2 0 Cy save save

1=3 Cr Cr C'f+CT

i=4 Cr Cr+Cr

1=5| Cr+Cr

Minimum_Cost= MIN1<r<3{T5-r41,k + loop-carried.dependence(Ts_r41,1)}
= MIN{Ts; + C7,T42 + Cr, Tha + Cr}
=2Cr + Cy.

/ Table 3: Apply Algorithm 3 to the sample program.
Liy Lix1y -o oy Liyj1, where 1 i < sand 1 < 7 £ 7; + 1. The total number of component alignment

problems computed is thus no more than s(y + 1).

Table 3 shows a complete example by applying Algorithm 3 to the sample program mentioned in
Section 2.2 for determining data distribution. In this example, we let THRESHQOLD be 4 x C7, we
also assume that 4+ C7 is very small in comparison with C, (= K *(m*(log N)+m)*1.). Thus, v1 = 3;
Y2 = 2; 93 =3; 74 = 2; 75 = 1; and v = 3. We can see that the result computed from Algorithm 3 is

the same as the one computed from Algorithm 1. However, the computation for Mj 4; M1 5; Ma.4; 71,45

T35, To 3; and T34 is saved. In addition, the computation for T5y and Minimum.Cost is simplified.

4.2 The Case When s Do-loops Are Enclosed by an Tterative Loop

This section discusses the second case as shown in Fig. 1-(b). Similarly, Algorithm 2 can be improved
if it adopts Algorithm 3 as part of its program instead of Algorithm 1. Let -; be the minimum
integer such that M; (y.41) > Mip + M(ixp), (n-8+1) +THRESHOLD ¥ (i +8) < 8, or M; (y11) >
M; g+ Mizp-s), (v—6+1) T THRESHOLD if (i + 8) > s, for some § where 1 < B < 7; < s. Note
that, for the boundary case when 7; = s we define dummy values M; .41 and Myp), (s—p+1) 50 that
the above assumption is satisfied. Let v be the maximal value among 7;, for 1 <1 < 5. For example,
v = maxy<i<s{7i}-

However, unlike Algorithm 2, which computes all s sequences of rotated s Do-loops, the new version
algorithm only needs to compute the first (7 4 1) sequences of rotated s Do-loops. This is because we
will use at least two distribution schema to compute the first (71+1) consecutive Do-loops. However, we
are only interested in whether the first distributjon scheme can be combined with the last distribution

scheme.

Algorithm 4: A new dynamic programming algorithm for computing the cost of data distribution
schema of executing a sequence of s Do-loops enclosed by an iterative loop on distributed memory

computers is presented.

Input: M;;, P;j, and 7i, where 1 < i< sand 1< i <y Th,; (= Myyj), where 1 < j < 75 and 7.

7

Output: The cost of efecuting an iterative loop which contains s Do-loops on distributed

memory computers.

1. Ty = (11+1);

2. for m:=1toT; do

3. /* Compute T'; sequences of Do-loops. */

4. for i:= 2 to s do

5. for j := 1 tomin{y;, s—i+ 1} do

6. T;j = MIN15k<nﬁn{i,q+1}{Ti—-k,k + M;, ; + cost{Pi—k, ks P ;), itk < Yiek} 3
7. end_for end_for :

8. Minimum_Cost(m) := MIN1<k<y {Ts—k41,k + loop_carried_dependence(Ts—r+1, k)
9. if k< Ys—ky1}s

10. /* Shift (A/I,',j)—ta.ble. */

22

11. copy 71 to Templ;

12. for j:=1toy do

13. copy M, ; to TempM; , copy P, ; to TempP; ;
14. end_for

15. fori:=2tosdo

16. copy 7i to 7i—1;

17. for j:=1toy; do

18. copy M;; to M;—,; , copy F;j to Py ;
19. end_for end_for '

20. copy Templ to 7;;

21. for j :=1to 7, do

22. copy T'empM; to M, ; , copy TempP; to Py ;
23. end_for

24. for 7 := 1 to v, do

25. copy My ; toTy;;

26. end_for

27. end_for

28. Final_Minimum_Cost := MINi<m<r, {Minimum_Cost(m)} .

We now analyze Algorithm 4. The time complexity of this new dynamic programming algorithm
is O(y1(3_f=2 7i)7), which is bounded by O(s7®). In addition, before applying Algorithm 4, we only
need to compute v, 72+ -+, +$ component alignment problems. The total number of component

alignment problems computed is thus no more than s{y + 1).

4.3 The Casd When a Program Contains s Do-loops with a General Structure

This section discusses the most general case as shown in Fig. 1-(c). In general, some Do-loops in 2
sequence of Do-loops may be iterative loops, which contain other sequences of Do-loops with a general
structure. In other words, some consecutive Do-loops may be enclosed by iterative loops, which, again,
with adjacent Do-loops, may be enclosed by other iterative loops, and so on. This enclosure relation
can be naturally represented by trees (or a forest). A Do-loop may be a simple Do-loop or an iterative
loop. Suppose that an iterative loop encloses at least two Do-loops. Then, simple Do-loops are leaf
nodes in the trees, iterative loops are internal nodes in the trees. If w Do-loops are enclosed by an

iterative loop, then this iterative loop is the parent node of these w Do-loops, and these w Do-loops

23

are the w corresponding child nodes of this iterative loop.

For instance, in the sample program mentioned in Section 2.2, Do-loops Ly, Ly, L3, Lg, and Ls
are five child nodes of the outmost iterative loop. If we further elaborate the sample program, we can
see that Do-loops Lo and L4 are two iterative loops and each of them contains three small Do-loops.
L, contains L2, which is from line 8 to line 125 L2, which is from line 13 to line 16; and Lg 3, which
is from line 17 to line 19. La4 contains L41, which is from line 26 to line 30; Ly, which is from line
31 to line 34; and L43, which is from line 35 to line 37. Fig. 6 shows the family tree of the sample
program. For convenience, we will say that Ll, Lo, L3, L4, and L are the first-level Do-loops in the
outmost iterative loop; in addition, they are siblings in this tree representation. Similarly, L2,1, L2,2
and Lz 3 are the first-level Do-loops in L3, and they are siblings; La1, Lag, and Ly3 are the first-level

Do-loops in L4, and they are siblings.

the outmost iterative loop

/|\ /|\

121122 L23 L41 142143

Figure 6: The family tree of the sample program.

Before mtroducmg Algorithm 3, we first present an algorithm which computes the cost of data
distribution schema of executing an iterative loop that contains a sequence of s simple Do-loops with

a general structure. This basic algorithm will be used in Algorithm 5.

Algorithm 5a: An algorithm for computing the cost of data distribution schema of execuﬁng an
iterative loop which contains a sequence of s simple Do-loops with a general structure on distributed .

memory computers is constructed.

Input: A program fragment of an iterative loop which contains a sequence of s simple Do-loops
with a general structure.

Qutput: The cost of executing this iterative loop on distributed memory computers.

1. suppose that there are (s) first-level Do-loops in this input iterative loop;

24

——————EEEEE

2. scan these 9(s) first-level Do-loops one by one, while there exists an iterative loop, L, which
contains a sequence of w simple Do-loops: Ls1, Lo3, ..« Lo, with a general structure, do

3. recursively apply Algorithm 5a to the iterative loop L,;

4. construct (M; ;)-table, (P;;)-table, 7;, and « for these 1(s) first-level Do-loops,

o where 1 <1 < 9(s), 1 < 7 < < 9(s), and v = maxy iy {7:}i

5. apply Algorithm 4 to these t(s) first-level Do-loops which are enclosed by an iterative loop,
and multiply the number of iterations to the resulting sequence of distribution schema,
as their weight.

We now briefly illustrate Algorithm 5a. The first four steps in Algorithm 5a are quite straightfor-
ward, in the following, we only explain the fifth step. We notice that, after applying Algorithm 4 to

an iterative loop, if the resulting sequence of distribution schema contains more than one distribution

scheme, then these distribution schema cannot be combined with any other distribution scheme in the
sequel. For convenience, we use a dummy distribution scheme to represent the resulting distribution
schema in the sequel. However, if there is only one distribution scheme obtained from Algorithm 4,

this distribution scheme may be combined with schema obtained from adjacent Do-loops.

The following Algorithm 5 is very similar to Algorithm 5a, except that Algorithm 5 deals with a

program fragment which is not necessary to contain only one iterative loop.

Algorithm 5: An algorithm for computing the cost of data distribution schema of executing & program
fragment which contains a sequence of s simple Do-loops with a general structure on distributed

memory computers is constructed.
7

/ .
Input: A program fragment which contains a sequence of s simple Do-loops with a general structure.

Output: The cost of executing this sequence of Do-loops on distributed memory computers.

1. suppose that there are 9(s) first-level Do-loops in this input program fragment;
scan these 7(s) first-level Do-loops one by one, while there exists an iterative loop, L., which
contains a sequence of w simple Do-loops: Ly1, Lyg, - -+, Low, With a general structure, do
3. apply Algorithm 5a to the iterative loop L,;
construct (3; ;)-table, (P;;)-table, 4;, and 7 for these 1(s) first-level Do-loops,
| where 1 <i<(s), 1 <j <1 <¥(s)—i+1,and y= maxy cicy(s) 1)
§ 9. apply Algorithm 3 to these 1(s) first-level Do-loops, which are not enclosed by any iterative loop,
for finding the resulting sequence of distribution schema.

25

We now use the sample program again to go through Algorithm 5. First, because the sample
program contains only one iterati.ve loop, Algorithm 5 calls Algorithm 5a to handle this iterative loop.
Then, because the outmost iterative loop contains five Do-loops L} ILo; La; La; and Ls, it (Algorithm
5a) scans these five Do-loops one by one. Since L, and Ly are iterative loops, it recursively applies
itself to these two loops. When dealing with Lo, because L21, L2,2: and Lo are simple Do-loops, it
‘constructs (M;‘j)-tablé, (P;,;)-table, 7is and -y for these three Do-loops, where 1 £ 1 < 3,1<ji<vi=3
and v = 3. After that, it can apply Algorithm 4 to L, and obtains a single data distribution scheme -
which illustrates that matrix A is distributed row by row as mentioned in Table 1. Gimilarly, when
dealing with Lj, because Ly, La2s and L4z are simple Do-loops, it constructs (M; ;)-table, (Pij)
table, i, and 7 for these three Do-loops, where 1 <i1<3,1<jsTi= 3, and. v =3 After that,
it can apply Algorithm 4 to L4, and obtains a single data distribution scheme which illustrates that

matrix A is distributed column by column also as mentioned in Table 1.

After handling L and L4 (both of which are sterative loops), Algorithm 5a constructs (M;,;)-table,
(P.-,_.;)-table, ~;, and 7 for the five Do-loops Ln; L2; La; Ly; and Ls, where 1< 1< 5 1< 7 <7 < B
=372 =213= 4rya=37=4 and 4 = 4. It then applies Algorithm 4 to these five first-level
Do-loops, and obtains a sequence of two data distribution schema as shown in Section 3. Then, it
returns to Algorithm 5. Because there is only one outmost iterative loop in the sample program and
whose data distribution schema have been obtained, Step 4 and Step 5in Algorithm 5 are not applied

7

in this case. ¢

We now analyze the time complexity of Algorithm 5. First, Algorithm 3 can be regarded as a
special case of Algorithm 4. Suppose that a sequence of s simple Do-loops with a general structure
are enclosed by ¥(s) disjointed first-level iterative loops or simple Do-loops, and in addition, the i-th
iterative loop contains s; simple Do-loops with a general structure. Then, s = Z:-‘{;(sl) ;. We now first
analyze how many component alignment problems are required to be computed in Algorithm 5. From
Section 4.2, if an iterative loop contains § simple Do-loops, 1t requires computing O(sv) component
alignment problems. Therefore, from line 4 of Algorithm 5a and Algorithm 5, we can forﬁmlate the

recursive formula of the pumber of component alignment problems that are required to be computed

26

r

in Algorithm 5 as follows.

C(l)=1;
C(s) = T2 C(s:) + O(9(s)), where s = ¥ s;.

This recursion formula is similar to the one that counts the number of nodes in an arbitrary tree in
which each internal node has at least two child nodes, and is bounded by the order of the number of
its leaf nodes. Therefore, using a similar technique, we can show that C(s) is bounded by O(sy); in

addition, the constant factor is less than 2.

We now analyze other computation time required for Algorithm 5. First, from Section 4.2, if an
iterative loop contains s simple Do-loops, Algorithm 4 can deal with this iterative loop within O(s7?)
time units. Therefore, from line 5 of Algorithm 5a and Algorithm 5, the recursion formula of other

computation time T(s) can be formulated as follows.

(1)=1;
T(s) = T2 T(s;) + O((s)r®), where s = T2 s;.

Similar to computing C(s), we can show that T'(s) is bounded by O(s7°).
5 Experimental Studies

In this section we present experimental studies and show why it is important to determine whether data
re-distribution is necessary. The target machine we used is a 32-node nCUBE-2 computer currently
in Academia Sinica. In this computer,-each node has 4 Mega bytes memory, runs at a modest clock
rate of 20 MHz, afd is rated at 7.5 MIPS (Mega Instructions Per Second), and 3.5 MFLOPS (Mega

FLOating-point operations Per Second) in single precision arithmetic.
5.1 The Sample Program

Table 4 lists experimental resuits of implementing the sample application in Section 2.2 with various
problem sizes. In this experimental study, we implement two versions of parallel programs: (1) based on
a dynamic data distribution scheme; (2) based on a static data distribution scheme. We let the constant
OU’I‘_ITERATION = 10, and the constant MAX ITERATION = 20 * log m, where m is the problem
size. Experimental results show that to use the proposed dynamic data distribution scheme is better

than to use a static data distribution scheme. Note that, the computation time of these two parallel

27

algorithms are not exactly the same, because the second algorithm which implements several message-
passing data communication operations during the computation requires more indexing operations

than the first algorithm which is based on the original sequential computation.

e | b 09 | o8 0o 0% | 5 6o
120 (0.8) 73 (16) | 59 (29 6.1 (3.8) 82 (5.9
%9 (0.2) _ 6.7 (0-3) 37 (0.6)
g0 (24) | 178 (38) | 188 (5.7) 140 (85)
m w00 | e Gi |
413 (2.0) | 1248 (4.0) | 678 (6.3) | 416 (9.2)
7083 (49) | a2l (29) | 2713 (17 | 1360 (1.2) 685 (L.1)
98 598 | 1091 (3.9) | 5532 (7.6) | 287.0 (11.8) | 1665 16.8) | 964 (227

1869 (20.3) | 2435 (11.3) | 1218 (6.8) 306.6 (2.6)
per w0 | s (59 %9 G | G
mm 10841 (45.2) | 5427 (29.8) | 2714 (i6.7) | 1358 9.0)
10011 (32.4) | 5499 (0.6} | 2802 (67.0) | 1464 (85.2)

[| oo o [n G| o oo
12322 (149.0) | 6201 (190.4)

Table 4: The simulation time, “gxecution time (communication time)”, for solving the sample program
is expressed in units of seconds: (1) based on 2 dynamic data distribution scheme; (2) based on a static

data distribution scheme. (The net computation time)} = (execution time) — (communication time).
whx%%? means “not implement” because of the memory limitation.

5.2 Two-dimensional Fast Fourier Transform (2-D FFT)

7

When given a da?ca matrix whose entries are cc-Jmplex qumbers, the 22D FFT can be computed by 2
conventional row-column method. In this method, first, we perform 2 1-D FFT for each row; then, we
perform a 1-D FET for each column. In this experimental study, we implement & 2.D FFT and then
immediately following by an inverse 9.D FFT. Therefore, the input data mat'rbc will be equal to the

output data matrix. This program contains four loops.

L,: loop 1 performs a 1-D FFT for each row;

Lo: loop 2 evaluates a 1-D FFT for each column;

L3: loop 3 calculates an inverse 1.D FFT for each column; and
Ly: loop 4 computes an inverse 1-D FFT for each row.

Table 5 shows the approximate computation time and communication time of these four loops

depending on whether the input data matrix A 15 distributed row by row or distributed column by

28

column. A static data distribution scheme by distributing data either row by row or column by
column will incur 2C), communication overhead due to requiring several “bit-reverse shuffle-exchange”
and “butterfly-pattern” data communication, Wilere Cr=2+(m?/N)*(log N)*t,. Howeve;:, because
Ch, > Cr, where C7 is the cost of performing a matrix transpose operation, thus, by applying Algorithm
5 (or Algorithm 1 or Algorithm 3), we can show that data re-distribution is required between L, and
Lz; and between Lz and Ly. Table 6 lists the experimental results of implementing this 2-D FFT
program based on both a dynamic data distribution scheme and a static data distribution scheme.
Experimental results also show that to use the above mentioned dynamic data distribution scheme is

better than to use a static data distribution scheme.

matrix A is distributed matrix A is distributed
row by row column by column
computation | communication || computation | communication
time time time time
L C, 0 Cy Ch
Lo Cy Ch C, 0
Ls C, Cy Cy 0
Ls Cy 0 Cy Ch

Table 5: Computation time and communication time of four loops. C, = ¢ % (m? % (logm)/N) = i,
where c is a constant; Cp, = 2% (m?/N) * (log N) * £,

6 Conclusions

y

' 'We have presented five heuristic algorithms for data distribution on distributed memory multicomput-
ers. In addition, data distribution schema obtained from these five algorithms are at least as good as
any static data distribution schema. First, we proposed a primitive dynamic programming algorithm
for data distribution which is suitable for the case when a program contains s Do-loops. However, when
dealing with the case when a sequence of s Do-loops are enclosed by an iterative loop, the resulting
data distribution schema derived from this algorithm cannot be satisfied. We then generalized the
first algorithm to deal with this more general case. The fundamental rationale behind this generalized

algorithm is that we found this sequence of s Do-loops appea.fing in a cyclic fashion. Therefore, every

Do-loop can be treated as the first Do-loop.

[matnixsize | _ #PE.=2 [#PE=4 | FPE=8 | #rE=16 [#PE=32 _|
[0.164 (0.017) | 0.085 (0.012) | 0.048 (0.012) | 0.034 (0.016) 0.038 (0.029)
25 x 28 0.253 (0.088) | 0.254 (0.165) | 0.294 (0.241) | 0.353 (0.319) 0.266 (0.243)
0.749 (0.063) | 0.382 (0.039) { 0.199 (0.027) | 0.111 (0.025) 0.077 {0.034)

26 x 28 0.050 (0.205) | 0.745 (0.351) | 0.712 (0.499) | 0.775 (0.651) 0.885 (0.809)

3.395 (0.246) | 1.719 (0.144) | 0.875 (0.088) | 0454 {0.060) 0.252 (0.054)

- 9T x 27 3.885- (0.523) | 2.520 (0.782) | 1.965 (1.055) | 1.833 (1.338) 1.918 (1.637)
15.205 (0.974) | 7.677 (0.563) | 3.884 (0.326) | 1.974 (0.195) 1.020 (0.130)

o8 98 | 16524 (1.500) | 9.573 (1.890) | 6.284 (2.323) | 4.893 (2.823) 4472 (3.356)

67332 (3.840) | 33.982 (2.230) | 17.156 (1.279) | 8.668 (0.730) 4398 (0.42T)

99 %99 | 71533 (4.933) | 39.060 (5.154) | 22.883 (5.564) | 15.103 (6.197) | 11.700 (7.051)

75161 (5.070) | 37.900 (2.854) | 19.134 1.610)

10 « 210 Fokkok ok 90.658 (15.071) | 53.256 (14.753) | 35.267 (15.490)

83.016 (6.314)

ulllel Heoke sk ek ke FokFk sk K 121.486 (36.713)

Table 6: The simulation time,
program is expressed in units of seconds: {1) based on 2 dynamic
on a static data distribution scheme.

After that, we showed t

if the communication cost due to perfor

Based on this observation,

algorithms can b

iterative loops, and of whi

Suppose t
Do-loops. Then, we can fin

Do-loops (as shown in Fig. 1-(a)) in O(s7

simple

Do-loops with a general structure (as shown in Fig. 1-(c)) also in O(sy

applying these algorithms, we only need to compute at most s{y +1) component ali

each with a reasonable problem size for the first

alignment

be used in parallelizin

systems.

“oxecution time (commu

we derived three new efficient algorithms for data distribution. These

e used to deal with the most general case when a sequence of Do-

ch themselves may contain further,

hat we must use at least two distribution

Do-loops (as shown in I'ig. 1-(b)} in O(s7

problems each with a reasonable problem size fo

2) time units;

nication time)”,

hat data re-distribution is necessary for execut

d the sequence of distribution schema for execut

for solving the 2-D FET

data distribution scheme;
wk#k*? means “not implement”

m this sequence of Do-loops is larger than at

for executing an iterative loop wh

(2) based
because of the memory limitation.

ing a sequence of Do-loops

hreshold value.

loops contains some

smaller Do-loops with a general structure.

schema to compute any (v+ 1) consecutive
ing s consecutive simple
ich contains &
3) time units; and for executing a sequence of s simple
3) time units. In addition, while

gnment problems

two cases, and to compute at most 2s{y+1) component

g compilers to automatically determine data di

30

1 the third case. In practice, our method can

stribution for distributed memory

References

[1] J. M. Anderson and M. S. Lam. Global optimizations for parallelism and locality on scalable parallel
machines. In Proc. of ACM-SIGPLAN PLDI, pages 112-125, Albuquerque, N.M., June 1993.

[2] D. Callahan and K. Kennedy. Compiling programs for distributed-memory mult1processors The Journal
of Supercompuling, 2:151-169, 1988.

[3] B. Chapman, T. Fahringer, and H. Zima. Automatic support for data distribution on distributed memory
multiprocessor systems. In Leclure Noles in Compuler Science 768, Sizth International Workshop on
Languages and Compilers for Parallel Compuling, pages 184-199, Portland, Oregon, August 1993.

[4] B. Chapman, P. Mehrotra, H. Moritsch, and H. Zima. Dynamic data distributions in Vienna Fortran. In
Proc. of Supercomputing ’93, pages 284-293, Portland, Oregon, November 1993.

[5] S. Chaiterjee, J. R. Gilbert, and R. Schreiber. Mobile and replicated alignment of arrays in data-parallel
programs. In Proc. of Supercomputing 93, November 1993,

[6] S. Chatterjee, J. R. Gilbert, R. Schreiber, and S. H. Teng. Automatic array alignment in data-parallel
programs. In Proc. of ACM SIGACT/SIGPLAN Symposium on Principles of Programming Languages,
Charleston, SC, January 1993.

[7] T. Chen and J. Sheu. Communication-free data allocation techniques for parallelizing compilers on multi-
computers. IEEE Trans. Parallel Distribuied Syst., 5(9):924-938, September 1994.

(8] C. Gong., R. Gupta, and R. Melhem. Compilation techniques for optimizing communication on distributed-
memory systems. In Proc. of Iniernafional Conf. on Parallel Processing, pages 11-38-46, 8t. Charles, IL,
Aug. 1993.

[9] M. Gupta and P. Banerjee. Demonstration of automatic data partitioning techniques for parallelizing
compilers on multicomputers. JEEE Trans. Parallel Distribuied Syst., 3(2):179-193, Mar. 1992.

{10] S. Hiranandani, K. Kennedy, and C-W. Tseng. Compiling Fortran D for MIMD distributed-memory ma-
chines. Communications of the ACM, 35(8):66-80, Aug. 1992.

[11] P. D. Hovland and L. M. Ni. A model for automatic data partitioning. In Proc. of International Conf. on
Parallel Processing, pages 11-251-259, St. Charles, IL, Aug. 1993.

[12] C. H. Huang and P. Sadayappan. Communication-free hyperplane partitioning of nested loops Journal of
Parallel and Dzstnlmted Computing; 19:90~102, 1993.

[18] D. E. Hudak and 8. G. Abraham. Compiling Parallel Loops for High Performance Computers. Kluwer
Academic Publishers, Norwell, Massachusetts, 1993.

[14] E. T. Kalns and L. M. Ni. Processor mapping techniques toward efficient data redistribution. Technical
Report MSU-CPS-ACS-86, Department of Computer Science, Michigan State University, January 1994.

[15] E. T. Kalns, H. Xu, and L. M. Ni. Evaluation of data distribution patterns in distributed-memory machines.
In Proc. of International Conf. on Parallel Processing, pages II-175-183, St. Charles, IL, Aug. 1993.

[16] K. Knobe, J. D. Lukas, and G. L. Steele Jr. Data optimization: Allocation of arrays to reduce communication
on SIMD machines. Journal of Parallel and Distributed Computing, 8(2):102-118, Feb. 1990.

[17] K. Knobe and V. Natarajan. Auntomatic data allocation to minimize communication on SIMD machines.
The Journal of Supercomputing, 7:387-415, 1993.

(18] U. Kremer. Np-completeness of dynamic remapping. In Proc. of the Fourth Workshop on Compilers for
Parallel Computers, Delft, The Netherlands, December 1993.

[19] U. Kremer. Automatic data layout using 0-1 integer programming. In Proc. of International Conf. on
Parallel Architeclures and Compilation Technigues, Montréal, Canada, August 1994,

31

[20] U. Kremer, J. Mellor-Crummey, K. Kennedy, and A. Carle. Automatic data layout for distributed-memory
machines in the D programming environment. In Automatic Parallelization — New Approaches to Code
Generation, Data Distribution, and Performance Prediction, pages 136-152, Vieweg Advanced Studies in
Computer Science, Verlag Vieweg, Wiesbaden, Germany, 1993. '

[21] P-Z. Lee and T. B. Tsai. Compiling efficient programs for tightly-coupled distributed memory computers.
In Proc. of International Conf. on Parallel Processing, pages 1I-161-165, St. Charles, IL, August 1993, also
Technical Report TR-93-004, Institute of Information Science, Academia Sinica.

[22] J. Li and M. Chen. Compiling communication-efficient problems for massively parallel machines. IEEE
Trans. Parallel Distributed Syst., 2(3):361-376,J uly 1991.

[23] J. Li and M. Chen. The data alignment phase in compiling programs for distributed-memory machines.
Journal of Parallel and Distributed Computing, 13:213-221, 1991.

[24] M. Mace. Memory Storage Patterns in Parallel Processing. Kiuwer Academic Publishers, Boston, MA,
1987. X

[25] P. Mehrotra and J. Van Rosendale. Programming distributed memory architectures using Kali. In A. Nico-
law, D. Gelernter, T. Gross, and D. Padua, editors, Advances in Languages and Compilers for Parallel
Computing, pages 364-384. Pitman/MIT-Press, 1991.

[26] J. Ramanujam and P. Sadayappan. Compile-time techniques for data distribution in distributed memory
machines. IEEE Trans. Parallel Distributed Syst., 2(4):472-482, Oct. 1991.

[27] J. Ramanujam and P. Sadayappan. Tiling multidimensional iteration spaces for multicomputers. Journal
of Parallel and Distributed Computing, 16:108-120, 1992.

[28] P. S. Tseng. A Systolic Array Parallelizing Compiler. Kluwer Academic Publishers, Boston, MA, 1990.

[29] S. Wholey. Automatic data mapping for distributed-memory parallel computers. In Proc. of International
Conf. on Supercomputing, July 1992.

[30] M. E. Wolf and M. S. Lam. A data locality optimizing algorithm. In Prec. of ACM SIGPLAN ’31 Conf. on
Programming Language Design and Implementation, pages 30-44, Toronto, Ontario, Canada, June 1991.

[31] M. E. Wolf and M. S. Lam. A loop transformation theory and an algorithm to maximize paralielism. IEEE
Trans. Parallel Distributed Syst., 2(4):452-471, Oct. 1991.

[32] H. P. Zima,H-J. Bast, and M. Gerndt. SUPERB: A tool for semi-automatic MIMD/SIMD parallelization.
Parallel Computing, 6:1-18, 1988.

32

