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ABSTRACT

The paper by Zhuang and Roth [7] presents a linear solution to the kinematic parameter identification
of robot manipulator. With their method, the orientation parameters for all joints are solved, before solving
for the translation parameters altogether. Our main contribution here is to decompose the kinematic parame-
ters estimation problem into many subproblems of single joint axis, such that the complexity is reduced and an

easier implementation is derived. In addition, it leads to a general solution for any robot with arbitrary com-

bination of prismatic and revolute joints. Qur modified solution also provides better robustness and intuition.




I. INTRODUCTION

Zhuang and Roth [7] proposes a linear method for the identification of the unknown kinematic param-
eters of robot manipulator from end—effector pose measurement and robot joint position readings at some
configurations. Their result is of great value for many applications (e.g., [2]). While the calibration method is

clearly illustrated with the use of an all-revolute robot, a Cartesian robot, and a Stanford—arm-~type robot, no

general procedure is given for dealing with arbitrary type of robot. In the derivation of their linear solution,
the rotation matrix and translation vector were considered separately. When solving for the translation vector,
the transition vectors of all joints have to be solved simultaneously which makes the implementation very
complicated, e.g. [5, egs. (16), (19)]. Moreover, if arobot contains some prismatic joints, then the directions
of the prismatic joint axes have to be solved together with the transition vectors, e.g. [3, egs. (20)], which
means that some nonlinear constraints should be involved to force the direction vectors to be unit vectors.
However, the constraints were not discussed in [7]. We shall show that due to the nice structure of the com-
plete and parametrically continuous (CPC) kinerna‘tic model [6], the kinematic parameter identification prob-

lem can be decomposed into many kinematic parameter calibration problems of each individual prismatic or

revolute joint. With this kind of decomposition, the calibration procedure can be applied to any robot which is
composed of prismatic or revolute joints. Since the scale of the problem is reduced to be of single joint, not
only the exact closed—form solution of the direction of the prismatic joint axis estimation, with nonlinear

constraint, can be found, but the calibration method can be implemented in an easier way.

/ ‘
II. PROBLEM FORMULATION

The CPC kinematic model for a revolute or prismatic joint is as follows (refer to [6])

T = 0, ¥, 1)
Rotz(q,-), for revolute joint,
where .= T - 2
2 Tmns([O 0 9';'] ), for prismatic joint, @
g =s59;5€(+1, -1, (3)

q';is the ith joint value,
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Notice that the CPC convention requires that any two consecutive joint axes should have nonnegative inner
product le.,b;, = z = 0. In general, this requirement can be achieved by changing the sign of one of the joint
values of consecutive joints. This is because changing the sign of the joint value is equivalent to reversing the
joint axis for both revolute and prismatic joints. Therefore, we have slightly modified the convention of the

CPC model by including a sign parameter, §; , as shown in equation (3).

Suppose we have a robot with » joints. Its world—to—end-effector transformation matrix can be ex-

pressed as

WT, = wTO . s e (n“l)Tn_ (6)

Without loss of generality, we assume that the kinematic parameters of the joints from the end—effector to the
(i+1)th joint have been known, and that the unknowns to be estimated are the World—to—base transformation,
“’TO , and the kinematic parameters of joints /, ..., i. Also, we assume that the wold—to—end—effector trans-
formation matrix can be measured. Same as the calibration procedure described in Zhuang and Roth [7],
when calibrating the ith joint, only those joints with known kinematic parameters plus the ith joint itself are
permitted to be moved. By moving those joints (from the end—effector to the ith joint) to two different config-

urations and recording their corresponding world-to—end—effector transformation matrices, we have

anl

¥ T, 0y V; FOIT,, (7)

and anZ
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ghere WT,; and ¥T,, are the measured world—to—end—effector transformation matrices, @+1) T, and

@+12T, , canbe computed from the kinematic model since their kinematic parameters have been known
already. Instead of separating equation (6) into two parts: rotation matrix and translation vector equations, as
the methods used in [7] and [2], we decompose the problem into many kinematic parameter estimation sub-

problems of single joint axis.

By multiplying “’T;il and WTT;"zl to both sides of equations (7) and (8), respectively, we have the fol-

lowing equality

YT, Qu V; OO YT =0, = Y T, Q, V; CHVT, YT (9
or Qq V; OO, Y1l = 0, v, GYUAT, vl (10)

Rearranging equation (10), we have

AQ V; =V, AT, (1

where AQ = Q7! @y, AT = €¢I, wr-1wy , E+D2p-1 and ¥ is the unknown homogeneous
transformation matrix to be estimated. Equation (11) in this form of representation is very similar to the equa-
tion for the hand/eye calibration problem. Unfortunately, the solution obtained in the hand/eye calibration
problem cannot be directly applied to this problem. This is because the hand/eye calibration techniques pro-

/
posed by Shiu and Ahmad [3], Tsai [4] and Wang [5], all need at least two equations as follows

where Xis the unknown hand/eye transformation matrix, 4, , 4, , By and B, are the measured homogeneous
transformation matrices, and the rotation axes of the rotation matrices of 4, (B;) and 4, (B,) should be
neither pai'allel nor anti-parallel. Butin the single joint calibration problem, it is obvious that there is at most
one effective rotation axis, i.e., the rotation axis of AQ (there is even no rotation axis if the joint is prismatic).

However, due to the special structure of the CPC kinematic model, we have the following linear solution.
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Notice that equation (11) can be separated into two equations, one is the rotation matrix equation and

the another is the translation vector equation, i.e.,

Ryg Ry, = Ry, Ryr, (14)

and Ry ty +ts0 =Ry tur +1ty, (15)

where Ry‘ = R; Rotz(ﬁ,-), (16)
ty, = Ry, | bz Ly 1 ]T, an |

Ryg: Ryr» Ry,, Ryand Rotz(ﬁi) are 3x3 rotation matrices of 4AQ , AT, V;, R; and Rotz(ﬁ,-), respectively,
and £ 0 t,r and tV,- are 3x1 transition vector of 4AQ , AT, V;, respectively. In the following sections, we

shall show how to solve the kinematic parameters of the prismatic and revolute joints from the above equa-

tions.

III. CALIBRATION OF A PRISMATIC JOINT

The redundant parameters and the unknowns of a prismatic joint are first listed below for clarity of our

derivation:

-

i). Four given redundant pa{rameters (they are typically set to zero if not used): B; and ty, .

ii). The unknowns: R; and the sign parameter, s; .

From equation (2), 4Q = Trans([O 0 Aq]T), or more specifically, Ryp = I3 and

tyo = 00 Aq]T. By substituting'RAQ and £ 44 into equation (15), we have

tyo =Ry tar- as)

Substituting equation (16) into (18), we have

Rl typ = ne | (19)




where £ AT = Rotz( ,-) t4p and B; is the given redundant parameters. Note that in the above equation,

T
tig = [0 0 Ag|, therefore,
b'; Aq = tg, (20)
T
where b’; = [ —b;y —biy by, ] is the third column vector of the rotation matrix R .

Suppose we have M observations, i.e., A4¢;and 47;,j =1, 2, ..., M. We can solve b'; by minimizing

the following error using the least square method.

M
e= > || b 4g; - t4 |2 @1
j=1

where b'iT b'; = 1. To solve the above equation, we first form the lagrangian

M
- ~ T ~
! = Z{b';f b Aqt — 7 typ Ag; + iyp rATJ} +A(1-bTH). (22)
j=1

The gradient of equation (22} is
M -
vi=2 Z[b’i Ag? - tAT}qu] —210; (23)
j=1 -

By letting VI = 0, we have
!

o= (i ) /[i(ﬁq,.z) _ 4, on

j:l f=

where A can be determined such that b’; is a unit vector. Consequently,
M M
by = Z(‘AT,- A‘If)/ [ 2(‘4?,— A‘If) I 25)
j=1 j=1

which means that the least-square—error solution is just the weighted average of the translations vectors, Z 4 T

Moreover, by intuition, if the difference of the joint values, i.e., Ag; (or equivalently, the length of £ AT, ), can

be made larger, then the S/N ratio will be larger too, therefore, larger difference of the joint values would lead
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to more accurate results. Notice that if the third component of b';is negative, in order to be consistent withthe
CPC convention, we should change the sign of b'; and let 5;= —1; otherwise, let s;=+1. Once the unit vector
b';is obtained, the rotation matrix, R;, canbe computed with equation (5). Then, we can transform the redun-

dant translation vector, #y, , into the CPC parameter format, i.e.,
T T
[ 1 by 1| =RE M (26)

IV. CALIBRATION OF A REVOLUTION JOINT

The redundant parameters and the unknowns of a revolute joint are first listed below for clarity of the

derivation:

(1). Two given redundant parameters (they are typically set to zero if not used): B;and the z—component of .

(2). The unknowns: R;, the sign parameter, s; , and the first two components of £y .

Note that for a revolute joint, AQ = Rot,(4q), ie.,
Ryg = Rotz(Aq), (27)
Substituting equations (227) and (28) into equ-éttions (14) and (15), we have

. . T
By taking the transpose of both sides of equation (29), and then multiplying the unit vector, z={ 0 0 1 ] on

the right, we have (by noticing that Rot{— 4q) z = z),
R z =Ry Ry z. (31)

By use of equation (16), we have




e s

where b';is the same vector as in equation (20), and D= Rotz(ﬁ,-) RZ;T Rotz( - ﬁ,-) . Since in equation (32),
Dis arotation matrix, b’; can be found, up to its sign, by computing the rotation axis of .D with the following

method. The correct sign of b'; can be determined such that the third component of »’; is nonnegative.

If we have M observations, then we will have the following homogeneous equation (overdetermined

ifM>1)

D{‘,sts

: . =Eb,=e=~0, (33)
Dﬁ_Iaxs H I

where ¢ is the error vector induced by the observation noise. The parameter vector b’; can be estimated by
minimizing || £ || subject to || 5"; [2= 1. It can be shown that the solution for b’; is the unit eigenvector of

ET E corresponding to the smallest eigenvalue.

The sign parameter, s, , can be determined as follows. From equation (5), we can compute R;from b';

. Substituting the estimated R; into equation (29), we have

,\ AT
Rotfs; - Aq'i) = Ry, Ryr Ry, (34)

and the sign parameter, s; , can be obtained from the following equation
M ~ AT
= : . — 2
§; = args min . z ”Rotz(si Aq’ij) RV‘ RAT:,- Ry, ” (35)

Notice that in order to estimate b'; more accurately, the difference of the joint angle, i.e., 4q, should
be made larger. Otherwise, the D matrix, in equation (32), will approach a unit matrix when 4gq is very small,

which will cause the estimation of the rotation axis very sensitive to noise.

After b, is obtained, we can compute the rotation matrix R;and then post multiply it by Rotz(ﬁ i) to

Obtain Ry, . Next, by substituting RV; into equation {30) and rearranging it, we have

o



cos(dq) — 1 —sin(dg) 0O ‘
0 0 0

Note that on the left hand side, the third row is exactly zero, while on the right hand side, £ 4pis the translation .

vector observed at the ith link frame, and Rot;(q;) RV,— t 4is the corresponding translation vector observed at
(i—1)th frame, therefore, the third component of the translation vector Rot(q;) Ry, typis zero. This is be-

cause the z—axis of frame (i—I) is the rotation axis, and rotating around the rotation axis will not cause any
motion along the direction of the rotation axis. Since the rotation matrix Rot(g;) will not change the third
component of Ry, £y, the third component of Ry, #,7is zero. Hence, equation (36) is consistent with our

intuition.

Because the third entry of the translation vector ¢y, is a redundant parameter, we have the following

two equations for two unknowns (from equation (36))

cos(dg) —1 - sin(dq) |} %x ~
[ sin(dg) cos(dq) — 1?”:’:‘,)»] = Ry, t47, (37)

where #;, and f; , are the first two entries of £, , and éV, is a 2x3 matrix obtained by deleting the third row of
Ry, . The determinant C};f the 2x2 matrix on the left hand side of equation (37)is (2 — 2cos(dg)). Therefore,

equation (37) has unique solution if and only if 4g # 0. This condition for uniqueness is always satisfied
since we always move the joint to be calibrated in the kinematic identification process. Again, we observed
that larger amount of Aq will improve the robustness for the estimation of the kinematic parameters. Of
course, if more than one observations are available, we'can use least square method to solve the two unknown

translation components.

After all the unknown parameters are obtained, we can transform the translation vector, tV,. , into the

CPC parameter format by using equation (26). Ifitis necessary to let/; =0, then the following equation can

be used to determine the redundant translation pérametcr, i.e., the third entry of #y, ,
H




iz = ._ (bi,x Lix T bi,}’ tf,y)/ bi,z ’ (38)

providing that b; , is not equal to zero.

V. DETERMINATION OF THE WORLD-TO-BASE TRANSFORMATION MATRIX

After all the revolute and prismatic joints were calibrated, then we can compute the world—to-base
transformation matrix, "7, defined in equation (6). Suppose we have m observations, i.e.,j=1, 2,..., M. By

separating equation (6) into rotation matrix and translation vector equations, we have

"R, = "Ry "Ry (39)

and ¥t = YRy Uty + Vg, (40)

n
where °R nj and Otnj are respectively the 3x3 rotation matrix and 3x1 translation vector of the transformation

matrix, °T,; = 'Ole 1fT%- - (”"I)anj. From (39), we have the following matrix equations
A="YR, B, 41)

n

where 4 = "R, .. "R .. "R,/ |and B=|"R , .. 'R OR ..|. By solving the following
nl nM nl nM

nj ven

“rotation of subspecies” problem [1]:

_ minimize “AT ~ BT ¥RT ”F subject to YRY ¥Ry = Ia.4, (42)

/
we have the following procedures for finding the closed—form solution for ¥R,

Step 1: Compute the matrix C = B A7,
Step 2: Compute the singular value decomposition C = U § VL.

Step 3: Compute "Ry = ¥V UT.

After the rotation matrix WRG is obtained, by substituting "R, into equation (40), we have

M
Wty = A—-%Z(thj — Ry %), (43)
i=1

which completes the calibration procedure.




IV. EXPERIMENT

To test our modified method for kinematic parameter identification, we use a six-revolute—joint Ka-
wasaki Js—10 robotarm. Instead of measuring the positions and orientations of the end—effector with a CMM
(Coordinate Measuring Machine), we simply record both the joint values and the position and Eular angles of
the end—effector provided by the controller. The position and Eular angles of the end—effector are then used to
compute the world—to—end-effector transformation matrix, where we assume the world coordinate system is
aligned with the base reference frame of the robot. We took 7 observations for each joint for the calibration
(42 poses in total), and 32 additional poses for testing. The kinematic parameters of the Kawasaki Js—10
shown in Table~1 is obtained from the calibration process (rounded to the forth digit after point). Using the
estimated kinematic parameters for forward kinematic computation, the RMSE position error, comparing to

the position given by the controller, is about 0.01 millimeter with the 32 testing poses.

V. SUMMARY

In this report, we have shown that the kinematic parameter identification problem can be decomposed
into many kinematic parameter calibration problems of each individual prismatic or revolute joint. This will

not only reduce the complexity of the identification problem, but also provide a calibration method that is

Table—1.
. The Estimated CPC Parameters of the Kawasaki Js—10

i bi x biy bi La(mm) Ly(mm) L (mm) fi(rad)

5i

0 0.0000  0.0000 1.0000  0.0013 0.0020 -0.0075 0.00

1 -1.0000 0.0000 0.0000 0.0002 100.0116 0.0152  0.00 -1
2 0.0000  0.0000 1.0000 650.00 -0.0153 -0.0068 0.00 +1
3 1.0000  0.0000 0.0000 0.0028 0.0001  600.0014 0.00 -1
4 1.0000 0.0000 0.0000  0.0000 0.0005  0.0000  0.00 +1
5 -1.0000 0.0000 0.0000 —0.0005 -0.0022 125.0021 0.00 +1
6 0.0000 0.0000 1.0000 0.0026 0.0018 0.0000 0.00 +1




v

universal to any kind of robot composed of prismatic and/or revolute joints. Due to the decomposition of the
problem, the closed—form solution to the direction unit vector of a prismatic joint axis is more robust because
anonlinear constraint is included. It also provides the intuition for reducing the estimation error via choosing
Jarger magnitude of the difference of the joint values when constructing the calibration equations. This meth-
od has been tested by a real experiment, which shows that if the measurements of the world-to—end—effector
transformation matrices is accurate, the calibration results can also be very accurate. Although, the problemis
not resolved, that the kinematic parameters may not be parametrically continuous when the two consecutive
joints are perpendicular to each other. It will not cause any problem if we solve this kinematic parameter

identification problem by using any closed-form solution (including our solution).
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