The Recognition of the AOSP Digraphs

Hsin-Hung Chou and De-Rop Liang

October 6, 1993

Abhstract
A computation task running in distributed systems ¢

sented as a directed graph, called as a task graph.
vertices represent modules and

And the arguments are passing
study such subjects on edge se
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defaults to be QR-relation. In this paper
relation to being a factorable formulas. Such digraphs are called and-
or series—parallel(AOSP) digraph. And we present a polynomial time
algorithm to recoguize the class of the AQSP digraphs.
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1'ies—pa‘1'aIIeI(ESP) digraph. In an ESP
arcs joining to a vertex
v we extend the precedence

1 Basic concepts

In this section, we resume some definitions and notations we shall em loy.
b i

1.1 Graph-theoretic definitions [1]

A graph ¢ = (V, EY) consists of a finite set of vertices V' and a finite set of
edges F. Each edge is a pair (v,w) where v and w are distinct vertices. If
the edges of ¢ are unordered pairs, then (¢ is an undirected graph; if the
edges are ordered pairs, then G is a directed graph(abbreviated digraph)
A graph is connected if for each pair of vertices,v and w
from v to w. The connected components of
connected subgraphs of . An acyclic graph is
A tree is a connected acyclic graph.

. there is a path
a graph & are the maximal
one that containg no cycies.

1.2 Boolean logic definitions (2]

A Boolean variable is denoted by a; to represent a Boolean value true or
false but not hotl.

The Boolean variables and the negations of variabios




will be spoken of collectively as literals. IF x| and @y are Boolean variablos.,
the conjunction of x| and w9, £y Axy, is true il both 2, and 2o are true. If
either 2, or x» is false, or if both are false, x| A x4 is lalse. Symmetrically,
the disjunction of 2y and @y, 21 V a3, is true if at least one of the Boolean
vartables 2 or @y is true, and is false only il both @ and @y are false. A
formula is made up of titerals, conjunctions, and disjunctions. A positive
formula is a formula made up without negative variables. Two formulae £
and [ are said to be logically equivalent, denoted by [} & Fy, provided
that the formula £ is true(respectively.false) if and only if the formula. £7

is true (respectively,false).

A conjunction of literals such that no variable appears in it. twice will he
called a fundamental conjunctive formula. Any disjunction of funda-
mental conjunctive formulae will be called a disjunctive normal formula
or a formula in disjunctive normal form. The fundamental conjunctive
formulae in a disjunctive normal formula F will be called the clauses in .
A disjunctive normal formula with minimum number of clauses is regarded

as irreducible.

The same considerations as in the set theory, a clause € is said to be a
subclause ol a clause 5 provided that the set of the literals in the ciause
) is a subset of the set of the literals in the clause C'5. In this case, we write
| C Cy and we say that C is included in Cs. Two clauses C and 'y are
said to be distinct if Cy € Cy and C% € C1. In the contrary, two normal
formulae, F; and Fy, are said to be isomorphic, denoted by F| = I, since
¢ C ¢y and Oy C ). When the literal sets of the two formulae have no
common element, we say that they are disjoint.

A factoring on a Boolean formula ' is an operation that divicdes /' into
two disjoint subformulae, /| and Fy which are called the factors of £, in
the Boolean equation : F == &, & Fy, where © is a Boolean relation, A or V.
Obviously, not all the Boolean formulae can be lactored. A formula that can
he Factored recursively such that factors are factored into subfactors until all
the [actors or subfactors are single literals, is called a factorable formula.

n the other way, we use a factoring tree to indicate a sequence of the
recursive [actoring operations, where the factorving tree 7 = (o, [57) s 0
binary tree in which each node in ¥y has a sort in {A,V} U L, where £
is the set of literals, To a factoring on a Boolean formula {707 = F| & Iy,
the corresponding lactoring free has the structure that the root of the tree

|
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bas the sort ¢, the left subtree is the lactoring tree of Fyyand the gt
subiree is the [actoring tree of £, Besides, the sorts of the internal noces
in a factoring tree are the Boolean operations, A or V, and the sorts of
Lhe oxternal nodes are single literals. It iy easy to see that the lactoring
tree of a factoring formula is not itnique. In the other words, there are not,

only one way to factor a formula. Inversely, as we know, a lactorin Z bree
represents a unique factoring formula, we call the formula being expanded
by the factoring tree. Two factoring trees T} and T are said fo be logically
equivalent, denoted by Ty = Ty, if the normal formulac expanded by these
two trees are isomorphic.

O
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Figure 1: An example for the factoring tree.

1.3  And-Or Series-Parallel (AOSP) digraphs “

AOSP digraphs are the extension of ESP digraphs. We introd uce the class
ol ESP digraphs recursively as follows [3];

Definition 1 7he class of ESP (Edge Series-Parallel ) digraphs. |

[ A& digraph consisting of hwo verlices Joincd by o single cidge is 5P,




200Gy oand Gy we BSP digraphs, so arve the digraphs ronstrueled by
cnch of the following operations:

(@) Series composition: [dentify lhe sink of G with the sowree of

Gia.
() Parallel composition: fdentify the source of Gy wilh the souree
of Gy and the sink of Gy with the sink of Giy.

The definition of the class of the AQSP digraph is introduced: as follows:

Definition 2 The cluss of AOSP (And-Or Series-Parallel} digraphs :
A digraph ¢ = (V, [, B) is an AQSP digraph if and only if the digraph con-
structed by (V.E) is an ESP digraph and oll the clements in B are factorable
Jormulac, |

graph such that the verfices are one-to-one literals between any two
clauses.

2 The Recognizing Algorithms for AOSP Digraphs

Since the class of the AOSP digraphs is detived from the task digrapls, it
is approptiate to assume that the input formulae are the disjunction normai
formulae with positive literals. There are two major steps to recognize the
AOSP digraphs: the recognition of the ESP digraph and the recognition ol
the factoring Boolean formulae. Since the recognition of the ISSP digraphs
was provided by Jacobo Valdes, Robert I5. Tarjan and Bugene L. Lawler {3],
all we have to do is to recognize the factorable Boolean formulae.

e INPUT: A digraph G =< V, E, B > where " is a finite set of vertices.
[T is = finite set of edges and B is a finite set of hoolean formulae
attached to each vertex in V.

e QUTPUT: Il ¢ is an AOSP cligra.pli, then output *YTES” else output
"NO™. : '

e ALGORITHM:
RECOGNITION(V,[:.13)




[ Checking whether the digraph ¢ =< V, £ > is an [£SP digraph
or not by Valdes® algorithm. If the answer is "NO”. then onbtpul
"NO” and STOP.

2 Tor each boolean lormula. F in B;
Call FACTORING(I7)
3 Return

FACTORING(I)

L AP is a single literal then Return(” YES™).
2 Reduce F to be the irreducible disjunction normal formula, D1
3 Construct the clause connected graph, /G, from DF.

Find the connected components, IG;, of IG. And let DF; be the
subformula in disjunction normal form corresponding to [¢7;.

—

[y §

For each subformula D5}

5.1 If I" is a single literal then Return("YES™).

5.2 Coustruct the literal connected graph LG from DF.

5.3 Find the connected components, LG, of LG} And decom-
pose DI into the conjunction of the subformulas DF; which
are the formulae composed by the literals in LGj; respec-
tively.

5.4 I the number of the sublormulas is equal to 1 and the number
of the literals in DF; is more than 1, ther output "NO™ and
STOP.

" 5.4 Ior each subformula DF;:

Call FACTORING(DF;).

Return("YES").

it

3 The Correctness of The Algorithms

Theorem 1 Given any positive disjunction normal formula 17,0f I is a re-
dundant implicant in F, then there must exist onother fmplicant [' in I°
stuch that I/ C 1.

Proof. Let =T Vv, . VL, VIand DF=1,v/I,v...Vv1,. Since /
is a vedundant implicant tn £, by delinition, we have that 7 < D},




And suppose there doesn’t exist any implicant 7 in [7such that ' C 1. Phis
assumption implies that for each £;,1 < 7 <, there exists al least a literal,
denoted by ;. being tn £; but not in 7. Let’s consider the truth assignment
such that a; = false for | < j < m and the others are assigned 1o be
fruc. Since the tmplicants, /s, are the fundamental conjunction lormulas.
the truth assignment. @ ; = false for | < 7 < m, would make /; = Jalse for
I < <ol Aad it implies that D7 = false. Nevertheless, there is no AT
[, the assignment would make I to be frue. And it implies that 7 = e,
it is a coutradiction to the assumption, f < DF.

Therefore, there exists at feast one tmplicant /" in [F such that // C /. O

Corollary 1 (fiven any positive disjunction normal fornmda 17, then s
irveducible if and only if each two implicants in I are distinct.

Lemma 1 (liven any two irveducible positive disjunction normal formulas
Iy oand % such that | & . lhen Fy ~ .
| 2 2 1 2

Proof. Let 7 =1 1V]aV.. . Jip and Fy =[5 VI V.. V1, where li;
are implicants for /7 and Fy respectively. Since F| and Fy are irreducible.
then each two implicants in F are distinct and the same in £5. Suppose n >
m then there exists at least one implicant /5;in £y being distinet to all the
implicants in Fy. Let’s consider the formula /' = Co; VO, VC V.. V0.
I C'y; is distinct to all the clauses in £, then there exists an assignment
such that all the boolean variables in Cy; are assigned to be true and others
are false, and it implies that Fy(A} = false and Cy(A4) = frue = FH{A).
Obviously, [\ ¢ F5. It is a contradiction to the assumption that £ = /.
Therefore we have the conclusion that m = n.

Since m =, if Fy ot %, then there exists at least one clause (Vy; in £ dif-
[erent from all the clauses in Fy. And we can prove that it is a contradiction
in the same way.

Therefore we can say that £y and £ must be similar. O

Property 1 Given any two disfoint irreducible positive normal formulas
Iy and 15, Suppose F = FL v Iy, then we can see that each clowse in I
is composed by either the cariables in Fy or in % and not both. s also
an drveducible positive normal formula and the number of e clauses i 7
is equal lo the summation of the numbers of the clauses in I and 175, And
the clause connected graph constructed by I is nol a conneeted graph with
Just one connecled compoend.

(G




Property 2 (liven any bwo disjoint irreducible positive normnal formulas 17,
and 1%, Suppose [ = LN Iy, then we can sec that there is al least o
clawse in [0 containing both & and y; for cach boolean variable i Y anad

yi iy I s also an ivveducible positive normal formula and the nundber of

the elanses in I ix eqral Lo Lhe muliplication of the numbers of the clauses in
I and Iy, And the clause connected graph construcled by [ is a conneeted
qraph.

Property 3 Given any two irveducible positive normal Jormulas 17 and I,
IJ IV~ Iy then the two clause connected qraphs constructed by 7 and 12,
are homogenuous.

Property 4 Given any bwo irveducible positive normal Jormulas Iy and .
If 7y ~ I then the hwo lteral connected graphs constructed by IT wvedd s
are homogenuous.

Corollary 2 Given any boolean positive formula F. then the irveducible
positive normal formulas reduced from F are all similay,

Proof. Suppose there are two distinct irreducible positive normal for-
mulas reduced from £, M Fy and M Fy, such that M e Fand MF, &
Thus, we have MFy; o« Af 5. And from Lemma 1, we have that Af[7 ~
M5 Tt is a contradiction to the assumption that M & and Af S oare two
distinct formulas. Therefore, we have the conclusion that such formulas apre
all similar. O

Lemma 2 Given any boolean binary decomposition tree T, lhen the positive
normal formula expanded Jrom T is irreducible.

Proof. In a boolean binary decomposition tree, the leaves are distinel.
literals and the internal nodes are the boolean opeations A or v, Suppose T
is a boolean binary decom position tree with root node A and two sihtrecs
Ty and Ty, By incluction, it is trivial that a formula with single literal
is irreducible.  Assume that the formulas expanded from Iy oand Ty are
vespeclively 17 and Fy which are irreducible. Let M=Cn0v,v. . MO,
/;‘3 = (,"'2[ \% C’gg V.oV Crgn.

Then = F| A ,F-'g = (C’H vV C'lg V... C’[m) A (C«’g[ Vv Crgg V...V Ca'-g-,,,)

= ((.-'| |C-‘g{ VC-‘[ IC»'-_:_ug V.. .VC’] ]C‘gn) V...V (C'],,,,cfg[ VCr’l,,,_C-'-g-_),V. . .VC'| " (,--'2?,).
From the above assumption, we can casily see that there are O Commaon
literals hetween ¢Y; and Cyjfor 1 <4 < mand 1 Sd < dn Yy there s

T




no clause Cip with all the literals in another clause (Y, for LS pd < m.
and the same in 5.

Tlus, there s 1o clause ChiCa; with all the literals in another clanse CypClay
for | < i,p < and 1< jog < Then we have the conclugion that I 1=
trreducible. 2

Covollary 3 Given any irreducible positive normal formada 17 and suppost
7 can be decomposed into the boolean bimary decomposition Liee I Then
the Jormula cxpanded from T is similar to 17,

Theorem 2 (iiven any boolean posilive Jormla 7 and suppose Hwarres
ducible posilive normal formula veduced from [T is DE, Then I s Bsr
formula if and only if DI s decomposible.

Proof. If [7is 2 BY P formula then (hore exists a hoolean binary de-

composition tree T constructed by I ! such that I & . Suppose I i3 the
irreducible positive pormal formula expanded from T and DF s the jrie-
ducihle positive normal formula reduced from F. Obviously, 7 & I oand
DF < F.lmplies e DF. And from femma 1, we know that 77 ~ DI
Thus DF s decomposible.
Now turn to prove the sufficient condition. Since DF is rveduced from [,
then it is trivial that DF < F. And from (he definition of a BS P formula.
since DI is a BSP formula and DF is equivalent to 77, then [ s also o
BSP formula. U

Lemma 3 Given any irreducible positive normal formuda I that can be

decamposed into 1he boolean binary decomposition tree T by our algorithn, if

there cuists another algorithm that can decompose F into the boolean hipory

decomposition ree Tt then T and T! are graphical equivalenl.

Proof At first, lot’s consider il F i decomposed 1nEo the digiunetion
[orm. Assume that [Fisd ecomposed by our algorithm into VIRV Y I
where 17, Iy P are disjoint irreducible positive normal formulas el
here exists another algorithm decompose Finto FIV GV .Y owheve
s it are disjoint srreducible normal [ormulas. According 0 fhe
number of the connected components of the clause connected graph cou-
structed by 7 it implies that m = 1. 1t §s teivial that there exisls one
formula F: similar to 7 for each i.

[Furtherore, let’s consider if 718 decomposed nto fhe conjunction form.
Suppose 1713 decomposed by our algorithm inio Hy Ay A A t, where



My, iy, .. 1, are disjoint irreducible positive normal formolas and there

exists another algorithm decompose 7 into HYNHA. NH whore HETT,

are disjoint irreducible normal formulas. According to the nuwber of Lhe
connected components of the literal connected graph construeted by /7, it
implies that p = . From the distribution of the conjunction operation.
There exists one formula, _H:- stmilar to ff; for each i. O

Theorem 3 CGiven any irreducible positive normal Jornvda il I cannol
be decomposed by owr algorithm, then F is nol a BSP Jormala,

Proof. Assume that /7 cannot be decom posed by our algorithm, but it
can be decomposed by other algorithm. At first, let’s consider if /7 is decon.
posed into the disjunction form, F = F| v %, where yand 17y are disjoinl.
Since £ cannot be decomposed by our algorithm, the clause comnected graph
constructed by 7 is a connected graph. But from the decom position thal
= I v [y where /7 and Fy are disjoint, the clause connected graphs
constructed by Iy and £ are also disjoint and it implies that the clause
connected graph constructed by F contains more than one connected coni-
ponents. [t is a contradiction.

Furthermore, let’s counsider if I is decomposed into conjunction form, I =
Hy A Hy where Hy and /1, are disjoint. There are two cases that a formula
cannot be decomposed into conjunction form by our algorithm.Case 1: The
literal connected graph constructed by /7 is a connected graph. Case 2
FUA IS # F where Fl and Fj are disjoint. Since I = Hy A Hy where f,
and [l are disjoint, the literal connected graph must contains more than
one connected components. Obviously, it is contradict to case 1.

We know that the set of the literals in & [ or I3 are decided hy the literal
connected graph constructed by F, and since HyAHy=F, then the fteral
connected graph constructed by £y A H, is the same as the one co nstructed
by 7. From the property of the conjunction operation, we have that either
Fl~ Hy and Fy ~ [y or f'1 ~ fy and Iy ~ My Tt is a contradiction 1o
FINF #Fbut EEAH, = F.

Therelore, il ' cannot be decomposed by our algorithm, theu it cannol he
decomposed by others algorithms neither. O

[
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