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ABSTRACT

In real-world design and verification of concurrent systems with many identical
processes, the number of processes is never a factor in the system correctness.
This paper embodies such an engineering reasoning to propose an almost au-
tomatic method to safely verify safety properties of such systems. The central
idea is to construct a finite collective quotient structure (CQS) which collapses
state-space representations for all system implementations with all numbers of
processes. The problem is presented as safety bound problem which ask if the
number of processes satisfying a certain property exceeds a given bound. Our
method can be applied to systems with dynamic linear lists of unknown number
of processes. Processes can be deleted from or inserted at any position of the
linear list during transitions. We have used our method to develop CQS con-
structing algorithms for two classes of concurrent systems : (1) untimed systems
with a global waiting queue and (2) dense-time systems with one local timer
per process. We show that our method is both sound and complete in verifying
the first class of systems. The verification problem for the second class systems
is undecidable even with only one global binary variable. However, our method
can still automatically generate a CQS of size no more than 1512 nodes to ver-
ify that an algorithm in the class: Fischer’s timed algorithm indeed preserves
mutual exclusion for any number of processes.

* The work is partially supported by NSC, Taiwan, ROC under grant NSC 88-2213-
E-001-002.
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1 Introduction

Real-world concurrent systems with many identical processes are designed and
verified without assumption on the number of participating processes [17, 18].
When we look at the manual verification of such systems, we very often find the
engineering reasoning that

“at any moment, relations among processes in different operation modes are
more important than the acutal numbers of those processes.”

Previous researchers did not take advantage of this kind of engineering reasoning
in automatic verification research. We believe that without incorporating such
design reasoning in verification theory, state-space explosion phenomenon are
really too hard to cope with. We propose an almost automatic method based on
the above-mentioned engineering reasoning for the verification of dynamic linear
networks of unknown numbers of processes. Processes are allowed to be inserted
at or deleted from any position in the linear list during transitions. Note that
the linear lists are not necessarily static sequences of processes ordered by their
identifiers, but may rather dynamically change their element positions in system
operations. Such linear lists can happen explicitly as in Peterson’s algorithm[18]
and MCS lock-spin algorithms[17]. They can also implicitly happen in dense-
time systems as the ordering among timers’ reading fractional parts[l]. Our
method needs very little human guidance and are applied to verify two exam-
ple algorithms, one of which is Fischer’s timed algorithm[6, 22]. The structure
constructed for Fischer’s algorithm has no more than 1512 nodes.

We are dealing with concurrent systems with unknown numbers of pro-
cesses running different copies of a same process program. We shall write S, =
li<p<mPp for a system implementation of m concurrent processes running the
same process program P, with p as the process identifier parameter variable.

Ezample 1. : We shall use a mutual exclusion algorithm with a single queue
to demonstrate our idea. In Figure 1, we have an automaton representing a
local process in such a system. The global queue is named @ and the process
is identified by p. The circles are operation modes of processes while the arcs

2 The work is partially supported by NSC, Taiwan, ROC under grant NSC 88-2213-
E-001-002. A more complete version of the paper can be found in technical report
TR-IIS-98-019, IIS, Academia Sinica, Taiwan, ROC
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Fig. 1. A concurrent algorithm with a global queue

are transitions. Above each arc, we label a transition triggering condition, if
any. Under each arc, we label actions to be taken at the firing of the transition.
“wait(p, @));” is an action that appends process p at the end of queue Q. If p
is already in the queue, then the statement has no effect. “p=head(Q)” is a
triggering condition on whether p is the queue head. “exit(p, @);” is an action
that deletes process p from queue . If p is not in the queue, then the statement
has no effect. Interleaving semantics is assumed. Initially the queue is empty and
all variables (including g,’s) contains zeros.

Note a process enters critical section only when it is the queue head. Since at
any moment, there is only one queue head, mutual exclusion is guaranteed. ||

Uunlike the previous approaches[2, 7, 8, 11, 12, 15, 16], we model our problem
as safety bound problem which, given a property n and a safety bound C, asks
if there is a computation of a system implemented with some processes such
that along the computation, at some moment, more than C processes satisfy 7.
Such a framework can be used to model mutual-exclusion problems, local state
reachability problem (which asks if a process can reach an operation mode in
some computation of some implememntation), reader-writer problem, ... etc.

Our verification technique is to construct a finite directed graph @Q = (V, I, E),
called collective quotient structure (CQS), with the following restrictions.

e V is a finite set of global state images for all system implementations with
any number of processes. Engineers’ wisdom and experiences in design and
verification is encoded in the mapping from states to images in V.

e [ CV is the set of initial state images.

e E C V xV defines the transitions between state images such that (v,v') € E
iff there are two states v,v' of a system implementation S,,, m € N, the
images of v, V' are v, v’ respectively, and S, may transit from v to v'.

For safety analysis, if we can construct a finite CQS in which the dangerous
state images are not reachable from any images in I, then it is good enough to
conclude that the system is safe for any number of processes. But if there is a
path from some images in I to a dangerous state image, there is no conclusion to
make because arcs along the path may be induced by transitions from different
system implementations with different numbers of processes. Thus our method
can only safely verify systems. However, with well-known worst-case complexi-
ties like PSPACE[1], EXPTIME, EXPSPACE, undecidability[3, 4, 5, 19] of many
classic verification paradigms, we believe our method is a practical and plausible



trade-off between complexity management and verification algorithmicity. By
properly encoding human wisdom and experiences into the state-image map-
pings, our method has good chances to automatically and efficiently verify sys-
tems designed with well-accepted engineering rules and verification experiences.
In our experience of analyzing our CQS against example 1 and Fischer’s timed
algorithm, our method reasons very much in the same way as a human engineer
will verify algorithms.

The kernel technology in our CQS constructing algorithms is a mapping from
linear lists of any lengths to finitely many images (called PCL-images, acronym
for Process-state-type Counter List). We shall demonstrate our technique with
CQS constructing algorithms for untimed concurrent systems with a single wait-
ing queue. Lemma 2 shows that our method is both sound and complete in ver-
ifying systems in this class. We have also applied our technology to dense-time
systems [1], with one local timer per process, in which the ordering among frac-
tional parts of all timer readings forms an implicit dynamic linear list. We have
shown that reachability problem of such systems, even with restrcition that only
one binary global variable may be used, is still undecidable [21]. However, our
method can verify Fischer’s timed algorithm[6, 22] in this class with a CQS no
larger than 1512 nodes.

We have some notations. Given a set or sequence K, |K| is the number of
elements in K. For each element e in K, we also write e € K. N is the set of
nonnegative integers. R is the set of nonnegative reals.

2 Related work

Apt and Kozen already showed that in general verification of systems with un-
known number of concurrent processes is undecidable[5]. This means that such
verification problems are extremely hard and we can only rely on semi-decision
procedures or, as in this work, approximation algorithms to answer them. Oth-
erwise, we can also investigate to find out decidable subclasses of the problem.
In the following, we briefly describe some of the related work.

Browne, Clarke, and Grumberg [7] use bisimulation equivalence relation be-
tween global state graphs of systems of different sizes. The equivalence relation
must be strong enough for the method to work. Thus the construction of the
equivalence relation is difficult to mechanize.

Clarke, Grumberg, and Jha[l11] propose to use regular languages to specify
properties in a linear network with unknown number of processes. Then state-
equivalence relation is defined based on the regular languages and a mechanical
method is defined to synthesize a network invariant Z in the hope that Z can be
contained by the specification. But there is no guarrantee that 7 is a model of
the specification even if the system indeed satisfies the specification. Moreover, it
is not known whether using the specification regular languages to derive equiva-
lence class properly perserves the reasonings behind the system design. Lesens,
Halbwachs, and Raymond[16] furthered the approach by designing a language
for the specification in systems with complex structures and by using fixed-



point resolution with different heuristics to calculate many network invariants.
Compared to our approach, we argue that the technique of PCL-images better
captures the design reasoning that the relations between processes in different
states are far more important than the actual numbers of processes in different
states. We believe in verifying complex systems, without utilizing the reasoning
behind the system designs, state-explosion problem cannot be properly dealt
with.

Kurshan and McMillan[15] proposes to use network structural induction
which is not guarranteed to terminate. Also inductive hypothesis is difficult to
construct, although once it is ready, the whole approach is usually very efficient.
Compared to our approach, we are using an approximation algorithm which
captures the engineers’ view of linear list. Users only have to guess the value
of bound B, used in CQS construction, which for many real-world concurrent
algorithms, small value like 1 will do.

Emerson and Naamjoshi[12] specialized on static token ring networks. They
prove that for certain properties, verification on small size networks can be used
to guarrantee the verification of large size networks. In contrast, our method is
applicable to all different forms of “dynamic” linear networks of processes.

Boigelot and Godefroid[8] choose to use state-space exploration to handle
the verification problems of systems with unbounded FIFO queues. Their state-
space representation is constructed by collapsing FIFO queues. Their approach
does not guarrantee termination.

3 PCL-images of linear lists of all lengths

A list recording (LR) on symbol set U is a pair (p, A) such that p and A are re-
spectively a finite sequence and a multiset on U. A represents the set of processes
not joining the list p at the moment. For example, when U = {1, po, pi3, 14 },
an LR on U is (uapopapzpe, (1 : 3, m2 2 0,us : 0,14 : 0)). We adopt notation
like (g1 : 3, p2 : 0, 3 : 0, pg : 0) for a multiset in which there are three p;’s and
nothing else.

3.1 Classification of process state type

Since all our processes are of finite-state nature, we can classify process states
into finitely many PSTs (Process State Types) which defines correspondence
among states of different processes. Process states s, s’ respectively of processes
p,p' are in the same PST if by substituting p for p’ in the recording of s, we
get s’ and vice versa. By representing each process in state recordings as its
PST, we can thus omit process identifiers from state recordings. It will be clear
from sections 4 and 5, such omission will not affect our ability for safety bound
verification.

In our method, we need to construct a parametric atomic proposition set
(PAP set) to distinguish between processes in different PSTs. The atomic propo-
sition set is parametric because the propositions may contain process identifier



parameter variable p. For example, in example 1, the PAP set is {¢, = 0,¢, =
1,q9p = 2,p = head(Q)}. To classify a process, say process 1, we then have to
substitute all occurrences of p in the set for 1. Thus process state {¢1 = 0,1 =
head(®)} of process 1 is of the same PST as process state {g2 = 0,2 = head(Q)}
of process 2. In section 5, we shall demonstrate the mechainical composition of
the PAP sets for the untimed systems as in example 1.

Symbolically, we can represent a PST as a subset of the PAP set A. And from
now on, we shall do so for convenience. Continuing from example 1, we have four
PSTs: i1 = {gp = 0}, 2 = {gp = 1}, 13 = {gp = 1,p = head(Q)}, s = {gp =
2,p = head(Q)}. A reachable state for a system with eight processes can be
described by the list recording (LR) of IT = (L, L) = (papapapaps, (1 : 3, po
0,3 : 0, 1aq : 0)). papsopopzpte means that there are five processes participating
the linear list and the first one is of PST pu4 while the rest are of PST puy. Let
U4 be the set of PSTs that A can distinguish.

3.2 PCL-images

Our kernel technology is a mapping scheme from linear lists of all lengths to
finitely many images called PST counter lists (PCL). The design of PCL-images
is due to the observation that while verifying safety properties, the actual num-
ber of processes in a PST is very often unimportant while the relations among
processes in different PSTs are crucial. For example, in verifying the algorithm
in example 1, we may say

“While a process p is in critical section, another process p' cannot enter the
critical section because p' needs to be the queue head to enter the critical
section and p is the queue head at the moment.”

Also, to verify Fischer’s timed mutual exclusion algorithm[6, 22], we may say

“After a process p enters critical section, the first process, say p', which
overwrites | = p to | = p' must detect | = 0 true before p enters the critical
section.”

But what are the important relations ? In linear lists used as queues or stacks,
the relative positions of processes in different PSTs toward the head and tail can
be important. In dense-time systems, the fractional part relative magnitudes of
timer readings of processes in different PSTs can be important. Especially, at
any state, we need to know which PST has a process whose timer’s reading will
advance to an integer value in the next time event. Thus we shall propose the
following two design guidelines of PCL-images:

(1) For each PST type, we shall only record its first and last segments of consec-
utive occurrences in the linear lists. Processes in between two such segments
will be merged into a single group of processes. Thus, information of ordering
among processes inside the same group is omitted.

(2) For each group (or segment) of processes, we shall then record its number
of processes of each PST up to a bound B. The actual value of B can be



chosen by users or iteratively tested for by a procedure. By choosing a value

for B, the verification engineers should have the intuition that when a PST

has more than B processes, the target safety property will not be affected
by the actual number of processes in that PST. We suspect that for a lot of

well-designed systems, like the two example algorithms in section 5 and 6,

B =1 will work.

We need the new number system which respects a given bound B. Thus for every
ceN, B =cif ¢ < B; or ¢!B) = 0o else. In this paper, co is used to represent
any number greater than B. Also ¢+ 00 = 00 + ¢ = 0o and ¢ < 00.

We need the following notations for rigorous definition. A PST counter is a
mapping from Uy to . Given a PST counter v, vP) is called a PST counter
with bound B and for each p € Uga, 7B () = (y(1)){P). Let X 4P be the set
of PST counters bounded by B with processes classified by PAP set A.

We execute guideline (1) by marking for each PST, its first segment (sub-
lists in the linear list) and last segment of consecutive occurrences in the linear
list. Such markings cut the linear list into segments. For example, we may have
four PSTs pu1, p2, p13, pa such that IT = (L, L) with L = gy puopen fro e fua pro fhs pis s piy
and L = {p1 : 0,9 : O, s : 0,14 : 1}. Our marking scheme will divide L into
the following segments.

AN AN AN ——— AN
M1 M2 Hifefiiftn 2 333 U1

Here braces are labeled over marked segments for clarity. Subsequence g oo 1
has no brace over it because no processes in it represents either first or last
occurrences of a PST in the linear list.

We then execute guideline (2) by collapsing each segment (including the
marked segments) down to a PST counter with bound B. Continuing with the
example in last paragraph with B = 5, we can collapse each segment down
to a PST counter with bound 5 to get PCL® (IT) = (PCL® (L), L®)) with
PCL® (L) equal to

,u1:1 /Ll:O /L1:3 /1,1:0 /1,1:0 /thl
/1,2:0 /,LQ:]. /,LQ:]. ,u,z:]. /1,2:0 /,LQ:O
p3 0 p3 0 p3 0 p3 0 p3 3 p3 0
pa 2 0 pa 0 pa: 0 pa 2 0 pa 0 pa: 0
When B = 2, PCL® (11) = (PCL® (L), L) with PCL® (L) equal to
p 1 p1:0 [l : 00 p1:0 p1:0 p 1
p2: 0 p2 1l p2 1l po i1 p2:0 p2: 0
p3 0 p3 0 p3 0 p3 0 3 1 00 p3 0
pa 0 pa 0 pa 0 pa: 0 pa 0 pa 0

Note there can be at most 4|U4| — 3 PST counters in any linear list PCL(5)-
images. Given fixed B and Uy, it can be shown that over the domain of all states
of all system implementations with such a linear list, there are only finitely many
P CL(P)-images of list recordings. Moreover, PCL(P)-images indeed capture the
relations between processes of different PSTs.



0 3 8 12

1 L iz : 1 /—*lualzl|
(p1:1) (11 : 00) (11 : 00) |u2:1 |
L] 4y (11 : o)
[ps:1] Lus : 1] 9 1 /
0 (n1:1) Mgz 1 L\; Ha 1
2 J/ 5 J’ (Ul 00)\ pa i1
|H4 1| |H4 1| (11 : 00)
0 (k1 :1) 10 14
6 JI pa 1 pa i1
pa t 1 ’_‘_‘
po i1 2 : 00 H2 + 0
po : 1 (1 :1) 0 (p1:1)
0 11} / AN /
7

f ho 1 B [ e (P
ps : 1
- po :1 L2 - oo| [ [z : o]
p2:l (w1 : 1) 0 (w1 :1)
0

Fig. 2. The CQS for example 1 with B =1

Ezxample 2. : In Figure 2, we have the CQS constructed for example 1 with B =
1. The big rectangles represent global state-images, with indices labeled on their
upper-left corners, while arrows represent transitions. Inside the big rectangles,
we stack the list PCL{"-images above the multiset PCL("-images. L is the null
list. Note oo represents any numerical constant bigger than B. For each nonnull
list, we draw it as a sequence of boxes with head on top. Inside a box or the
parentheses, we only write the nonzero mapping values. For example, {u; : 1}
actually means {1 : 1, 2 : 0, u3 : 0, g : 0}. The two images with null list image
are the images for initial global states.

Let us examine image 18. At any algorithm implementation global state
represented by image 18, the queue head process is in the critical section and
the queue tail has more than one processes which are all in PST ps. There is
also only one process in the idle state 1 and not in the queue.

Let us examine the arc from image 18 to 16. This can happen when the
implementation has three or more processes of PST s in the waiting queue and
a 14 process leaves the critical section while being removed from the queue.

The CQS is quite small with only 20 global state-images. It is clear from the
CQS that the algorithm preserves mutual-exclusion for any number of processes
since there is no reachable image violates the mutual-exclusion. |



The rest of the paper describes the algorithmic construction of CQS for any
given B. Before that, a formal definition of PCL-images of list recordings follows.
A x € X4(P) is called a marker counter of type u if x(u) > 0 while x(¢') = 0
for all p' # p. Given L = pi1 ... p, #u(L) = {0 | 1 <0 < myp = p}.

Definition 1. : PCL-images bounded by constants A PST counter segmenta-
tion of a linear list L = puy...puy, with respect to bound B is a linear list
X1X2 ---Xn of PST counters in X4 such that L can be partitioned into n
disjoint segments LjLsy...L, and for each p € Uy and 1 < i < n, x;(p) =
(#,(L;))P). A PST counter segmentation p = x; ... X, is called a PCL-image
of its linear list L with bound B, in symbols PCL{P)(L), iff p satisfies the
following restrictions.
e Forall u € Uy and 1 < i < n with x;(u) > 0,
— if there is no 1 < j < i with x;(u) > 0, then for all p' € Ua — {p},
xi(') = 0; and
— if there is no i < j < n with x;(u) > 0, then for all p' € Uy — {u},
xi(w') = 0;
This restriction forces the first segment and last segment of consecutive oc-
currences of a PST be represented as PST counters in the PCL(®)-images.
e For all 1 <i < n, at least one of x;, x;+1 is the first or last marker counter
of a PST in L. This restriction collapses infinitely many linear lists of all
lengths into finitely many sequences of PST counters with bounded length.
e There is no 1 < i < n such that for all u € Ua, x:() = 0. Intuitively, this
means empty segments are not presented to help save spaces.
e There is no 1 < i < n such that x;, x;+1 are both marker counters of the
same PST. This helps save spaces too.
The PCL(P)-image of an LR II = (L, L), in symbols PCL{®)(II), is then
(PCL(B)(L), L{P)). Given a state recording v which contains an LR IT as a
component, the PCL(P)-image of v, in symbols PCL{®)(v), is identical to v
except IT is replaced by PCL{P)(IT). I

3.3 Manipulators on PCL(B)-images

The following handy manipulators to extract parts of a linear list help us conve-
niently construct CQS. Suppose we are given a sequence p = x1 ... Xn- front(p)
and tail(p) are new sequences obtained from p by deleting respectively the last
and the first elements from p. head(p) and last(p) are respectively the first
and the last elements in p. element(p, ), with 1 < ¢ < |p|, is the i’th process
element in list p. For example, front(abeddd) = abedd, last(abacfe) = e, and
element(abedd, 3) = c.

addhead(p, x) and addtail(p, x) are the sequences obtained by adding x
as the new first and the new last elements respectively of p. For example,
addhead(abacdd, e) = eabacdd and addtail(abacdd, e) = abacdde.

Given a linear list PCL{P)-image p = xi1x2...Xn, an integer i € [1,n],
and a PST p € Uy, inc'®)(p,i, p, p') is true iff p’ is identical to p except that
(element(p,i)(u) + 1){B) = element(p’,i). dec'®)(p,i,p,p') is true iff p' is



identical to p except that element(p,i)(u) = (element(p’,i) + 1)®). Given
PST counters x, X" and a PST p, add1{®)(y, u, x') is true iff x is identical to
X' except (x(p) + 1)(B) = x' (). del1{B) (x, u, x") is true iff y is identical to x'
except x(1) = (X' (1) + 1)(B). Given a PST p, makel(p) is the PST counter in
X 4P with B > 0, that maps p to 1 and everything else to zero.
Remember in definition 1, more requirements are on PCL(P)-images than
on PST counter segmentations. Given a PST counter segmentation p and a
linear list PCL(P)-image p', relation normal(p, p') answers with algorithm if
p' can be the PCL(P)-image for a linear list represented by p. normal() will
be handy in restoring manipulated PST counter segmentations back to their
PCL(P)-image format. normal(p, p') can be calculated with a nondeterministic
algorithm by first picking the first and last occurrences of each PST in p to
divide p into smaller segments. Then adjacent segments are merged to eliminate
those segments which
e do not correspond to the first, or last occurrences of some PSTs, or
e are not bounded before and after by the first or the last occurrences of some
PSTs.

4 Safety bound problem and our framework

A parametric propositional formulus n on PAP set A has the following syntax.

nu=al-n | m Vg

«a is a PAP in A. Parentheses may be used to disambiguate the syntax. Tradi-
tional shorthands are m Anz = =((-n1) V (-m2)) and g1 — 02 = (—m1) V2. The
satisfaction of a parametric propositional formulus n by a PST pu, written u = 7,
is defined inductively as follows.

e uEaiffaep

e = —my iff it is not the case that p = m

e uEmMVniff plEm or pEnp
Given an algorithm S, a parametric propositional formulus 7, and a bound C', the
corresponding safety bound problem asks if there is a computation vovy ... vg .. .. ..
of an implementation of S such that (3_,cr, . (Fu(Li) + Li(w)® > C

where v, contains a list recording (Ly, Ly,).

Following is our framework for safety bound verification. Given a y € X 4¢#?,
count, (x) is the number, respecting bound B, of processes satisfying n recorded
by PST counter x. Formally speaking, count,(x) = (X, cv, .=y () B
Given an LR PCL(Plimage v = (p,A) with p = xix2...Xn, let
count,(p) = (3, ;<, count,(x;))?) and count,(v) = (count,(p)+count, ())&,
Now we have the procedure SafetyBound() in table 1 to embody our verifica-
tion method. There are two details to fill in. The first is the construction of
PAP set A whose composition depends on target algorithms. The second detail
to fill in is the definition of arc() such that for any two PCL(P)-images v,v’,
arc(v,v’) is true iff there is an algorithm implementaiton in which there are



/* S is a system with identical local process description P,.
/* n is a proposition formulus describing the “critical section” property.
/* C is the safety bound of processes allowed to satisfy n at any state.
/* B is the bound of PST counters. It is assumed C < B. */
SafetyBound(S,n,C, B) {
(1) Let V := the set of PCL‘® -images of all initial states of all imple-
mentations.
(2) Copy V to W.
(3) Repeat while there is a w € W, {
(1) Delete w from W.
(2) Let V' := {w' | arc(w,w)} = V; V=V UV W :=WUV/
(3) connect from w to w’ with an arrow.

}
(4) If there is no v € V such that count,(v) > C and v is reachable from
an image of initial states, then report “YES;” else report “don’t know.”

Table 1. Our procedure of safety bound verification

two states v, v’ such that PCL{®)(v) = v, PCL{P) (') = ¢/, and a process in
the implementation may directly go from v to v'. Clearly, arc() is dependent
on algorithm description. In section 5, we shall demonstrate how to define PAP
sets and arc() relations for single-queue systems. In section 6, we shall discuss
the results of applying CQS technology to an algorithm for dense-time systems
with a local timer per process, i.e. Fischer’s timed mutual exclusion algorithm.

5 Untimed systems with a global queue

The class of systems in example 1 has an explicit queue. For conciseness of the
presentation, we shall make the definition as simple as possible. The process
algorithm is represented as a labeled transition systems (directed graph) such
that the nodes are indexed by consective natural numbers from zero. On node i,
gp =% is true while ¢, = j is false for every j # i. On the arcs which represents
transitions, we may label transition rules like n — [k] where (1) 7 represents the
triggering condition and is a Boolean combination of p = head(Q); and (2) « is
either null, or “wait(p, Q);”, or “exit(p, Q);”.

The global state recording is exactly an LR with PAP set {¢, = 0,¢, =
1,...,¢, = m}U{p = head(Q)} where m+1 operation modes are in the algorithm
description. Interleaving semantics is assumed. Thus a computation of such a
system is exactly a sequence of LR’s. The PCL(P)-images of initial states are
like (L, \gp) where L is the empty list and Ao is a PST counter that maps the
PST of initial process state into {0,1,...,B,c0} and everything else to zero.

10



We shall let arc(v,v") =/, xtion,(v,v'), for any two PCL(F)-images v, ',
where \/, quantifies over all transition rules e in the algorithm and xtion.(v,v’)
is true iff there is an algorithm implementation in which there are two states
v,v' such that PCL{)(v) = v, PCL®)(v/) = v/, and a process in the imple-
mentation may transit v to v’ with e.

Given a transition e = — [k], statement s € e iff s € k, i.e. s is an element
statement in k. Also e(u) is the new PST obtained from PST p by executing
the action sequence in k. Now we can formally define xtion, _,)(p, A, p', \') as
in table 2. (Note we omit the left parentheses before p, p' and right parentheses
after A\, \' for clarity.) Formulus normal(p, p;) on the top is used to make sure

= n A normal(p, p1)
Xtionn—ﬂr@] (P; )\7 p,A,) = 3H3P1 Il’lLiStg(H, p1, >‘7 p,7 )‘,)
VNotInList? (1, p1, A, p', ')
element(p1,7)(p) # 0
InListQ(u, p1, A, p, N) =31 < i < |pi] A StayInList, (1, p1, A, p',\')
VLeaveList, (i, i, p1, A\, p', A)
exit(p, Q); € k) AA =X
inc<B> (P2, i: e(/j/)a P?))
A3p23ps | Adec™ (p1,i, p, p2)
Anormal(ps, p’)
(exit(p, Q); € k) A Ipa(dec'™ (p1, i, 1, pa)
Anormal(ps, p')) A add1® ,\ (A, X)
StayOutOfList . (11, p1, A, o, X))

StayInList, (1,4, p1, A, p,\') =

LeaveList, (u,1,p1, A\, p', ') = (
c 1 Q Iy —

NotInListy? (1, p1, A, p', \') = A(p) #0A VIoinListy (1, pr, A, g, V)

(wait(p, Q); € &) A p1 = pf

A3 (del1™, (X, A1) Aadd1t®) () (A1, X))

(wait(p, Q); € &) A del1t®) (X, X')
Anormal(addtail(p:, makel,(,)), p')

StayOutOfList, (i, p1, A\, p', X') = <

JoinList . (p, p1, A, p', \') = (

Table 2. Formulation of transition relation for single-queue systems

we are dealing with a valid PCL(P)-image. InListg () handles the case when a
process in the linear list makes the transition. StayInList, () handles the case
when the transiting process stays in the linear list and we only have to change
the PST of the transiting process in the same position in the list. LeaveList ()
handles the case when the transiting process will leave the linear list and we
then have to move the PST to A.

NotInListi2 () handles the case when a process not in the linear list makes
the transition. StayOutOfList, () handles the case when the transiting process
will not join the linear list and we only have to change the PST of the transiting
process in A. JoinList, () handles the case when the transiting process will join
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the linear list and we have to displace the PST from A to the end of the list.
The following lemma shows that our method with CQS of B = 1 is complete
in verifying mutual exclusion property of all such waiting queue systems.

Lemma 2. For all waiting queue systems, as described in this section, with un-
known number of processes with algorithm P,, if there is a path vov; . ..v, in the
CQS with B =1 such that vy € I and v, violates the mutual exclusion property,
then there is indeed an implementation ||1<p<m P, violating the mutual exclusion
property.
Proof : Please check appendix A. I
In fact, the CQS of B = 1 constructed with our method for the algorithm in
example 1 is very small as already shown in figure 2. Another interesting thing
about our lemma proof is that the reasoning is exactly the same as a manual proof
of the algorithm. This shows that our CQS technology indeed verifies algorithm
systems at an abstractness roughly equivalent to that of human engineers.

6 Dense-time systems with one local timer per process

In this section, a CQS constructing algorithm for one-local-timer dense-time
systems is presented. The implicit linear list happens, according to [1], as the
linear ordering among the fractional parts of all timers’ readings.

Here is our presentation plan. We shall first define formally the systems
and proves its reachability problem, even with only a binary global variable, is
still undecidable. Encoding of state recordings as LRs will then be given. We
shall encode arc() for all PCL(P)-images v,v’ as arc(v,v') = time(v,v') V
V, xtion. (v,v’). time(v,v') is true if there are states v, 7" with PCL(®)-images
v, v’ respectively such that v can go directly to v’ through time-passage. \/, xtion, (v, ")
has similar meaning as in section 5.

6.1 System definition and problem complexity

A process in our dense-time concurrent systems interacts with peer processes
through read-write operations to global variables. In addition, each process has
its own local variables and timers which no other processes can access. Given a
timer set H and a variable set F', a state predicate n of H and F' is a formulus
constructed according to the following syntax.

nu=y=cly=plzte~az' +d|z~c|-n|nVvy

y is a variable in F'. ¢, d are natural numbers. p is a special variable denoting the
process identifier. 2, 2’ are timers in H. ~ is an inequality operator in {<, <, =, >
,>}. Common shorthands like truth, falsehood, conjunction, and implication can
be defined. Notationally, we let Z lff be the set of all state predicates constructed
from H and F.
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Definition 3. : PTMTS
Process timed mode-transition system (PTMTS) is defined to describe behav-
iors of an atomic process in a real-time concurrent system. Notationally, we use
subscript p to denote those transitions, local variables, and timers of process p.
A PTMTS for process p is a tuple P, = (zp,Y,Y,, $,,T,) with the following
restrictions.

e z, is the local timer. Y is the global variable set. Y}, is the local variable set

with ¢, € Y, as a special variable to record the current mode of process p.

e ¢, is a state predicate in Zi{,ﬁép denoting the invariance condition of process

D
o T), is the set of transition rules. A transition rule has the form: (¢, =iAn) —

[gp := J; k]. Here n is a state predicate in Zi{/ﬁ’(];/p_{qp}) denoting the transition

triggering condition. K is a finite sequence of assignment statements which

is executed on the happening of the transition. Each assignment statement

in k is in one of the following three forms: y := ¢;, y := p;, and z, := 0;.

(Semicolon is the statement terminator.) Againy € Y U (Y, — {gp}), pis a

process identifier, and ¢ is a natural number.

Initially all variables contain zeros. We shall also assume that initially all timers
have some distinct large readings greater than all the timing constants used in
the system description. This is purely for the convenience of later proofs and
complexity analysis. Our method can be easily modified to incorporate initial
conditions with zero timer readings.

Processes in our systems act by performing transitions in an interleaving
fashion, i.e. at any moment, at most one transition can happen. Right before a
transition e = (¢, =4 An) = [gp := j; k] € T), happens, P, is in mode i and 7 is
satisfied. On the happening of e, which is instantaneous, variables are assigned
new values and timers are reset to zeros according to «, and then P, enters mode
7. In between the happenings of transitions, all variable contents stay unchanged
and all timer readings increment at a uniform rate. [

Ezample 3. : For each process of Fischer’s timed mutual exclusion protocol, we
have a PTMTS (z,,Y,Y,, ®,,Tp) with Y = {1}, Y, ={¢p}, Pp =g, =0V (gp =
INO<z, A2, <1)Vg,=2Vg, =3, and

(@p =0A1=0) = [gp := L2 := 0;],

(@p = 1A 2y <1) = [gp o= 21 = py 2, = 03],
Ty =< (@p =2A1#p) = [gp :=0;],

(p=2Nap =1A1=p) = [gp := 3],

(gp = 3) = [gp := 0;1:=0;]

In Figure 3, we draw the PTMTS as a timed automaton[1] which is more visually
readable. The circles are modes and the starting mode is doubly circled. Inside
the circles, we put down the mode names and invariance conditions enforced by
&, in the modes. On each transition, we put down the triggering condition (n), if
any, above the assignment statements (x), if any. For example, in mode ¢, = 1,
0 < z, <1 must be true for process p. In mode ¢, = 1, when z, < 1, process p
may assign identifier p to variable [, reset z, to zero, and enter mode ¢, = 2. ||
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0p =251 :=p;zp :=0;

zp,=1Nl=p
qp =35

Fig. 3. Fischer’s timed mutual exclusion protocol

Given a PTMTS P, = (z,,Y,Y,,®,,T,) and a variable y in YUY}, we let
Dp,., be the union of {0} and the set of values assigned to y in T},. That is,
Dp,.y is the domain of y.

Definition 4. : States Suppose we are given a real-time concurrent system
implementation S = ||i<p<mPp with P, = (z,,,Y,Y,, ®,,T}). A state of S is a
mapping v from U1<p<m{a:p} uYu U1<p<m Y, such that for each 1 < p < m,
v(z,) € RY; for each y € Y, v(y) € U71<;<m Dp,.,; and for 1 < p < m and
y € Yy, v(y) € Dp,.y- We let Cs be the largest timing constant (one used to
compare with timers in state predicates) in S. A state v is an initial state iff for
all y € Y UU cpen ¥, ¥(y) = O;and for all 1 <p < p' < m, Cs < v(zp) #
v(zy) > Cs. |
The satisfaction of a state predicate n by a state v, in symbols v |= 7, is

defined in a traditional inductive way.

evEy=ciffv(y) =c
viEy=piffv(y)=p
viExz+e~a +diff v(z)+c~v(z')+d
viEz~ciffv(z)~c
v |= - iff it is not the case that v =17

evEnvy iffviEngorvEY
Given a state v and § € R, we let v+ 6 be a mapping identical to v except that
for each 1 < p < m, (v +96)(z,) = v(zp) + J. Given a sequence of assignment
statements x, we let vk be a new mapping identical to v except that variables
are assigned new values and timers are reset to zero according to k.

Definition 5. : runs Suppose we have a real-time concurrent system implemen-
tation S = ||1<p<mPp with P, = (z,,Y,Y},,®,,T,) for all 1 <p <m. A v-runis

an infinite sequence of state-time pair (vo,to)(v1,t1) - (Ve tg) - .- such that
V=1, toty...tg...... is a monotonically increasing real-number (time) diver-
gent sequence, and for all k£ > 0,
o 1 < ipi;
o forallt € [0, 541 —tx], vk +t 1= A\ <)) Ppi and
e cither vy + (tg+1 — tg) = Vgt1; or there are p € {1,...,m} and (g, =
vie(qp) AM) = [@p = Vk+1(qp); 6] € Tp such that v + (tk41 — tr) E 1 and
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Wk + (trsr — tr))E = Vit [
We shall show that even with severe restriction on dense-time systems with
one local timer per process, the local state reachability problem of protocols is
still undecidable. A dense-time concurrent system is basic iff its processes are
identically described by PTMTS P, and it has only one global variable [, and
the only operations allowed on | by a process p are
e test on [ =0, [ = p, and their negations; and
e assignments like [ := 0; and [ := p;.
Note Fischer’s timed mutual exclusion protocol falls exactly in the class. The
following lemma shows that even for protocol in this basic class, the local state
reachability problem is still undecidable.

Lemma 6. : Two-counter machine halting problem is reducible to the local state
reachability problem of basic dense-time concurrent systems.
Proof : Our reduction shall treat the sole global variable [ as a bus and interpret
the values of [ along the time line with the common technology of time-division
multiplexing in telecommunication industry. Due to page-limit, we shall leave
the definition of two-counter machines and proof details to appendix B. [
Our reduction actually only uses triggering conditions like [ = 0,1 # 0. This
means that safety bound problem of dense-time protocols is undecidable even
restricted with one timer per processes, one “binary” global variable, and no
global timers.

6.2 Encoding for regions

Given a state v in S = ||i<p<m Pp with P, = (z,, Y, Y}, ®,,T}), its region record-
ing region(v) is a triple («, 8, z) such that

e « is a sequence pips ...p, such that

— pj precedes py, in a iff v(zy,) — [v(2p;)] < v(zp,) — V(2P )]
—A{p1,--spny ={p|v(zp) < Cs;1 <p<m}

e 3 maps variables to their domain values and timers to their integer values

within [0, Cs] U {oc}. More precisely, for all 1 < p < m,

— Blzp) = |v(zp)] if v(zp) < Cg; B(zp) = 0o otherwise;
— forall y € YUY, B(y) = v(y);

e 2 is a Boolean value which is true iff timer z, is at an integer reading.
According to [1], two states make no difference for a model-checking problem
instance iff they have the same region recording.

A node in our CQS for dense-time systems shall be a pair (II,z) where IT
is the PCL{®)-image of an LR. Now we shall define the mapping from region
recordings to LR’s. The PST classification of processes needs PAP set A which
is

{lzp] =c|0<c<Cs}
U{.Tp>05}
U{y=d|yeYUY,;de Dp,,U{p}}
U{p=d|de Dp,,}
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The first three sets are kind of direct translation from region recordings. The
last set, {p =d|de Dpp;y} is needed because we have omitted the process iden-
tifiers and we still have to take care when special process identifier constants
are assigned to variables. This is important when the system is not symmetric
to all processes and some process’s identifier constants can be handled by other
processes. For example, a centralized system may have a process sets global lock
to 1 when it detects a dangerous condition.

Ezample 4. : For Fischer’s mutual exclusion protocol system in example 3, C's =
_ [ lzpl =0, 2] =1, [zp] > 1,6 =0,
1 and PAP set A = {qp: 1,gy =2,y =3,1= 0,0 = p,p=0
we have a state v in a system with four processes such that v(z1) = 0.3, v(z2) =
2.5,v(z3) = O,v(zq) = 0.7,v(q1) = O,v(q2) = 2,v(g3) = Lv(qa) = 1, and
I = 4. Then region(v) = (u(1)f(2)k(3), (K1) * 0, p1(2) 1 0, 3y = 0, puay = 1), true)
with pay = {lzp] = 0,qp = 1}, 2y = {l7p] = 0,¢p = O}, 3y = {lzp] =
0,qp = 1,1 = p}, sy = {zp > 1,q, = 2}. Note here (1), pi(2), f1(3), K(4) TEPresent
respectively processes 3,1,4, 2. [|

The PCL‘®)-images of initial states are like (L, Ao, false) and can be ex-
plained the same as at the beginning of section 5 for untimed systems with a
waiting queue.

With the PAP set A properly defined, we can then use 8 to construct Ugh
(the set of PSTs) and X 4(P) (the set of PST counters). Then the linear list
L can be readily constructed directly from a by replacing process identifiers
with their PST’s. The component L can be viewed as the multiset of PST’s of
those processes whose local timer readings are greater than Cs. In the next two
subsections, With L and L ready, we can then enumerate the PCL<B>—images
of all states and construct arcs among the nodes in the CQS.

} . Now suppose

6.3 Time passage

We now define relation time() in table 3 such that time(p, A, z,p’, X', 2") iff
(p, A, z) can go to (p', N, 2') by a single time-progression. Here is an explanation
of the formulae. Formulus AnIntegerTimer() handles the case that one of the
timers has a reading at an integer no greater than Cg. In this case, that timer
will advance its reading to a non-integer value. When that timer’s reading is C's,
then at the next PCLP)-image p', the process of that timer is removed from
the linear list and recorded in \. When that timer’s reading is less than Cg, then
the PCL{P)-image (and \) of linear list will not change.

Formulus NolIntegerTimer() handles the case that none of the timers is at
an integer reading no greater than Cyg. In this case, the timer with the biggest
fractional part in its reading will advance to an integer value. The new list of
PST counters addhead(front(p;), makel(, (|, |=c})u{|e, |=c+1}) IS the result
after making such an advancement.

6.4 Transitions

xtion,.(p, A\, z, p’, N, 2’) is formally defined in table 4. Formulus InListf() han-
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normal(p, p1)
time(p, \, z,p', ', 2') = 3Ap1 /\< AnlIntegerTimer(pi, ), 2, p', N, z')>
VNolIntegerTimer(pi, \, z,p', X, 2")
2z A=z' Ahead(p1)(p) =1
AnlIntegerTimer(pi, ), 2,0, N, 2') =3 ( CrossCs(p1, ), 0/, \) )
VStayInCg(p1, A, p', \)
P normal(tail(p1), p')
CrossCslpond V) = pis i) = Cs = (Aadd1<B>(u{prJOS})U{mp>OS}(>‘7 ')
StayInCg(p1, A, p',N) = p £ [2p] = Cs = (pr=p' AX=X)
’ !
NolIntegerTimer(p1, A, z,p', X, 2') = Au /\j_;zd/\\r:né\el;(s)tlfnptle)géz'(;j/?))\ =A >
AdvanceTolInteger(p, p)
=30<cec< Cs

p Lo =c

/

(1 — {lp] =c})> P

Anormal | addhead | front(p:), makel
<U{L:cpJ Z o1}

Table 3. Formulation of time-passages for dense-time systems in section 6

dles the case when a process in the linear list makes the transition. NoReset? ()
handles the case when the transition does not reset the local timer to zero and
we only have to change the PST of the transiting process in the same position in
the list. AResetg() handles the case when the transition resets the local timer
to zero and we then have to move the process to the beginning of the list.

Formulus NotInListeD () handles the case when a process not in the linear
list makes the transition. The nested disjunct starting with NoReset’() and
AReset'() respectively correspond to NoReset!() and AReset!() in last
paragraph.

6.5 On Fischer’s timed mutual exclusion protocol

According to example 3, Fischer’s timed mutual exclusion protocol falls in our
class of dense-time concurrent systems with one local timer per process. We have
the following lemma to prove that with B = 1, our method of CQS can prove
that Fischer’s protocol maintains mutual exclusion for system implementations
with all numbers of processes.

Lemma7. : In the CQS constructed using our method with bound B = 1, no
state PCL<1>—image v with count,,—3(v) > 1 is reachable from a initial state

PCL<1>—image.
Proof : Due to page-limit, we leave the proof in appendix C. |
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1 = n A normal(p, p1)
xtion.(p, \, 2z, p', N, 2') = JuIp1 InList? (i, p1, M\, 2,0, X, 2')
<VNotInList£(u, pi, Nz, 0 N, z')>
element(p1,7)(u) ZOAX= N
InList? (u, p1, A\, 2,0, N, 2') =31 <0 < |p1] /\( NoReseté(i,pl,z,p',z')>
VAReset! (i, p1,2,p, %)
(zp:=0;& e) A (z = 7)
inct® (PZ, i, e(.u)v PB)
A3p23ps | Adec™ (p1,i, p, p2)
Anormal(ps, p’)
(zp:=0;€e) A2
AReset!(i,p1,2,p,7) = Adps < dect®) (p1, i, 1, pa) )
Anormal(addhead(ps, makel.(,)), p')

Ap) #0
NotInList? (u, p1,p") = /\( NoReset) (p1, \, z,p/, X, z'))

NoReset! (i, p1,2,p',2') =

VAResetY (p1,\, 2,0/, N, 2))
(Tp=0;¢e)A(z = =2")Ap1=p
NoReset) ' (pi, A\, z,p', N, 2) = ATA ( del1®) (A, A1) >
! /\addl<B>e(u)()\1, )\’)
(zp :=0;€e) A2 Adell‘®) (A N) )

NI Iyl —
AResete (p17>\727p 7>\ 4 ) = </\n0rmal(addhead(p1,makele(u)),p')

Table 4. Formulation of transitions for dense-time systems in section 6

Also for the simple protocol used in [13], our method can also be proved to
work.

We want to point out in our lemma proof, the reasoning is exactly the same
as a manual proof of the protocol. This shows that our CQS technology indeed
verifies protocol systems at an abstractness roughly equivalent to that of human
engineers.

We proceed to analyze the size of CQS for Fischer’s protocol to show that
our method is very efficient for systems designed with engineering rules. We have
nine PSTs.

w=A{g =0;zp > 1}  ps ={q =2; [zp] =0;1 =p}
p2 ={qp =1; lxp| =0} pr = {qp = 2; %] = 1;1 =p}
ps = {qp = 2; [xp| =0} ps = {qp = 2; 1, > 1;1 =p}
pa=A{qp = 2; [®p] =1} po = {qp = 3; 7, > ;1 =p}
ws = {qp = 2,z > 1}

~ =~

We observed the following interaction patterns among the processes with differ-
ent PSTs in a single PCL<1>—image of any state. Only PSTs us, s, 4, ttg, f7 join
the formation of the linear list. And processes of PSTS us, u4, g, or uy always
precede processes of PST py. With C's = 1 and our interleaving semantics, there
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will only be one process in the linear list of either PST pu4 or PST p7. There is
at most one process of PSTs satisfying [ = p. Also processes of PSTs 4, ug, pt7
are always at the beginning of the linear list.

With all such restrictions, we find the linear list must have the following
pattern:

RN Y e
e~ ——— ——
P(1) P(2) P(3)

where 1 is one of g4, pe, 7. We underlabel the three segments of the linear
list with p(1), p(2),p3) for convenience of discussion. The number of different

possibilities for the PCL<1>—images of segment p(s) (and hence p(3)) is 3. Thus
the number of different PCL-images for the linear list is no more than 1+ (3 x
(3 x 3)) = 28 where the beginning 1 denotes the null list case.

As for L, only processes of PST juy, uis, i, fto can join it. At any PCL"-
image, there can be at most one process in PST g or p9. Processes in PST s, pg
cannot coexist. Thus the number of different possibilities of PCL<1>—images of L
is at most 32 x 3 = 27. Finally, z has two values. Putting all numbers together,
we find that the total number of PCL<1>—images for all reachable states is at
most 28 x 27 x 2 = 1512,

7 Conclusion

With the known huge complexities of most verification problems in theory(3, 4, 5,
19], it is apparent that the current technology of model-checking is incapable of
verifying nontrivial systems. We believe such a dilemma results from the fact that
current verification technology[l, 9, 10, 13, 19, 20] does not distinguish “good”
designs from “bad” designs. Our PCL-image technology is a successful example
to verify well-designed concurrent systems in which relations among processes in
different PSTs are more important than the actual numbers of processes in each
PST. We believe our technology can be extended to verify concurrent systems
with multiple linear lists and multiple local timers per process.
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APPENDICES

A Completeness for basic queue systems

lemma 2 : For all basic queue systems with many identical processes with pro-
gram P, if there is a path vov; ...v, in the CQS with B = 1 such that vy € I
and vy, violates the mutual exclusion property, then there is indeed a ||1<p<mPp
with m € N such that there is a computation from initial state to a state violat-
ing the mutual exclusion property.

Proof : We shall construct from vgv; ... v, a computation for some ||1<p<mPp.
There are two types of information we need to fill in. The first is the ordering
among processes recorded by a PST counter while the second is the PST counts
which exceed B and are recorded as oo. This can done in several steps. We first
transform vovg ...v, to vél)vgl) .. .u,(}) such that vg = U[()l) and forall 1 <i<n

with Ul(l) = (pz(»l), /\Z(.l)), there is no PST counter x in pz(»l) and two distinct p, p'
with x(u) # 0 A x(u') # 0. This can be done by working on v; iteratively from

€]

i

i =1 ton. Any PST counters in p;,”’ which were merged from a sublist of PST

counters, generated from pgi)l with transitions which changes pgi)l to pgl), shall

be replaced by that sublist. After such replacements have been done sequentially
(1)

from v; to v,, we are sure that for all 0 < i < n, p;’ is a sequence of marker
counters with bound B.

We can now visualize vél)vgl) .. .vr(f) as a sequence for the recording of PST
count, changes. A PST counter x' in Ug_)l may be now identified as representing

the result of another PST counter x in vl(l) after the transition from vl(l) to vﬁ)l.

Such x and x’ can be identified as the snapshot of the same PST counting device
at different states. Now we can check if the numbers of processes decremented

and incremented in a PST counting device are consistent along U[()I)UF) S

Suppose we find that from vl(l) to vg)l, a decrement needs to happen while

there is not enough number of corresponding increments from v(()l) to Ul(l). Since
B = 1, we know that the counting device must have once recorded a count

(1) (1)

> 1 from vg’ to v;'. We can then trace the transition sequence back to a

process p, in initial PST pg, transiting immediately from v](-l), 0<j<i,to

a PST other than ug. Then we shall insert a new process p’ which follows the
(1)

same transiting sequence as that of p till v; /. The transitions from p' shall

interleave with those in U[()l) ...vgl) and take places in an earliest way but no
earlier than the corresponding ones of p’s. This is possible because the only
condition that can externally withhold a process from making a transition is
p = head(Q). By inserting transitions for p' in an earliest way but no earlier
than the corresponding ones of p’s, we can make sure p' will always immediately
follow p in the waiting queue.

Suppose we find that from vl(l) to vﬁ)l, a decrement shall happen but the PST
counting devices with bound B indicates that not enough number of increments
have been consumed by corresponding decrements. Then what we shall do is to



insert another decrement for the troubling PST counting devices immediately
before vz(l). For transitions without triggering condition p = head(Q), this is OK
because we can assume the transiting process exists and can autonomously make
the transition. When the triggering condition is p = head(Q), there will be only
one process recorded by the corresponding PST counting device and the trouble
should not occur at all.

Assume that after the insertion of all the transitions, we get a new path A =

v[(f)vf) . .v,(f). Since the numbers of increments and decrements of each PST

counting device are consistent now and each PST counter in v§2>,v§2>, .. .,v,(f)
is a marking counter, A can be straightforwardly translated into a computation
with number of local processes equal to the maximum number of increments

applied to a PST counting device along A. I

B Undecidability of basic dense-time system mutual
exclusion verification problem

We shall first briefly define 2-counter machines and then present our reduction.
A counter can hold a nonnegative integer value. A 2-counter machine has a
finite-state control, can increment, decrement a counter value by one, and can
test if a counter value is zero. The halting problem of 2-counter machine is to
answer whether the finite-state control can reach its final state. It is known that
2-counter halting problem is undecidable. [14]

lemma 6 : Two-counter machine halting problem is reducible to the mutual
exclusion verification of basic dense-time systems.

Proof : The automaton representation of a process has the structure in figure 4
in which the automaton is partition into three parts. Only one process can enter
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Fig. 4. A process for 2-counter machine reduction

part controlling while the numbers of processes in parts counting, and counting,
respectively represents the contents of the two counters. The unique process
which enters part controlling is identified by control and controls all other pro-
cesses. The first transiting process in computation will test for a period of [ =0
for 12 time units to enter part controlling and becomes process control. Once
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process control is established, it will make sure [ # 0 for one time units with
the period of 12 time units. (Process control makes | # 0 true by writing control
into [.) And all processes in parts counting, and counting, or to enter those two
parts will listen to this periodicity. By our interleavling semantics with strict
time progressing for each transition, the mechanism can be enforced by placing
the path in figure 5 to guard entrance to part control and guarantees that only

Fig. 5. Guarding path for entrance to part control

one process will be in part controlling.

Part controlling encodes the finite-state control of the target two-counter
machine and communicates with all other processes by changing values of [
along time line. It divides the time line into cycles of 12 time units. We call
each time units a slot. A slot through which I # 0 (I = 0) is maintained is
called a one-slot (zero-slot). Each cycle starts with a one-slot followed by four
zero-slots. All processes except process control will observe this slot patterns for
the start of a cycle. After the starting six slots of each cycle, process control
will send one of the following six instruction slot patterns: 11000 (for testing if
counter 1 equals zero), 11001 (for testing if counter 2 equals zero), 11100 (for
incrementing counter 1 by one), 11101 (for incrementing counter 2 by one), 11110
(for decrementing counter 1 by one), and 11111 (for decrementing counter 2 by
one). After the instruction slot-patterns, process control will set [ to zero and
wait for responses from other processes.

Processes in the initial mode, in part 1, and in part 2 will all observe the
five time slots as instructions. When the instruction is 11000, all process in part
controlling, if any, will set [ to their identifiers interleavingly in the next time
slot. Process control can then test if [ = 0 to check if counter 1 contains zero.

When the instruction is 11100, a process in the initial mode will set [ to its
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identifer in the next time units with triggering condition ! = 0. Thus only one
process will enter part counting; and corresponds to the ”increment by one.”
However, if process control did not detect I # 0 in the twelveth time slot of
the cycle, then it means there are not enough number of processes to emulate
counter-increments and the emulation is unsuccessful.

When instruction is 11001, 11101, 11110, or 11111, the reduction can be
done in similar ways. With more details filled in, we can then prove that the
reduction is good and the mutual exclusion verification problem of basic dense-
time protocol is indeed undecidable. |

C Verification of Fischer’s protocol

lemma 7 : In the CQS constructed using our method with bound B = 1, no
state PCL<1>—image v with count,,_3(v) > 1 is reachable from an initial state
PCL<1>—image.

Proof : We assume there is a shortest path from an initial state PCL<1>—image
to another state PCL-image v with count,,—3(v) = 2. Now in PCL(Y-image
v, there are two processes satisfying g, = 3. Conveniently let P, and P, be
respectively the first and the second process getting into mode g, = 3 along
the path. Since our B = 1, representing processes with corresponding PSTs will
evolve for P, and P, respectively along the path with corresponding transiting
arcs. This can be checked because our time() and xtion, () relations never reduce
the process count for a PST from one to zero in the PCL<1>—image v’ unless a
corresponding process is transformed to another PST. Notationally, we use PS¢
to denote the transitting arc for process P, transiting from mode ¢, = ¢ to mode
qo = d along the path.

Right after transitting arc P?273, [ = q is maintained along the path until
some other process overwrites it. Since P, is the first process entering the critical
sectioin along the path, we know that there must be a first overwriting along
the path from some process P. with transitting arc P}~? and statement [ := c;
along the path. Since P. makes the first overwriting, we know transitting arc
P21 happens, on condition [ = 0, before transitting arc P>73; otherwise a
third process will have to overwrite [ = a with [ := 0 before P.’s overwriting.

Due to the linear sequence maintained in our PCL<1>—image for the timer
ordering, we further infer that the transitting arc P?~! must occur between
transitting arcs P}~2 and P?73 in that order. For P23 to happen, in between
the two transitting arcs P12 and P?73, [ = a must be maintained. But this is
impossible because P?~! necessarily observes [ = 0 and no process will change
I’s value back to a because P, does the first overwriting by assumption. This
contradicts our assumption.

By checking the relation between the above-mentioned transitting arcs and
their recordings in PCL<1>—images of states, we can then prove that such an
transitting arc sequence cannot happen along any path in our CQS. [|
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