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Abstract. A theoretical framework is proposed for the verification of complex
real-time systems, model ed as client-server scheduling systems, using the popul ar
model -checking approach. Model-checking is often restricted by the large state-
space of complex real-time systems. The scheduling of tasksin such systems can
be taken advantage of for model-checking. Our implementation and experiments
corroborate the feasibility of such an approach. Wide-applicability, significant
state-space reduction, and several scheduling semantics are some of theimportant
featuresin our theory and implementation.

1 Introduction

M odel-checking hasthe promise of aformal, full, and automatic verification of complex
industrial implementations in the future. In spite of the recent success in the formal
verification of real-time systems, it is till quite infeasible to formally verify large-
scale real-world systems due to their high degree of complexity. On the other hand,
engineers have developed various paradigms to help build and verify safer systems.
One such paradigm is the scheduling paradigm which greatly simplifies the interaction
among many processes to periodical and aperiodical computation time contention. But
still, scheduling paradigm represents atoo much simplified paradigm for many complex
systems, such as protocol design, client-server systems, communication systems, . . ..
In this paper, we construct a theoretical framework which combines the advantages of
model-checking and scheduling paradigm with several concurrent scheduling servers
employing different scheduling policies. Our implementation and experiments show its
benefit and feasibility by comparing with a naive verification effort, that is, pure model-
checking approach. Experiment data shows that exponential reduction in state-space
size can be reached.

In our framework, ascheduling client-server system consists of aset of servers, with
scheduling policies specified, and a set of scheduling client automata which are basi-
cally real-time automata extended with scheduling tasks specified at different modes.
One mgjor issue in such systems is the difficulty of compromising between two time
scales : the job-computation time unit A; and the schedulability-check time unit As.
Usualy A issevera orders of magnitude larger than As. In real-time systems model -
checking, very often the time and space compl exities are proportional to the timing con-
stants used in the system description. With such abig disparity between A ; and As, the
complexity of scheduling system model-checking can easily grow beyond manageable.
In this work, we adopted the following technique. The systems will till be presented
with time unit A ;. But, when we are in a mode to check the schedulability, we shall



derive formulas, with respect to different scheduling policies, to calculate the computa-
tion time s for the schedulability-check. Then the duration of the schedul ability-check
issetto be [g—i] inthetime unit of A ;. With thistechnique, we can circumvent the po-
tential combinatorial complexities caused by the disparity between the two time-scales.

Another mgjor issue is; when exactly should the checking for schedulability of the
tasks in amode be performed. Two alternatives arise here, namely, (1) checking before
an in-coming transition of the mode istaken, or (2) checking after an in-coming transi-
tion of the mode is taken. Several different kinds of semantics related to schedulability
checking are possible. These are discussed in subsection 3.1. Following is an example
of avideo system.

Example 1. : Video System

Here, we have two servers and two clientsin a Video-on-Demand system illustrated in
Fig. 1. Thetwo clients issue task service requests to both the servers concurrently. The
two servers check if requests are schedulable and then either acknowledge or regject the
requests. The server for movies schedules with the rate-monotonic (RM) scheduling
policy while the other does with the earliest deadline first (EDF) scheduling policy.
The explanation of some popular scheduling policies can be found in section 2.

The Movie Server stores a set of movie files ready for access by clients under the
rate-monotonic scheduling policy. The Commercials Server stores a set of commercial
files and work with the earliest-deadlinefirst scheduling policy. Asshownin Fig. 1, the
clients are modeled by finite-state automatathat are enhanced with clocks and schedul-
ing tasks. In the figure, boxes represent different operational modes of the clients and
the arrows represent transitions between modes. z and y are the two clocks used to
control the operation times in the client automata. For example, the assignment z := 0
beside an arrow means that the clock « isreset to zero during the transition. The predi-
catez = 35 on an out-going transitionin Client A meansthat the transmission of movie
“Pretty Woman,” should end at 35 time units.

Within each box, we specify tasks by atuple (o, ¢, p, d, f) where « is the server
identification, ¢ is the computation time of the task within each period, p is the period
for thetask, d isthe deadline for each instance of atask, and f specifiesif fixed priority
(f = 1) or dynamic priority (f = 0) isto be used. It isimportant that at any instant of
the computation, the tasks set admitted to each server remains schedulable. |

The outline of this paper is asfollows. Section 2 gives a brief survey of the priority
scheduling policies used in our system. Section 3 presents the formal system model
and describes how model-checking is used to verify the system. Section 4 describes
our implementation of the model-checking approach using the popular HyTech tool
and shows the benefit of our approach using some application examples. Section 5
concludes the paper.

In the following, we use N and R to denote the set of non-negative integers and
the set of non-negativereal numbers.

2 Review of scheduling research

A real-time system generally needs to process various concurrent tasks. A task is a
finite sequence of computation steps that collectively perform some required action
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Fig. 1. A video-on-demand system

of a real-time system and may be characterized by its execution time, deadline, etc.
Periodic tasks are tasks that are repeatedly executed once per period of time. Each
executioninstance of aperiodictask iscalled ajob of that task. In aprocessor-controlled
system, when a processor is shared between time-critical tasks and non-time-critical
ones, efficient use of the processor can only be achieved by careful scheduling of the
tasks. Here, time-critical tasks are assumed to be preemptive, independent, periodic,
and having constant execution times with hard, critical deadlines. Scheduling may be
time-driven or priority-driven. A time-driven scheduling algorithm determinesthe exact
execution time of all tasks. A priority-driven scheduling algorithm assigns prioritiesto
tasks that determines which task is to be executed at a particular moment. We mainly
consider time-critical periodic tasks with the above assumptions and scheduled using
priority-driven scheduling algorithms.

Depending on the type of priority assignments, there are three classes of scheduling
algorithms: fixed priority, dynamic priority, and mixed priority scheduling algorithms.
When the priorities assigned to tasks are fixed and do not change between job exe-
cutions, the algorithm is called fixed priority scheduling algorithm. When priorities



change dynamically between job executions, it is called dynamic priority scheduling.
When a subset of tasks is scheduled using fixed priority assignment and the rest using
dynamic priority assignment, it is called mixed priority scheduling.

Before going into the details of scheduling algorithms, we define the task set to be
scheduled as a set of n tasks {¢1, ¢2, . . ., ¢, } With computation times ¢y, ca, . . ., ¢y,
request periods py, ps, . .., pn, and phasings hy, ha, . .., hy,. A task ¢; isto be periodi-
cally executed for ¢; time units once every p; time units. The first job of task ¢; starts
execution at atime h;. The worst-case phasing called a critical instant occurs when all
h; =0,fordli, 1 <i<n.

Liu and Layland [LL73] proposed an optimal fixed priority scheduling algorithm
called the rate-monotonic (RM) scheduling algorithm and an optimal dynamic priority
scheduling algorithm called earliest-deadlinefirst (EDF) scheduling. The RM schedul-
ing algorithm assigns higher prioritiesto taskswith higher request rates, that is, smaller
regquest periods. Liu and Layland proved that the worst case utilization bound of RM
was n(2'/™ — 1) for a set of n tasks. This bound decreases monotonically from 0.83
whenn = 21tolog.2 = 0.693 asn — oo. Thisresult shows that any periodic task set
of any size will be ableto meet all deadlinesall of the timeif RM scheduling algorithm
isused and the total utilization is not greater than 0.693.

The exact characterization for RM was given by L ehoczky, Sha, and Ding [LSD89],
they proved that given periodic tasks ¢1, ¢, - - ., ¢, With request periods p; < py <
... < p, computation requirements ¢y, ¢s, ..., ¢,, and phasings hy, ha, ..., h,, ¢; iS
schedulable using RM iff

Mingeg Wilt)/t <1 D

whereW;(t) = Z?j:l ¢;[t/p;], the cumulative demands on the processor by tasks over
[0,t], 0 isacritical instant (i.e., h; = 0 forali),andG; ={k-p; |j=1,...,i,k =
1., |_pz/p]J}

Liu and Layland discussed the case when task deadlines coincide with request peri-
ods, whereas L ehoczky [L90] considered the fixed priority scheduling of periodic tasks
with arbitrary deadlines and gave a feasibility characterization of RM in this case:
given atask set with arbitrary deadlinesd; < d» < ... < dy, ¢; iSRM schedulable
iff Maxg<n; Wik, (k — Dp; +d;) < 1whereW;(k,z) = mlntSw((E;;ll Ccj |—t/pj-| +

The worst case utilization bound of RM with arbitrary deadlines was also derived
in [L9Q]. This bound (U,) depends on the common deadline postponement factor A,

A+1

U(2) = Alog, (25

>,A:1,2,... )

For A = 2, the worst case utilization increases from 0.693 to 0.811 and for A = 3
itis0.863.

Recently, the timing analysis for a more general hard real-time periodic task set on
auniprocessor using fixed-priority methods was proposed by Harbour et al [HKL94].



Considering the earliest deadlinefirst dynamic priority scheduling, Liu and Layland
[LL73] proved that given atask set, it is EDF schedulable iff

n

Y Y< &)

i=1 pi

and showed that the processor utilization can be as high as 100%.

Liu and Layland also discussed the case of Mixed Priority (MP) scheduling, where
given atask set ¢y, ¢a,...,0,, the first k tasks ¢q,..., ¢, k < n, are scheduled
using fixed priority assignments and the rest n — k tasks ¢g+1, - - ., ¢, ae scheduled
using dynamic priority assignments. It was shown that considering the accumulated
processor time from O to ¢ availableto the task set (ay(¢)), the task set is mixed priority
schedulable iff

n—=k

x|

i=1

for al ¢ which are multiples of p;., or ... or p,. Here, a;(t) can be computed as

follows. i
ar(t) =t—Y ¢ {iw

j=1 1 Pi

pk+iJ Crri < ap(t) 4

Although the EDF dynamic priority scheduling has a high processor utilization, in
recent years fixed priority scheduling has received great interests from both academy
and industry [LSD89,L90,SG90,HK L 91,SKG91, TBW92,KAS93,HKL 94].

Summarizing the above scheduling algorithms, we havefive different cases of schedu-
lability considerations:

e RM-safer all task sets are schedulable as long as the server utilization is below
log.2 = 0.693,
RM-exact: all task sets satisfying Equation (1) are schedulable,
RM-arhitrary: all task sets are schedulable as long as the server utilization is below
Alog, ((A + 1)/A) (Equation (2)),
EDF: al task sets satisfying Equation (3) are schedulable,
MP: all task sets satisfying Equation (4) are schedulable,

3 Client-Server Scheduling System Model

Modeling a real-time system as a client-server scheduling system, our target system of
verification consists of a constant number m of servers that perform scheduling and a
constant number n of clients that issue scheduling requests. A server adopts a schedul-
ing policy. Each client is modeled with a client automaton such that the client issues
different scheduling requestsin various modes. On receiving arequest for scheduling a
set of tasks, a server decides whether the tasks are currently schedulable or not.

Definition 1. : A Periodic Task
A periodictask isatuple ¢ = («, ¢, p, d, f), where « is the identification of the server
onwhich thetask isto be processed, ¢ isthe constant computation time of ajob, p isthe



request period of ajob, d is the deadline within which a job must be completed before
the next job request occurs, and f specifies if the task must be scheduled using fixed
priority or dynamic priority, that is, f = 1 for fixed priority and f = 0 for dynamic
priority,c < p, ¢ < d,and ¢, p,d € N, the set of nonnegative integers. I

Notationally, we let 7%, be the universal set containing all possible tasks in a sys-
tem #. We model the behavior of clients with timed automata which are automata
enhanced with clocks. It is assumed that the current mode of each client is broadcast
to al the clients in the same system. The behavior of a client in each mode can be ex-
pressed through a state predicate, which is a combination of propositions and timing
inequalities on clock readings. Given a set of propositions P and a set of clocks X, a
state predicate n of P and X has the following syntax.

nu=fase|r|z~alz+a ~y+ax|mAn

wherer € P, z,y € X, a, a1, and a, arerationa numbers, ~ € {<, <, =,>,>}, and
n1, 12 are state predicates. Let B(P, X) be the set of all state predicateson P and X.
Given a set of propositions P and a set of clocks X, aclient is modeled as follows.

Definition 2. : Client Automaton (CA)
A Client Automaton (CA) isatuple C = (M, m°, P, X, x, u, E, p, T) with the follow-
ing restrictions.

e M isafinite set of modes.
mP € M istheinitial mode.
P isaset of atomic propositions.
X isaset of clocks.
X : M — B(P, X) isafunction that labels each mode with a condition true in that
mode.
w2 M~ 27 maps each mode to afinite subset of tasksin Ty,.
E C M x M isthe set of transitions.
p: E — 2% mapsatransition to aset of clocksthat are reset on that transition.
7 : E — B(P, X) maps each transition to a triggering condition. |
The CA C starts execution at its mode m°. We shall assume that initially, all clocks
read zero. In between transitions, all clocksincrement at auniform rate. The transitions
of the CA may be fired when the triggering condition is satisfied.

Definition 3. : Servers

A server isatuple (a, ¢) where « is the unique identification for the server and ¢ isthe

scheduling policy of the server. I
Now with a set of servers, a set of client automata, and the ratio between the

schedulability-check time unit and the job-computation time unit, we are ready to define

what is a scheduling system.

Definition 4. : Scheduling systems

A scheduling system H is defined as a tuple ({S1,S2,...,Sm},{C1,Cs,...,Cu},
P, X,I'), where {S1,55,...,S,} is aset of servers, {Cy,C,...,C,} is aset of
client automata, P, and X are respectively the set of atomic propositions and the set
of clocksused in C4,...,C,, and I' isaratio of a schedulability-check time unit to a
job computation time unit. |




Definition 5. : Statesand their admissibility
Givenasystem H = ({S1,...,Sm},{C1,...,Cn}, P, X, ") with C; = (M;,m?, P,
X, Xi, i, Ei, pi, 1), astate s of H isdefined asamapping from {1,...,n} UP U X to
Uy <i<p, M; U {true, false} U R* such that

e Vie{1,..,n},s(i) € M; isthemodeof C; in s;

e Vr € P, s(r) € {true, false} isthetruth value of = in s; and

e Vz € X,s(z) € Rt isthereading of clock z in s.
Further, a state s is said to be admissible when:

° sk /\19'3” xi(s(2)), and

o thetask set Ui<;<mti(s(i)) C Ty at s isschedulable by the servers. I

Definition 6. : Satisfaction of state predicate by a state

State predicate ) is satisfied by astate s, written as s |= 7 iff

s [~ false;

Vr € P,s = riff s(r) = trug

Ve € X,s | Ex~aiff s(z) ~ q;

Ve,y€ X,sEx+a ~y+ aiff s(z) +a; ~ s(y) + az; and
sEmAniffs =n ands = n, I

Definition 7. : Mode Transition
Givenasystem H = ({Si1,...,Sm},{C1,...,Cn}, P, X, ') with C; = (M;,m?, P,
X, xi, i, Ei, pi, ), and two states s and s', there is a mode transition from s to s’ in
H,insymbolss — s, iff
e both s and s’ are admissible states,
e thereisan1 <4 < n such that
- (s(1),s'(1)) € Ey;
- 5(i) | 7i(s(d), 8'(0));
-fordll1<j<nandj #1i,s(j) =5'(j);
- Vo € X ((z € pi(s(i), s'(i)) = s'(z) = 0) A (z & pi(s(i),s' (1)) = §'(z) = s())).
I
Givenastatesandad € R, welet s + & be the state that agrees with s in every
aspect except foral z € X, s(z) + 6 = (s + 0)(z).

3.1 Semanticsof Schedulability Checking

Theadmissibility of anew state, that is, the schedulability check, can beimplementedin
either one of two ways: (1) checking before transition, and (2) checking after transition.
In the former case, when aclient isin a particular mode (may be executing some tasks)
and an out-going transition is enabled, it must first check with the servers by sending
scheduling requests before the out-going transition is taken. In the latter case, when a
client isin a particular mode and an out-going transition is enabled, the client may take
the transition and then check if the tasks in the new mode are schedulable.

(a) Scheduling-Check Before Transition (SCBT): The semantics here differ mainly in
the duration time that a client automata can stay in a mode. Here, we propose three
possibilities.



e (SPR) Saturated Parallel Request: If more than one out-going transitions of the
currently executing mode are concurrently enabled, then the client keeps on issu-
ing scheduling requests to all servers according to its next-states task sets. Once
a positive response is back for any one next-state, the client can make the corre-
sponding transition. If more than one positive responses are received, the client
makes all corresponding transitions in parallel (parallelism is implemented as in-
terleaving of transition sequences). In this semantics, the duration time of a mode
must be greater than the schedul ability-check computation time for the correspond-
ing next state. This semantics needs minimal modification to trandate to HyTech
input form.

¢ (SQR) Seguential Request: The client nondeterministically chooses a next state
and posts requests to the servers specified in the task set of the next state. No re-
guest to any server will be issued until the last request is replied. In this seman-
tics, the client nondeterministically chooses a next-state and polls the servers for
schedulability-check. Only after response is back, the client may test for another
next-state. Thus the duration time a client can stay in a mode must be the sum of a
seguence of schedulability-check computation times.

¢ (NPR) Non-saturated Parallel Request: Theclient pollsall the serversfor al its
next-states. Once areply is back, the client choose between taking the correspond-
ing transition or not. If it does not transit at the moment, then it issues another
schedulability request for the same next-state. In this semantics, the duration time
must be at least a multiple of the schedulability-check computation time for a par-
ticular next-state.

(b) Scheduling Check After Transition (SCAT): In this case, modularity of the system
specifications is preserved and transitions occur according to the timed automata se-
mantics. Scheduling systems implemented using this scheme of schedulability check-
ing have two semantics related to scheduling, that is strict scheduling semantics and
loose scheduling semantics.

e (SSS) Strict Scheduling Semantics: In a particular mode, it may happen that the
specified task set cannot be scheduled before an out-going transition is enabled. In
this situation, when we do not allow the client to make the enabled transition from
the non-scheduled mode, we call it strict scheduling semantics.

e (LSS) Loose Scheduling Semantics: In a specific mode, when the specified tasks
are not scheduled (i.e., schedulability-check returns negative response) before an
out-going transition is enabled, the client may choose to either keep on issuing
scheduling requests for non-schedul ed tasks set or transit to the next mode by mak-
ing the enabled transition. Thisis called loose scheduling semantics and resultsin
alarger globa state space as shown by examplesin Section 4.

The computation of our scheduling system is defined in the following.

Definition 8. : s-run
Given asystem H and a state s of 7, acomputation of # starting at s, called an s-run,
isasequence ((s1,t1), (s2,t2),. ... ) of pairs such that

e s =sy;and

e foreacht € R*,3j € N suchthat¢; > t; and



e for each integer j > 1, foreachreal 0 < 0 < t;41 — tj, s; IS admissible and
sj+0 = xi(s;(i)); and
e foreachj > 1, H goesfroms; to s, because of
- modetransition, i.e.t; =tj 1 Asj = sj41; 00
- time passage, i.e t]' < tj-i-l Asj+ t]'+1 — t]' = Sj+1-
e Thedurationtime aclient can stay in amode must satisfy the chosen semantics. ||

4 |Implementation

Thetheoretical framework of a Client Server Scheduling System Model as presented in
Section 3 has been implemented into a practical tool for verifying scheduling systems.
The implementation mainly constitutes two parts: scheduling check time computation
and trandating a scheduling system description into a pure timed automata specifica-
tion. The resulting timed automata specification can be seen as a special case of linear
hybrid automata, hence the popular tool called HyTech is used for verifying our resul-
tant system descriptions.

The two semantics of scheduling check before and after transition have both been
implemented into our trandlator tool. Experiments have been conducted with several
application examplesfrom both hardware and software. Though the degree of advantage
in using our proposed approach for verifying scheduling systems vary, yet all of the
examples show an appreciable amount of decrease in the size of the reachable state
space required for verification.

4.1 Scheduling Check Time Computation

Before entering a state s, a system must check with the serversiif it is an admissible
state, that is, if all the tasks (UY_, u;(s(4))) in that state are schedulable by the servers.
This computation for schedulability check is done exclusively by each client by locking
the servers and requires a small period of time which depends on the scheduling algo-
rithms used by the servers. Usually the computation for schedulability check is a very
small one compared to the scheduled job computation time. However, as the number of
contending processes increases, some scheduling policies may consume an amount of
time that cannot be considered negligible. For example, for a 200 MHz CPU, the pro-
cessor cycletimeisaround 5 x 108 seconds, and considering asingle instruction to be
2 cycles, the CPU requires only 10~" seconds for one processor operation. At the same
time, onetick of scheduled job computationtimein areal-time systemisusually in the
order of amillisecond (ms). Hence, theratio of a server cycletimeto ajob computation
time unitis 10~%. Normally, atask set sizein areal-time system isin the order of 10 to
100. A schedulability-check time linear in the size of the task set would be negligible
compared to the computation time of the task set, but if it is quadratic, it would be in
the order of onejob time unit.

For analyzing the amount of time required for schedul ability-check, we define the
set of tasks in some state s, which are to be scheduled on some particular server Sy,
using some scheduling algorithm Ry, 1 < k < m.

vs(Bi) ={¢ | ¢ = (Sk,c,p,d, f), ¢ € pi(s(i)),1 <i < n} ()
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Fig. 2. Schedulability Check Time

The schedulability check time required for each of the five variations of priority
scheduling described in section 2 using different ratios of server operation time to com-
putation time unit isillustrated in Fig. 2. We observe that the schedulability check time
is negligible when the ratio is of the order of (10=*). We make the following assump-
tions:

e The execution of all jobs of each task start at integer-valued time instants.

e A schedulability check is assumed to take 1 computation time unit when it is not
greater than 1 unit and it istaken as 2 time unitswhen it is between 1 and 2, that is,
the schedulability check time is taken as the next larger integer if it is not already
aninteger.

As far as RM-safe, RM-arbitrary, and EDF priority scheduling are concerned, the
schedulability check time only depends on the total utilization of a server. Aslong as
the utilization is below the respective bounds of n(21/" — 1), Alog, (4XL), and 100%,
all tasks of all phasings, request periods, and deadlines can be scheduled. This check
requires time linear in |vs(R)|, where R is RM-safe, RM-arbitrary, and EDF, respec-
tively. Hence, assuming the ratio of a processor operation time to a job computation
time unit to be ¢,,, for example, ¢,,, is in the order of 10~* for a 200 MHz CPU and
a1 mstick computation time, the time spent for checking schedulability of RM-safe,
RM-arbitrary, and EDF by aparticular server are as follows.

’YS(RMsafe) = |VS(RMsafe)| X top (6)
’YS(RMarb) = |VS(RMarb)| X top (7)
Vs(EDF) = |vs(EDF)| X top €S

For RM-exact (Equation 1) scheduling, the schedulability check timeis asfollows.

’Ys(RMewact) = |VS(R]\/[eacact)|2 X Plvs(RMegact)| X top (9)

10



wherep),, (ru.,...)| iSthelargest periodin vs (R Megact). Asfor mixed priority schedul-
ing, the schedulability check timeis as follows.

’YS(MP) = |VS(MP)| X LCM{pk | ¢) = (S,cvpkada 1)} X top (10)

where LCM isthe least common multipleand ¢(S, ¢, pg, d, 1) isatask in state s, which
isto be scheduled using dynamic priority.

Hence, the total time spent on schedulability check during a state transition to
adae s inasystem H = ((S1,S2,...,5m), (R1,Ra,...,R),(C1,Ca,...,Ch),
P, X,Ty,t,p) isasfollows.

¥s = MaXi<k<mYs(Ri) (11)

where Ry, € {RMyqfe, RMepact, RMypy, EDF, M P}.

The difficulty in implementing scheduling check time computation lies in the fact
that for RM.....; and M P scheduling policies, the periods of all the currently executing
tasks must be known (refer to Equations (10) and (11)), hence we must consider all
possible permutations of the client modes for a complete check time computation. This
also impliesthat the mode status of each client must be broadcast to al the other clients
in the scheduling system. This broadcast has been implemented in our translator.

4.2 Trandator

We developed a trandator for trandlating the client-server scheduling system specifi-
cation (in our own input language) to the HyTech specification. HyTech [HHWT95]
is a popular verification tool for verifying systems modeled as linear hybrid automata.
HyTech has been used to verify various different systems such as gas burner, railroad
crossing controller, Corbett’s distributed controller, and protocols such as Fischer's mu-
tual exclusion protocol. Each client automaton is implemented as a linear hybrid au-
tomaton in HyTech and the analysis tool is used to verify our system.

According to the different scheduling semantics, we have different types of imple-
mentation schemes. For the scheduling check before transition (SCBT) semantics, we
have a transition-oriented implementation and for the scheduling check after transition
(SCAT), we have a mode-oriented implementation.

SCBT Implementation Asillustrated in Fig. 3, each mode in the scheduling system
description isimplemented as a simple job execution location called RunJobs, but each
mode transition is implemented as a set of three interconnected locations called Lock,
SchedCheck, and Error. The purpose of these locations are, respectively, the locking of
the servers, the checking for schedul ability of the tasksin the next mode (the destination
mode of the transition under consideration), and the resetting of internal variableswhen
anegativeresponse is received in SchedCheck. Thereis alocation transition from Run-
job to Lock and one from SchedCheck (on a positive response from the servers) to the
RunJobs location of the destination mode. The triggering condition and the assignment
statements of the transition under consideration are attached to the location transition
from RunJobs to Lock and to the location transition from SchedCheck to next mode

11
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RunJobs location, respectively. The locking mechanismis similar to that for SCAT and
is described in the SCAT implementation. Saturated parallel request (SPR) of SCBT
reguires the least modification with respect to HyTech, so only SPR was implemented.

SCAT Implementation Each mode of aclient automatonisimplemented by four loca-
tions, namely, Lock, SchedCheck, RunJobs, and Error. A client must check the admissi-
bility of amode before entering it, and this check must be done exclusively by aclient
because otherwise the schedul ability check performed will not be consistent. To ensure
exclusiveness of schedulability check, we employ a simpler version of the Fischer's
mutual exclusion protocol [L87] and alock (I) semaphore variable. Before performing
schedulability-check, a client obtains ownership of [ by setting [ to its identification
number so that it can exclusively do the checking. A client waits in location Lock for [
tobefree(i.e, ! = 0) and whenfreg, it sets! to itsidentification number. Schedulability
check isdonein thelocation SchedCheckiif I isstill set to its own identification number,
otherwise the client returns to the location Lock. After schedulability check, the client
changesmodein location SchedCheck and if schedul ablethe jobs of the scheduled tasks
are executed in location RunJobs, otherwise the location Error is entered.

Asillustrated in Fig. 4, in the case of strict scheduling semantics (SSS), the loca
tion Error has only one out-going transition to location Lock since the tasks must be
scheduled and executed in the mode before any mode transition occurs. The location
transition from RunJobs to Lock implements a mode transition in the client automaton.
Asillustrated in Fig. 5, in the case of |oose scheduling semantics (L SS), thelocation Er-
ror hastwo out-going transitions. one to the location Lock of the current mode (just as
in the case of strict scheduling semantics) and oneto the location Lock of the next mode.
Thetwo location transitions from location Error to the two Lock |ocations implement a
mode transition.
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Fig. 4. SCAT: SSSImplementation Fig.5. SCAT: L SSImplementation

4.3 Application Examples

To illustrate the generality of our approach, we demonstrate the benefits of three dif-
ferent types of systems: a hardware system such as a video-on-demand (VOD) system,
a software system such as a real-time operating system (RTOS), and an agent system
such as a package delivery system (PDS).

There are two servers in the video examples (just as in Fig. 1). The movie server
schedulestasks with the rate-monotonic (safe) policy, while the commercial server does
so with the earliest-deadline first policy. For the real-time OS example, there are four
servers. OS kernel, display, memory, and printer, which use rate-monotonic (safe),
earliest-deadline first, rate-monotonic (arb), rate-monotonic (exact) policies, respec-
tively, for scheduling the tasks. For the delivery system example, it is assumed that there
are three delivery agents and four clients. The delivery agents must deliver packagesto
the clients according to scheduling policies: rate-monotonic (exact), earliest-deadline
first, and mixed scheduling.

Two versions are given for each of the three kinds of systems. All the six examples
were specified in our input language which was then automatically trandated by our
trangdlator into the HyTech input language. Theresults, astabulated in Table 1, show that
our approach indeed reduces the total size of the system state space for verification as
compared to the pure model checking approach. Here, pure model checking means that
we do not take advantage of the scheduling algorithms and directly verify the systems
which might contain alot of unschedul able states. Drastic reductions can be achieved in
systems that have a heavy workload. With each type of example, either VOD or RTOS,
it is observed that with a high complexity in the client automata (i.e., the number of
modes and transitions) the SCBT implementation shows a larger benefit (i.e., asmaller
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Table 1. Comparison of Pure Model Checkingand Our Approach

Specifications Number of regions (convex predicates)
SCBT SCAT

Example || o\l u asif | U | SPR 5SS [
VOD(Fig.1)|| 2 | 2 8 9 139 90(64.7) 110| 68(61.8] 120| 78(65.0
VOD1 2|3 6 7 344| 231|67.2 141] 92|65.2| 147| 98|66.7
VOD2 2|3 9 11 114| 46(40.3| 80| 34({425 107 61/57.0
RTOS1 4|3 11 14 || 2962| 2247|75.9| 1980| 1486|75.0| 2054| 1560(75.9
RTOS2 43| 12 16 830| 306|36.9] 684| 256|37.4| 728 300|41.2
PDS1 3|4 6 6 4717| 3708(78.6| 2114| 1610|76.1| 2140| 1636|76.5
PDS2 3|14 6 6 3306| 1554(47.0| 1193| 536|44.9| 1204| 547|45.4

S: set of servers, C: set of clients, | U M;|: total #modes, | U E;|: total #transitions
P Pure Model Checking, Sare: Scheduling System Model Checking, %: Syre | Pure

state space size) compared to all the semantics of the SCAT implementation. Thisisdue
to the stronger semantics of atransition not occuring before the tasks schedulability of
its destination mode is checked. Comparing the two semantics of SCAT: SSSand LSS,
in all the examples it is observed that strict semantics shows a larger benefit with our
approach. Thisisdueto the stronger restriction in SSS of tasks required to be scheduled
before the client can progress on. Thus, we can conclude that both theoretically and
experimentally we have shown that SCBT has the strongest notion of schedulability
and LSS of SCAT has the weakest notion with SSS of SCAT in-between SCBT and
LSS.

5 Conclusion

Model-checking, though a popular verification method, has yet to be made more effi-
cient for verifying the current highly complex systems. We have shown how complex
real-time systems can be easily verified using the popular model-checking approach if
we model the complex system as a client-server scheduling system and then verify it.
This approach is meaningful when we observe that almost all complex systems need
some sort of scheduling so that the tasks can be executed consistently and efficiently.
Our preliminary effort has been shown feasible through the implementation using our
trandlator and the HyTech verification tool. Different semantics have been implemented
and compared using several examples. Our future work will include the devel opment of
atool devoted to the verification of such systems using symbolic model checking.
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