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Abstract

The 2-D fractional Brownian motion (fBm) model is useful in describ-
ing natural scenes and textures. Most fractal estimation algorithms for
2-D isotropic fBm images are simple extensions of the 1-D fBm estimation
method. This method does not perform well when the image size is small
(say 128 x 128). We propose a new algorithm that estimates the fractal
parameter from the decay of the variance of the wavelet coefficients across
scales. Our method places no restriction on the wavelets. Also, it pro-
vides a robust parameter estimation for small noisy fractal images. For
image denoising, a Wiener filter is constructed by our algorithm using the
estimated parameters and then applied to the noisy wavelet coefficients at
each scale. We show that the averaged power spectrum of the denoised
image is isotropic and is a near % process. Numerical simulation shows the
performance for our algorithm in both the fractal parameter and image
estimation. Applications on coastline detection and texture segmentation

in noisy environment are also demonstrated.
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1 Introduction

Fractional Brownian motion (fBm) is a non-stationary stochastic model, which
has a 1/f spectrum and the statistical self-similar property [13]. For an isotropic

2-D fBm, it has the averaged power spectrum [4]
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where « is the scaling exponent, 0 < « < 1. Many natural phenomena are found

P(wg, wy) =

to have 1/f spectrums. Thus, an fBm provides good mathematical modeling of
these phenomena. Moreover, the self-similar property, which means that the sta-
tistical measure is invariant to the change of scales, makes fBm very useful in de-
scribing natural scenes and textures. The scaling exponent « has also been shown
to be related to the fractal dimension and surface roughness [14]. Many research
works have focused on the generation of fBm [18][9] and estimation of the fractal
parameter (scaling exponent) « [10][2][19][7]. Among them, the wavelet approach
was adopted naturally because the statistical self-similarity properties of an fBm
can be described based on the scaling properties of wavelet transforms. Most of
the previous wavelet-based results have depended heavily on the orthogonality
and vanishing moment of the wavelet function. They used the approximation
that the orthogonal wavelet coefficients are almost white processes. This approx-
imation works only if orthogonal wavelets with high vanishing moment are used.
The performance will be severely degraded if non-orthogonal wavelets are used.
It was shown in [6] that the orthogonality of a wavelet can be discarded if the
fractal parameter is estimated from the autocorrelation of the wavelet transform
of an fBm. In spite of the comparative performance of the fBm estimation and
denoising methods with the results obtained using orthogonal wavelet transform,
this approach allows fractal estimation and other applications, such as edge de-
tection and instantaneous frequency analysis, both of which are captured nicely
by non-orthogonal wavelet transforms, to be done with one wavelet transform
analysis [11][12][3].

In this paper, we will extend the proposed methods in [6] to an isotropic 2-D



noisy fBm image. The extension is not straightforward. Although one can ob-
tain the fractal parameter of an isotropic fBm by averaging the estimated fractal
parameters from several directions using the 1-D fractal parameter estimation
algorithm, this approach does not work well in practice. It was shown in [6] that
it requires more than 1000 sampled points for robust 1-D fractal parameter es-
timation, when the fBm is embedded in additive white noise environment; for a
median size image (say of size 256 x 256 or smaller), there are not enough pixels
in each direction for robust 1-D fractal parameter estimation. Thus, alternative
methods must be developed in order to achieve robust fractal estimation from a
small noisy fBm image. In this paper, we show that the wavelet transform of an
isotropic fBm image at each scale is a two-dimensional weakly stationary process;
that is, a weakly stationary process in both the horizontal and vertical directions.
Thus, robust fractal parameter estimation can be obtained from two-dimensional
wavelet coefficients, even in the case of a small noisy fBm image. We propose a
fractal parameter estimation algorithm which formulates the robust fractal pa-
rameter estimation problem as the characterization of a composite singularity
from the autocorrelation of the wavelet transforms of an noisy fBm image. All
the related parameters are then solved and estimated using a robust regression
method. For fBm image estimation, we apply the Wiener filter to noisy wavelet
coefficients at each scale. The “denoised” image is then obtained by means of
wavelet reconstruction. Finally, we show that the denoised image is a near %
process. The proposed parameter estimation and denoising method are applied

on problems of coastline detection and texture segmentation.

In Section 2, we derive the properties of the autocorrelation of the wavelet
transform of a 2-D noisy fBm. The parameter estimation method is also developed
in this section. In Section 3, we discuss the image denoising method. In Section
4, simulation results based on these methods are shown. We also demonstrate
the applications on coastline detection and texture segmentation. Conclusions

are given in the final section.



2 Fractal Parameter Estimation from the Auto-

correlation of 2-D Wavelet Transform

In this section, we will show that the autocorrelation function of the wavelet
transform of an fBm image is a two-dimensional weakly stationary process at
each scale; that is, weakly stationary in both the horizontal and vertical direc-
tions. Moreover, the variance of the wavelet transformed image at each scale

s is proportional to s%®

, where « is the fractal parameter of the fBm. Using a
similar procedure, we will also prove that the wavelet transform of a white noise
image is also stationary in both the horizontal and vertical directions, and that

its variance at each scale s is proportional to s72.

The wavelet transform W;f,(x,y) of a 2-D fBm image f,(u,v) with scaling

exponent « is formulated as
W fa T y / fa - U)’@Z)s(ua U)dUdva (1)

where ¢ (u,v) is the wavelet, and ¢,(u,v) = 5 (%,%). The autocorrelation of

the wavelet transform W f,,(z,y) at the scale s is derived as follows:

E{W fa T,y Wfa(x+7_way+7_y)}

(2)

B E{// ol =y = W)nlu 0 dUdU/ folz + 75 —m,y + 7y — n)bs(m, n)dmdn}
— //// E{fa(r —u,y —v) falz + 7 — m,y + 7, — n) }00s(u, v)1hs(m, n)dudvdmdn,

where 7, and 7, are shifts in the horizontal and vertical directions, respectively.

Note that the autocorrelation of the fBm image is [9]

E{fa(x_uay_v)fa(x‘i_ﬂ:_may+7—y_n)} (3)
= o {[(x —uw)? + (y —0)*]* + (& + 7 — m)* + (y + 7, — n)*]"
—[(re = m+u)* + (1, — n +v)?]"},
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where o7 is a constant. Furthermore, from the properties of wavelets [12], the

following equation must be satisfied:

// Wy (u, v)dudv = 0. (4)
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Replacing (3),(4) into (2), we can simplify the above to

//// ~0a°|(Te = m A+ u, 7y — 1+ 0) [P (u, v)s(m, n)dudvdmdn,

where |(u,v)| = y/(u?+v?). By changing of variables with p = m — v and

g = n — v, the above equation can be further simplified:

//// —00’|(Te = P, 7y — )" (u, 0) s (p + v, ¢ + v)dudvdpdg

ol P4
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= Rwsfa(Tx’Ty)7
where A(z,y) = [[ ¢(u, v)i(u+z,v+y)dudv. From the above equation, we know
that the autocorrelation of the wavelet transform of a 2-D fBm is stationary in

the both horizontal and vertical directions. Replacing 7, = 0 and 7, = 0 in (5),

we have

Rsta 0 0 // Ua pa |2a ( )dpdq

Let u = p/s and v = ¢/s; the above equation becomes
Ryw1(0,0) = 025> / ()2 A, v)dudy = K, (6)

where K, depends on a and the wavelet, and K, is a fixed constant given the
wavelet transform of a 2-D fBm image. The variance of wavelet transform at each
scale s changes according to s?®. This variance progression provides a method to
estimate the scaling exponent «, and this method works for orthogonal or non-
orthogonal wavelets because in our deduction, we only require that the wavelets
satisfy (4).

Following a similar procedure, the formula of the autocorrelation of the wavelet

transform of the 2-D white noise n(u,v) is derived as

E{Wn(z,y)Wsn(x + 14,y + 1) }

2 L..pq

— _ —_=AE 2
// 00 0(Te — P, Ty — q) = (S, S)dpdq (7)



where 0,,? is the noise variance. Again, by replacing 7, = 0 and 7, = 0, we obtain

1 1
Rw,n(0,0) = a,f;A(o, 0) = EKH, (8)

where K, is determined by the noise variance and wavelet. The variance of

wavelet transform at scale s of the white noise changes proportional to s 2.

Assume that z(u,v) = fu(u,v) + n(u,v) is a 2-D fBm embedded in white
noise. Because the wavelet transform is a linear operation, we can combine the
result of wavelet transform for 2-D fBm and white noise by means of addition.

The autocorrelation of the wavelet transform of the noisy fBm is the summation
of (5) and (7):

RWsz TxaTy)
1
- // —0%|(7 = 1,7y — D)™ +0,26(r, — b7y — )] 5AE, Ly dpdg
= [l 0) P+ 0370, )] % A7), Q

where Ay(75, 7y) = S A(Z, ). Infact, (9) is the wavelet transform of —o?|(u, v) [**+
0,25 (u, v) with wavelet A(u,v), which has a vanishing moment two times greater
than t(u,v). It is worth noting that —o,2|(u, v)|*® + 0,%0(u, v) has a composite
singularity at (0,0), which is the superposition of an isotropic peak and a Dirac.
The problem of parameter estimation can then be related to the detection and
characterization of singularities [11]. Taking (7, 7,) = (0,0), the variance of the

wavelet transform of z(u,v) is
Ry, .(0,0) = K,s** + K5 * (10)

for 0 < @ <1 and K, K, > 0. The above variance progression formula does not

depend on wavelets that have more vanishing moments.

In practice, it is sufficient to estimate the parameters K, K,, and o from the
dyadic scales. K, K,, and « in Equation (10) can be obtained from any three
dyadic scales. However, to get a robust numerical result, we shall estimate these
parameters from as many different scales as possible. Let n be the number of

dyadic scales; we find the parameters K,,, K,, and § = s** that are the solution



of the following constrained nonlinear minimization problem:

F(Kyp Ky, B) = miny (K, + K,27% — Ry, .(0,0)) (11)
j=1
subject to
;L: RW2J'Z(0)
0< K, <=5—2—,

In the nonlinear minimization problem as in (11), we need to solve three
parameters K,, K,, and 3 to fit the variance of wavelet transform at each scale.
But from our observations in experiments and from those given in another report
[7], we know that the variances at some scales are not stable. This may introduce
significant bias in the final estimation result. The authors in [7] tries to exclude
the first scale, or the first two scales, and claimed better results, but this is not
a systematic method generally. Therefore we change our least mean square (LS)

formula in (11) into a least median of squares regression (LMS) one :

J Ky, K, ) = min med (Kpf’ + K27 = Rw,;(0,0))", (12)

The LMS algorithm has been claimed to resist the effect of nearly 50% of
contamination in data [16]. But it has the drawback of low computation efficiency.
In practical computation, we first calculate the solution of K,,, K,, and 8 from
variances from any three scales. All possible combinations of any three scales
are included. Then, the median of the square terms in (12) is found for all

combinations. We choose the combination with the minimal median. Then, we



include half of the scales with square terms less than the other half. Finally,
a constrained nonlinear minimization algorithm is applied to the data of these
scales to find the solution of K,,, K, and . The nonlinear minimization formula

becomes

f(K,,K,,[) = mmZ(Kpﬁj + K,27% — Ry, (0, 0))?, (13)

jes

where J is the set that contains the selected scales from the LMS method.

2.1 Optimization by the Penalty Method

There are many algorithms for solving of a constrained nonlinear minimization
problem. We have used the internal penalty method in our experiments. The
internal penalty method transforms the constrained problem into a unconstrained

problem so that the minimization can be solved easily [1].

- Z?:lRWZjZ(OaU) - ;‘LleWZjZ(U:O)
LetN—WandP—T

equation (13) is

The penalty function of

¢T(Kp7Kn7/8) = f(KpaKnaB) +T(N—1Kn + %n + PJKP + KLp + ﬁ + ﬁ)’

where f (K, Kn, 3) = 3¢, (Kp + Kn27% — Ry ;.(0,0))? is the objective func-
tion, r > 0 is the penalty parameter, and the terms following r are obtained from
the constraints (11). We can find an initial K, K),, and ( from any three scales,
and calculate an initial r as the ratio of the objective function f(K,, K,, ) and
the penalty terms. A local minimization technique, such as the conjugate gra-
dient method, can be used to find the local minimum of ¢, (K, K,, ), which
occurs at K, K, and $*. Then, r can be multiplied by a constant less than
1. These new parameters are used to again find the local minimum of ¢, . This

process can be iterated until a given accuracy is reached.



3 Fractal Image Estimation

Although several algorithms have been proposed to estimate the parameters of
a noisy fBm image [8], few works have focused on the reconstruction of an fBm
image from a noisy environment. Extension of 1-D fBm algorithms of signal
reconstruction to 2-D fBm image denoising may be straightforward, but no such
work has been published. In the classic algorithm of fBm signal reconstruction
given in [19], the authors made an assumption based on that the wavelet transform
of an fBm is white noise. The assumption is an approximation that depends on
the number of vanishing moments of orthogonal wavelets. Extension of their
algorithm to the 2-D case can be done easily and will not be stated here. In
this section, we will propose an fBm image estimation algorithm that places no

constraints on the orthogonality of wavelets.

Since we have shown that the wavelet transform of a 2-D noisy fBm is a weakly
stationary process at each scale, Wiener filtering can be applied to each scale.
Note that in Section 2, the autocorrelation of the wavelet transform W; f,(x,y)

of a 2-D fBm at scale s was
ol /P g
R, () = [ [ =02l = py = 0P A Ddpta. (1)

By simple calculation, the power spectra Sy f(wy, wy) of W; fo(z, y) is the Fourier

transform of (14), and we obtain
0,22/ (2 + 2)sin(ra)

where A(w,,w,) is the Fourier transform of A(w,,w,). Recall that the autocor-

Ss fa(wy, wy) = A(swg, sw,), (15)

relation of the wavelet transform of 2-D white noise is

1
RWsn(Txa Ty) = // Un25(7—:1: — D, Ty — Q)EA(ga g)dpdq, (16)
and that its Fourier transform is
Sen(we, wy) = 0,2 (5w, sW,). (17)



Suppose that W; f,(z,y) and Wyn(x,y) are uncorrelated; the frequency response
of the Wiener filter for the wavelet transform of a noisy fBm is an isotropic

function of the frequency and takes the following form :

sza (wl'a wy)
sza (wxa wy) + Ssn(wa:a wy)
00 22y/7(2042)sin(ma) A
\/mzau
0227 (2a+2)sin(ma A
(AT ) s )
B 0,22/ (2 + 2)sin(ma) (18)
0.224/7L (20 + 2)sin(ma) + 0,2 /w2 + wZZaH '

Now, we will show that the power spectrum of the denoised fBm image is

HS(wfw wy) =

(swy, swy)

isotropic and is a near % process. Let us take Mallat and Zhong’s approach [12].

Let the horizontal wavelet ¢!(x,y) and vertical wavelet 1)%(x,y) be given by

Vi (@,y) = v(@)20(2y), ¥ (z,y) = 20(22)Y(y),

respectively, where ¢)(x) is a wavelet which is the derivative of a smoothing func-
tion. At each scale s, a coarse image and two detail images, which represent the

horizontal and vertical details, are generated.

In our denoising algorithm, the Wiener filter is applied to the wavelet coef-
ficients of the noisy fBm at each scale, and then the denoised image f¢(u,v) is
recovered by means of wavelet reconstruction :

fé(u,v) = Z(hsl  Wila 5 xo (u,v) + he® x Woa + 12 (u, v)), (19)

S
where x'(u,v) and x*(u,v) are the reconstruction wavelets, x,(u,v) = s%x(%, ),
and h," and h,? are the impulse response of the Wiener filter for the horizontal and
vertical wavelet coefficients. It is easy to see from (18) that h,' = hy®>. Without
loss of generality, we will use the dyadic wavelet transform. Since f¢(u,v) is the
output of a sequence of linear operation, its power spectrum can be written as
S e (wyy wy) = Sy(wy, wy) | Hy(we, wy)[* Y [ (27w, 2wy )X (2710, 2w, |
i€z (20)
+ |@52(2ij7 2jwy)XA2 (2ija 2jwy)|2a



where S;(w,, wy) is the average power spectrum of the noisy fBm.

To show that the denoised image is a near % process, we first deal with the term
S ez (WL (27w, 2w, ) X (27w, 20wy )2 + [2(20wy, 27wy ) X2 (2P wg, 27w, [?). Some

related results can be found in [12], and we list them below for convenience :

p(w)] < 1, 21
|H (w)]* <1,
|6(2w)| = |H(w)||(w)],

> (012w, 2wy )X (2w, 2wy) + 02 (2w, 2wy )XY s, V) = 1,
JjEZ

22
23

(
(
(
(24

)
)
)
)

G(w)K (w) + | Hw)P =1, (25)
Loy = LEVIIE 0)
1 (20, 200,) XM 2, 200, = |Gw) K () L)1) ()Y, (27)
220, 20,) X2 (2, 20, = |G, K (10,) L) Pl () 1) . (28)

Using (24), the lower bound is

S5 (2w, 2w, )X Ry, 20w, P+ |02y, D0, )2 (P, P, ) )
JjEZ
> | S0 (2w, 20, XN (20, 20,) + 02210, D0, ) X2 (20, P, )P = L.
JjEZ

(29)
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The upper bound is derived from the above relations step by step :

Y (M2 ws, 2w, )X (D, 2wy |* 4 [2(2 w0, Py )X (2w, ) )
JE€EZ

_Z 627wy )| $(27 ) ! [IG(2j‘1wx)K(2j‘1wx)L(2j_1wy)|2)

+1G(27 ', ) K (27t ) L(27 M, ) |2 ]

1+ |H(2j_1wy)|2]2

= 3 () (2 1wy>|4[[ HE ) 2]

2
[ [H @ )22 [ |H(22J_ =) }2])

< 2 (102 wo) P[1 = [H (2 wa) ] + 1627 wy) P [1 = |H(2 ) P])

=2 ({162 wa) P = [0(27wa) ) + (16027 wy) [ = 6(2w,) )

< i 1 2 f 2 : 1 2 9 f 2_o
< Jim [o(wa) " = lim [o(w)[" + lim [o(wy)[” — lim [é(w,)[" =2

We can see that the summation term is between the upper and lower bound;

therefore, we have recoverd a near % process.

11



4 Simulation Results and Applications

In this section, we will first demonstrate the simulation results of our algorithms,

then, the applications on coastline detection and texture segmentation are shown.

4.1 Simulation results

For the simulation process, the discrete version of the isotropic 2-D fBm synthesis
was given by [9]. The increments of the 2-D fBm are first synthesized by discrete
Fourier transform, and then the fBm image is added from the incremental values.
This method can not produce 2-D fBm images with exact fBm statistics, but the
authors claim almost perfect fBm statistics and fast implementation. A constant
parameter 0,2 is set as 0.5 in the synthesis process. 64 fBm realizations of image
size 256 x 256, with each scaling exponent o« = 0.2, 0.5, and 0.8 are generated.
Smaller image sizes of 128 x 128, 64 x 64, and 32 x 32 are generated by cutting
out the central part of the 256 x 256 images.

In our implementation, we followed the approach described in [11][17], where
no decimation was applied to the detailed images in both the horizontal and
vertical directions. We then estimated the scaling exponent « in both directions
from the detailed images. They were expected to be close in magnitude because
we used the isotropic 2-D fBm images, which had the same scaling exponent in
all directions statistically. We then took the average of the scaling exponents in
these two directions as the scaling exponent of the whole fBm image. In all the
experiments, we adopted two wavelets, the Haar wavelet and Mallat wavelet, for
comparison of filter performance. An image size of N x N was decomposed up
to log, N scales. Using the LMS method, only the data on half of the scales were
selected. K,,, K, and «a were calculated from the data of the selected scales using

internal penalty method.

White noise was added to the fBm images so that the SNR was 10dB and 5dB,
respectively. The mean and root mean square (RMS) errors of the estimated &

are plotted in Figs. 1 to 3 as a function of the image size for various values of a.
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From the results of parameter estimation of clean fBm images shown in Fig. 1, we
can estimate the scaling exponent « precisely for image sizes larger than 128 x 128.
The degree of the RMS error is about 1072, This result is comparable to that
of another proposed method [8], in which the same 2-D fBm generation process
was used. But we also note the underestimation of o with a true value 0.8, which
problem is also reported in [8]. The performance of the Haar wavelet was slightly
better than that of the Mallat wavelet because Mallat wavelet has longer support,
which introduces unwanted boundary effects in smaller images. In the case of a
noisy environment, our method still estimates o well for image sizes larger than
128 x 128. The estimation error is about 10~ worse than that in the case of clean
image. This shows the robustness of our method to added noise. In all cases,
our method always produces estimates of a that are distinguishable from each
other if their true values are originally different . This is a good property if we
do not require precise estimation, but robust estimation that still can distinguish
one fBm region from another, for example, in the application of texture image

segmentation [20].

The performance of the image denoising algorithm described in Section 3
was also evaluated. In order to distinguish the error introduced by parameter
estimation and the image denoising algorithm, we set a prior the true parameters
0,% and 0,2 in the Wiener filter formula (18) in the experiments. The Wiener filter
was applied to each scale of wavelet transform. Then, the denoised fBm image was
generated by means of wavelet synthesis of the filtered wavelet transform images.
Sixty-four realizations of fBm images, with sizes of 256 x 256 and 128 x 128, and
scaling exponents a of 0.8, 0.5, and 0.2, were used. The SNR gain, which is the
reconstructed image’s SNR minus the original SNR, was measured by taking the
average of 64 SNR gains for each case described above. The Haar and Mallat
wavelets [12] were used in our experiments. The results are shown in Fig. 4.
First, we can see that the performance of the Haar and Mallat wavelets [12] is
indistinguishable. Images of size 256 x 256 have about 2 to 3dB more SNR gains
than those of size 128 x 128 in the case of & = 0.8 and 0.5. The SNR gain of
a = 0.8 is higher than that of & = 0.5 at about 5dB, and a = 0.5 is higher than

13



a = 0.2 at about 5 to 6dB. The degrading of the denoising effect for small «
values is due to the smoothing effect of the Wiener filter. The fBm images with
lower « values represent rougher surfaces [14], and exhibit similar behavior with
respect to noises. Therefore, the Wiener filter not only smoothes out the added
noises, but also smoothes out the original roughness of the fBm images. The low

SNR images have better SNR, gains after denoising.

For visual evaluation, we present some sample figures of image denoising in
Figs. 5 to 7. The 256 x 256 fBm images with o = 0.8, 0.5, and 0.2, were added
with noises such that the noisy fBm had an SNR value of 5 dB. We can see that
all denoising results are visually acceptable. In the following, we demonstrate

two applications for fbm image parameter estimation and denoising.

4.2 Application 1 : Coastline detection

The first application of fBm image denoising is a model of a terrain surface. In
order to identify the coastline, we set those pixel values below a certain threshold
to black as if they were below sea level. For example, Fig. 8(a) is an fBm image
with @ = 0.5, and Fig. 8(b) is the result of coastline detection. If the image is
added with white noise, then simple thresholding can not identify the coastline
well. This is clearly shown in Fig. 8(c), where 5dB noise was added to the image
shown in Fig. 8(a). One can observe many dotted noises, and that the coastline
can not be identified clearly. In Fig. 8(d), we show the result of coastline detection
on the denoised image using our algorithm. One can see that it is a smoothed

version of the original coastline shown in Fig. 8(a).

4.3 Application 2 : Texture segmentation

The estimated fractal parameter a can be used as a useful feature for texture
segmentation and classification. In this subsection we will demonstrate its ap-
plication in texture segmentation. Fig. 9(a) shows a 512 x 512 texture mosaic

created by three fBm images with different scaling exponents «: in the upper

14



256 x 512 is an fBm image with o = 0.8, in the lower left corner is a 256 x 256
fBm image with o = 0.5, and in the lower right corner is a 256 x 256 fBm image
with o = 0.2. One can easily see the texture boundary, but an edge detection
method will find too many edges due to the singular behavior of an fBm. There-
fore, we used a small sliding window to estimate the scaling exponent «, and
the center pixel of this window was assigned this estimated « value as its local
feature. This fractal feature was computed for each pixel, then this feature image
was clustered to obtained the segmented image. It had been reported that the
fractal feature alone can not segment texture well [8], especially in the case of
noisy environment, in which the parameters can not be precisely estimated with
only local data. So we add the power of incremental fBm, which is the average

energy of the incremental fBm in a window, as another feature.

According to our previous experimental result in Fig. 1, in the case of clean
fBm parameter estimation, the degree of the RMS error is below 10! for window
size above or equal to 32 x 32. Therefore, We used sliding window of size 32 x
32 to estimate the fractal parameter of the clean fBm mosaic, also the same
window size to estimate the power of incremental fBm. A Gaussian filter of
variance 4 is used to smooth the resultant feature images. Then, we apply c-
mean algorithm to classify each pixel to one cluster, assuming that we know the
number of clusters. The classified pixels are given gray level N which is equal
to their cluster number. This clustered image is shown in Fig. 9(c). The major
segmentation errors happened in the texture boundaries, in which the parameter

estimation is inaccurate.

White noise was added to the fBm mosaic such that the SNR is 10dB. This
noisy fBm mosaic is shown in Fig. 9(b). From previous experiments, window
size must be greater than 64 x 64 to achieve better parameter estimation, so
we chose sliding window of size 64 x 64. The scaling exponent and the power
of the incremental fBm for each pixel were also estimated. Note now that in
the estimation of the power of the incremental noisy fBm, the white noise will
contribute to this measure. Thus, this feature will not be useful for segmentation

in the case the noisy data is in low SNR. Similar Gaussian smoothing of variance
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6 and c-mean clustering method were applied in the noisy fBm mosaic. The
clustered result is shown in Fig. 9(d). We still have greater segmentation errors
in the texture boundaries. According to this segmentation result, we will estimate
the noisy fBm mosaic. We identified the texture boundary of the fBm mosaic and
partitioned it into three rectangular sub-images. Then, we applied our parameter
estimation method to each sub-image for the parameters o, K,, and K,. We
obtained o,2 and ¢,% from the corresponding estimated K, and K, at each sub-
image by using the Equations (6) and (8). Finally, the denoised sub-images
were obtained by using our proposed Wiener filtering method. The denoised
fBm mosaic is shown in Fig. 9(e). The PSNR of the original fBm mosaic and
the denoised fBm mosaic is about 47.45dB. We have about 37dB gain from the

denoising process.

5 Conclusion

We have showed that the wavelet transform of a 2-D fBm is weakly stationary
in both the horizontal and vertical directions. A new fractal estimation method,
based on the decay of the variance of the wavelet transform of a noisy fBm image
across scales, has been proposed. This new method allows estimation of the frac-
tal parameter on small image blocks. It outperforms many conventional fractal
parameter algorithms, where the fractal parameter is obtained by averaging the

1-D results in many directions using 1-D fractal estimation algorithm.

For the estimation of a denoised image, a Wiener filter was applied to the
noisy wavelet transform on each scale. Then, a smoothed “denoised” image was
obtained after applying the inverse wavelet transform. We have shown that the
averaged power spectrum of the estimated image is isotropic and is a near %
process. Finally, we demonstrated our algorithms on the applications of coastline

detection and texture segmentation.
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Figure 1: The mean and RMS error of the scaling exponent estimation from 64
realizations of clean fBm images with various sizes. “*”, and “4” indicate the
results obtained using Haar and Mallat wavelet, respectively. Top: Estimation of

a = 0.2. Middle: Estimation of @ = 0.5. Bottom: Estimation of o = 0.8.
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Figure 2: The mean and RMS error of the scaling exponent estimation from 64
realizations of clean fBm images with various sizes. Noise was added to image
such that SNR = 10dB. “*”, and “4” indicate the results obtained using the
Haar and Mallat wavelet, respectively. Top: Estimation of a = 0.2. Middle:

Estimation of o = 0.5. Bottom: Estimation of v = 0.8.
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Figure 3: The mean and RMS error of the scaling exponent estimation from 64
realizations of clean fBm images with various sizes. Noise was added to image
such that SNR = 5dB. “*” and “+” indicate the results obtained using the
Haar and Mallat wavelet, respectively. Top: Estimation of a = 0.2. Middle:

Estimation of o = 0.5. Bottom: Estimation of v = 0.8.

21



scaling exponent = 0.2, image size = 256x256
T T T

scaling exponent = 0.2, image size = 128x128
T T T

25

SNR gain(dB)

25

SNR gain(dB)

-20 -15 -10 -5 0 5 10 15 20 25 30 -20
SNR(dB) SNR(dB)
scaling exponent = 0.5, image size = 256x256 scaling exponent = 0.5, image size = 128x128
30 T T T T T T T T T 30 T T T T T T T T T
25| 25
20
201
g g1
£ =
8151 8
o o
z Z1
(2} 2]
101
s
R -
-20 -15 -10 ! 0 5 10 15 20 25 30 -20 -15 -10 ! 5 5 20 25 30
SNR(dB) SNR(dB)
scaling exponent = 0.8, image size = 256x256 scaling exponent = 0.8, image size = 128x128
35 T T T T T T T T T 30 T T T T T T T T T
301
25
@
g
£
8201
o
z
(2}
151
101
-20 -15 -10 -5 5 10 15 20 25 30 -20 -15 -10 -5 0 5 10 15 20 25 30
SNR(dB) SNR(dB)

Figure 4: The SNR gain from denoising the image with various SNR. Left: image
of size 256 x 256. Right: image of size 128 x 128. “*” and “4” indicate the
results obtained using the Haar and Mallat wavelet, respectively. Top: fBm with
a = 0.2. Middle: fBm with o« = 0.5. Bottom: fBm with a = 0.8.
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Figure 5: Image denoising example. Top figure : 256 x 256 fBm image with
a = 0.8. Bottom left : noisy fBm with SNR = 5dB. Bottom right : denoised fBm
image with SNR gain 21.12dB.
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Figure 6: Image denoising example. Top figure : 256 x 256 fBm image with
a = 0.5. Bottom left : noisy fBm with SNR = 5dB. Bottom right : denoised fBm
image with SNR gain 13.33dB.

24



Figure 7: Image denoising example. Top figure : 256 x 256 fBm image with
a = 0.2. Bottom left : noisy fBm with SNR = 5dB. Bottom right : denoised fBm
image with SNR gain 3.48dB.
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(c) (d)

Figure 8: Example of coastline detection. (a): original 256 x 256 fBm image with
a = 0.5. (b): coastline detection of original fBm image. (c): coastline detection
of the noisy fBm with SNR = 5dB. (d): coastline detection of the denoised fBm

image.
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Figure 9: Application of texture segmentation and denoising. (a): Original 512 x
512 fBm image mosaic. (b): Noise was added to (a) such that SNR = 10dB. (c):
Texture segmentation result of (a). (d): Texture segmentation result of (b). (e):

Denoised image of (b) according the texture segmentation of (d).
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