
A Simple Model of Distributed Functional Data Structures

and Its Implementation�

Tyng�Ruey Chuang

Institute of Information Science

Academia Sinica

Taipei ���� Taiwan

trc�iis�sinica�edu�tw

Abstract

We report results from experimenting with a par�
allel functional programming environment based
on distributed data structures� The main results
are� �� A distribution model to support e�cient
fold�unfold operations over data structures� The
distribution model is simple yet general	 and easy
to implement�
� A novel programming envi�
ronment assembled from currently available hard�
ware�software systems� Functional programs exe�
cute in SPMD �Single Program Multiple Data� style
under this environment and exhibit good speedup�

� Motivation

The development in recent years on computer sys�
tems	 software tools	 and functional languages seem
to have converged to a point where it is natural to
conduct the following experiment� to build an en�
vironment for parallel functional programming by
assembling readily available hardware and software
systems� We have just done that	 on and o� for two
months starting in mid February	 �

�	 and the out�
come is quite satisfactory� We report here results
from our experiment	 with emphasis on a simple
model of distributed functional data structures�

Developments in the following four areas are suf�
�ciently mature for us to conduct this experiment�

Hardware system� Workstation clusters based
on distributed or shared memory systems are

�Alternatively titled as Do�it�yourself parallel functional

programming� This paper is available on�line as technical re�
port TR�IIS������� from the Institute of Information Science�
Academia Sinica� via http���www�iis�sinica�edu�tw�

very a�ordable today� Multiple CPU�s are in�
terconnected on the desktop ready to be pro�
grammed�

Communication library� There exist standard	
portable	 and e�cient libraries to exchange
data among multiple processors over network
or via shared memory� Examples include MPI
�Message Passing Interface� and PVM �Paral�
lel Virtual Machine�� These libraries all have
C language interface�

Functional language� Many implementations of
modern functional programming languages
also have C language interface� Examples in�
clude Objective Caml	 SML�NJ	 and Glasgow
Haskell� Also quite importantly	 the paramet�
ric module systems of the ML family provide
a convenient way to build new libraries �i�e�	
structures in ML� based on existing libraries
�i�e�	 functors�� This abstraction power and the
associated discipline help derive type�safe and
distributed implementations of algebraic data
types �ADT�s��

Programming model� Functional programs	 and
their parallelizations	 based on fold�unfold op�
erations over algebraic data types are well
studied�� The SPMD �Single Program Mul�
tiple Data� model for programming symmet�
ric multiprocessors is also well understood��

�The fold	unfold primitives are the bases of the
Bird
Meertens formalism� and are also called catamor�
phisms	anamorphisms ����

�Under the SPMD models� many copies of the same pro�
gram execute at the same time� one on each processor� Data
are exchanged among the various executing programs by ex�

�

Fold�unfold operations are the high�level func�
tional abstractions we aim to implement	 by
using low�level side�e�ecting SPMD code	 for
programming multiprocessor systems�

We use the following speci�c components from
the above four areas to conduct the experiment�
IBM SP
 ����	 MPI ����	 Objective ML ���	 and
fold�unfold primitives �
� with SPMD programming
model� From these	 we quickly build up a work�
ing environment	 using existing hardware�software
resources	 for parallel execution of functional pro�
grams	 and observe good speedup� We are a little
surprised by how well the experiment goes� �This
certainly a testimony to the high quality of the com�
ponents we used�� Since we are not aware of similar
experiments	 we think our experience deserves to be
shared�

We use the four selected hard�
ware�software�model components because they are
familiar and available to us� Other selections of
components are certainly possible� The language
Objective Caml plays important role in our exper�
iment because it glues the other three components
wonderfully� It generates native PowerPC code on
IBM SP
 and provides C interface to MPI� It has a
parametric module system that allows us to manage
the generation of new	 distributed	 implementations
of ADT�s based on existing sequential implementa�
tions�

There are two goals we set up to achieve�

��� The same program executes both on single� and
multi�processor systems	 using our distributed
implementations of ADT�s� If the programs
use fold�unfold operations	 they should exhibit
speedup on multiprocessor systems�

�
� The module signature of the distributed imple�
mentation of an ADT is the same as the one of
the sequential implementation� However	 cus�
tomized distributions can be speci�ed by pro�
grammers by additional predicates �this will be
made clear in Section
�� The distributed data
is used in a purely functional style	 and the
users do not worry about low�level mechanism
for data distribution�

We shown in the next section	 Section
	 the distri�
bution model and implementation principle we used

plicitly subroutine calls to the underlining communication
library�

to achieve �
�� Section � show results that con�rm
���� We then relate our approach to other work in
Section ��

� A Simple Model of Distribution

We assume that the functional program is executed
under the SPMD model on multiple processors�
However	 unlike imperative SPMD programs	 there
will be no explicit calls to underlining communi�
cation library to exchange data among the proces�
sors� On each processor	 the program executes as
if it has the whole data structure	 and the out�
come from all processors will be identical� Note
that functional languages have its advantage over
imperative languages in parallel processing because
these data structures	 though distributed	 will not
be side�e�ected once they are generated�

The distribution model we use is a simple one�
Parts of a data structure can either be replicated or
partitioned� If the part is replicated	 then each pro�
cessor have a copy of the part and knows that it is a
replica� If the part is partitioned	 then only one pro�
cessor has it	 it knows that it has the only copy	 and
all other processors know that this processor has it�
Collective operations on a distributed structure are
equally straightforward� For data that is replicated	
each processor operates on its own replica	 indepen�
dent to one another� For data that has been par�
titioned	 the processor that owns the unique copy
operates on it and sends the result to all proces�
sors� Furthermore	 work on data partitions can be
carried out independently and in parallel on all pro�
cessors� After partial results from all partitions are
computed	 however	 they are exchanged in a coordi�
nated matter such that all processors get all partial
results� Then each processor merges its local set of
partial results independently�

What we describe above is at the implementtaion
level� This is to be provided by us by a mechani�
cal transformation of the original implementation of
ADT�s� At the user�level	 programmers use our dis�
tributed implementations of ADT�s and don�t con�
cern such details� Computations on data structures
of those ADT�s will be automatically distributed�
We will use an example	 of data type tree	 through�
out this section to explain the model and its imple�
mentation in detail� The general principle	 however	
apply to other data types�

��� Polynomial data types and their
�xed points

The functional data structures we distribute are val�
ues of polynomial �or	 sum�of�product� data types
and their �xed points� It is called a polynomial
data type because the set of its values is the dis�
joint sum of several sets of product values	 with
products from di�erent sets distinguished by value
constructors ��tags���

The following is an example of polynomial data
type� Values of type quad are all pairs	 but are dis�
tinguished from on another by the four tags AA	 AB	
BA	 BB� The types of pair�products are parameter�
ized by type variables �a and �b�

type ��a� �b� quad � AA of �a � �a

� AB of �a � �b

� BA of �b � �a

� BB of �b � �b

The following recursive de�nition of data type tree�

type �a tree � AA of �a � �a

� AB of �a � �a tree

� BA of �a tree � �a

� BB of �a tree � �a tree

can be alternatively expressed as the �xed point of
the following type equation�

type �a tree � ��a� �a tree� quad

where quad is viewed as a type function of two vari�
ables� In Objective Caml �as in many functional
languages�	 one needs an extra tag	 named Rec be�
low	 when de�ning tree as the �xed point of quad�

type �a tree � Rec of ��a� �a tree� quad

Accompanying the above de�nition	 is a pair of in�
jection and projection functions up and down that
move values in between types ��a� �a tree� quad

and �a tree��

let up t � Rec t

let down �Rec q� � q

Note that one can choose an identi�er other than
Rec as the tag in the de�nition of tree� Functions
up and down provide a level of abstraction that sep�
arates us from this non�essential naming decision�

�These two functions are usually named in and out� How�
ever� in is a keyword in Objective Caml� so we use up and
down�

��� Fold�unfold functions over recursive
data types

It is well known that for a data type that can be
expressed as the �xed point of a polynomial	 as
shown above for type tree	 fold�unfold functions
can be systematically de�ned to provide reduc�
tion�generation operations for values of that type	
as shown below for type tree�

let rec fold f t �

match down t

with AA �u� v� 	
 f �AA �u� v��

� AB �u� v� 	
 f �AB �u� fold f v��

� BA �u� v� 	
 f �BA �fold f u� v��

� BB �u� v� 	
 f �BB �fold f u�

fold f v��

let rec unfold g s �

match g s

with AA �u� v� 	
 up �AA �u� v��

� AB �u� v� 	
 up �AB �u� unfold g v��

� BA �u� v� 	
 up �BA �unfold g u� v��

� BB �u� v� 	
 up �BB �unfold g u�

unfold g v��

We put all related declarations about data type
tree together as a signature �module type in Ob�
jective Caml� and name it as TREE in Figure � in
Appendix A�

The above de�nitions of fold�unfold also express
potential parallelism during the evaluation of their
return values� For if the tag is BB	 then evaluations
for the two constituting parts of this product can be
conducted in an independent and parallel matter�
The challenge is to specify this distribution of work
such that it can be easily understood and utilized
by users	 and e�ciently implemented by existing
hardware and software systems�

��� The distribution model

We now describe in detail how values of type tree

are distributed	 and	 once distributed	 how they are
accessed� Though we use type tree as an example	
the distribution model is not speci�c to it	 and can
be applied to any polynomial data types and their
�xed points� To ease further discussion	 we say that
a functional data structure is built up with nodes	
which are tagged values of product types� In a
node	 its constituting parts may again refer to other

�

0 0 01 1

2 2 2333

1

The original tree The tree at
processor 0

The tree at
processor 1 processor 2

The tree at
processor 3

replica nodeLegend:
local node
remote node

tree consisting of only replica nodes

tree of the original implementation

The tree at

000

Figure �� A tree distributed to four processors�

nodes� Note that in strict functional languages	 pro�
grammers cannot construct values whose nodes re�
fer to one another in cycles �except when mutable
values are used�� The nodes of a value will be struc�
tured like a directed acyclic graph �dag��

As an example	 for tree value	 the nodes will be
tagged quad values and they form no cycle� For the
following discussion	 we limit all nodes to be tagged
quad values	 and the term tree refers to tree value�
A node can have parents if it is used to build an�
other tree �via the up function�	 and it can have
children if parts of it are also trees �as exempli�
�ed by nodes with AB	 BA	 or BB tags�� In single�
processor execution of tree programs	 all nodes re�
side in �the memory� of the single processor� In
multiple�processor execution	 nodes are distributed
over processors� When a tree is distributed	 its con�
stituting nodes at each processor are classi�ed into
three disjoint categories� replica nodes	 local nodes	
and remote nodes� The three categories represent
the following three disjoint distribution properties�

�a� A replica node is replicated at all processors�

�b� A local node is available only at one processor�

�c� At each other processor where it does not have
the local node	 it has a corresponding remote
node�

with the following additional constraints�

�d� A replica node can have replica	 local	 and re�
mote nodes as children�

�e� Local and remote nodes do not have any child�

�f� A local node contains the sub�tree consist�
ing of itself and all of its descendant nodes
in their original	 non�distributed	 implementa�
tions� This sub�tree is called local tree�

�g� A remote node keeps the id number of the only
processor that has the corresponding local tree�

Using this data distribution model	 we can easily
describe how a tree is distributed� We use the term
distribution tree to refer to the tree consisting of
replica	 local	 and remote nodes �but not the local
trees� at each processor� Figure � shows a tree dis�
tributed to four processors� The original tree has �
sub�trees	 of which one is replicated to all proces�
sors� The other � sub�tree are assigned to the four
processors in a round robin matter� They become
local trees and each is headed by a local node� Given
above data distribution model	 the corresponding
data access model for fold�unfold operations is quite
straightforward�

For fold operation�

��� Each processor travels its distribution tree and
perform fold operations only at local trees�
This is a synchronization�free stage�

�
� Each processor travels its distribution tree and
perform fold operations over all nodes� If it
encounters a local node	 it already folded the
local tree at stage ���� It now broadcasts this
result to all other processors� If it encounters

�

a remote node	 then it waits the result to be
broadcast� After the broadcasting	 the fold op�
eration resumes	 independently	 on all proces�
sors� Note that the trees are traveled in the
same order on all processors	 and as a con�
sequence	 the broadcasting operations will be
matched in order as well� This stage needs m
synchronizing broadcasts where m is the total
number of local nodes over all processors�

For unfold operation�

��� Each processor generates its distribution tree�
A user�provided predicate is used to guide
whether a node should be replicated or not by
applying it to the node� If the predicate returns
true	 then the node is replicated� and repli�
cated nodes are recursively unfolded to produce
distribution tree� Otherwise the node will not
be replicated	 and a processor will be assigned
to generate the corresponding local tree at the
next stage� all other processors are instructed
to have the corresponding remote nodes� This
is a synchronization�free stage�

�
� Each processor travels its distribution tree and
generates its own local trees� This stage is
synchronization�free�

The cost involved by a fold�unfold operation can
be estimated as well� For a tree of n nodes in the
original implementation	 let replica�n� denote the
number of replica nodes in the distribution tree at
one processor �note� the number is the same for
all processors�	 and local i�n� the total size of local
trees at processor i� Suppose there are k proces�
sors� Then the total work	 work �n�	 and elapsed
time	 time�n�	 for a fold�unfold operation over the
distributed data structure will be

work �n� � w� � k � replica�n� � w� �

X

��i�k

local i�n�

time�n� � t� � replica�n� � t� � max
��i�k

local i�n�

where w�� w�� t�� t� are some constants� For fold op�
eration	 an additional term for broadcasting must
be added to the time function� �We will address
broadcast issues shortly in Section
���� The two
equations are quite evident from the above two�
stage descriptions of distributed fold�unfold oper�
ations�

��� Values vs� references

When folding a distributed tree	 the result from
folding the local tree associated with a local node
must broadcast to all the corresponding remote
nodes� How is this result sent� Should it be sent
as a data item readily to be used �i�e�	 value�	 or
just a notice informing the remote node its avail�
ability at the local node �i�e�	 reference�� There
are tradeo� between sending as values and refer�
ences� Values are more convenient as they can be
immediately consumed at the other ends� How�
ever	 they pose two problems� First	 the values have
to be packed at the sending side and unpacked at
the receiving side using an external format� The
task can be time�consuming and not type�safe� We
are greatly helped by Objective Caml�s Marshal

package	 which provides a pair of to string and
from string functions that packs�unpacks a value
of any type to�from a string� The string is broad�
cast at the local�node side and received at the
remote�node sides� The second problem is that
sometimes one really wants the value to remain at
the local�node side� For example	 a tree mirroring
function can be formulated as a fold function	 and
one would expect the local tree mirror stays at the
local node� This reduces communication overhead
greatly� In general	 if the fold function is a tree�
to�tree structural transformation operation	 then it
would be better to let partial results remain local�
hence no broadcast operation is needed�

Currently two versions of fold are provided� One
for value result and the other one for reference re�
sult� The value one has identical type signature
of the original �non�distributed� fold function� The
reference one is a little complicated as one will need
to pass additional information about the resultant
distributed structure�

Similarly	 two versions of unfold are provided as
well� One version will always generate a distributed
tree with a root�level local node at one processor
�hence all other processors with root�level remote
nodes�� That is	 the whole tree e�ectively resides
in one processor	 and other processors only have
references to it� As a consequence	 fold operations
on the resultant tree cannot be parallelized� This
version has identical type signature of the original
unfold function� The other unfold function need an
additional predicate to tell it whether the currently
generated node will be replicated or not� If the
predicate returns true	 replica nodes are generated

�

at all processors� If not	 a local node is generated
at only one processor� When generating the local
tree associated with a local node	 the predicate is
not consulted� This way	 the programmers can sup�
plied �high�level� policy for data distribution while
�low�level� distribution mechanism is implemented
by the unfold operation� The predicates are like
data distribution directives �which are user hints
supplied as special comments� in High Performance
Fortran ���� Only that they are much more �exible
�because they are general functions� and they are
not just hints �because distributions are dictated
by them��

Here is another note related to value vs� refer�
ence� Sometimes	 one would like a sub�tree to be
shared by several nodes in such a way that no mul�
tiple copy of the sub�trees is generated� However	
we do not do so in the original unfold operation� As
a consequence	 in the distributed unfold operation	
multiple copies of a local tree will be generated and
assigned to processors as well� We can design a un�
fold function that preserve sharing by �rst compar�
ing the to be generated value to all previous gen�
erated values	 and reuse the previously generated
value if there is a match� A sharing�preserving dis�
tributed unfold operation could be similarly imple�
mented but it would need cross�processor communi�
cation for checking shared values� This seems com�
plicated and expensive� We decide adhere to the
simple	 not sharing�preserving	 unfold operation�

��� Incremental data accesses

Incremental data accesses produce and consume
distributed data using the up and down functions�
Currently	 the up function always produce replica
nodes� Similarly	 down will produce a replica quad

value when applied to a replica node� However	 if
the down function is applied to a local�remote node	
then it produces a quad value with its constitut�
ing nodes being respectively local�remote� This im�
plementation decision ensures that each down func�
tion call takes only constant time �though it may
involve communication in case of a local�remote
node�� The other implementation decision	 that
down call always produces a result that is entirely
replicated	 has cost proportionally to the size of the
value it is applied to�

If the input to a down call is a local�remote node	
then this node is side�e�ected to become a replica
node with the returned quad value �whose consti�

tuting nodes are still local�remote�� This way	 re�
peated down invocations to the same local�remote
node will not incur repeated communication over�
head� Only the �rst call needs to broadcast the
resultant node�

��	 Data redistribution and
load
balancing issues

In our model	 we do not provide functions for data
redistribution� Instead	 data will be explicitly re�
generated by programmers to have the desirable
distribution from existing data� This is often done
by �rst using a fold operation on the old data to
replicate its value to all processors� After the repli�
cated data is adjusted �to have balanced heights	
for example� at all processors	 a unfold operation
is used on the adjusted data to distribute it to all
processors� This means that load�balancing has to
be explicitly performed by the programmers�

Nevertheless	 a limited form of task parallelism
is provided by our current implementation� Re�
call that a reference version of unfold is provided
to generate the entire tree local to one processor	
and the corresponding remote nodes to all other
processors� Note as well that this version of unfold
is synchronization�free� Therefore	 if a sequence of
this kind of unfold operations are invoked	 and the
processors assigned to generate the top�level local
trees take terms in a round robin matter	 then the
over�all computation load can be distributed�

��� Objective Caml binding for MPI
routines

We use the C interfacing facility provided by Objec�
tive Caml to bind the C interfaces of MPI routines�
Only � MPI�related Object Caml functions are de�
�ned� Their names and types are�

val initialize� string array 	
 unit

val finalize� unit 	
 unit

val size� unit 	
 int

val rank� unit 	
 int

val broadcast� �a option 	
 int 	
 �a

Functions initialize and finalize are called be�
fore and after all MPI routines are invoked respec�
tively	 as required by MPI� Functions size and rank
are used	 respectively	 to query the total number of

�

processors �np� and the id of the current processor�
The processor id is a unique integer number starting
from � and less than np�

The broadcast function sends a value of arbi�
trary type from a processor to all processors� At
the sending end	 it is called as

broadcast �Some value� root

where value is the value to be broadcast	 and root

the sender�s processor id� At the receiving ends	 it
is called as

broadcast None root

where again root is the sender�s processor id� Th
execution of broadcast is blocking� the execution
is resumed only when all processors have issued the
broadcast function and the value is exchanged� All
broadcast functions	 including the one at the send�
ing end	 return with value� The original broadcast
function in MPI �MPI BCAST� is very restrictive� It
requires that both the sending end and the receiv�
ing ends all spell out the type of the data to be ex�
changed	 as well as the location and size of the send�
ing�receiving bu�ers� Our Objective Caml imple�
mentation of broadcast is more abstract and easier
to use� We are greatly helped by Objective Caml�s
Marshal package which pack�unpack a value of ar�
bitrary type to�from a string� The string is then
exchanged using the native MPI BCAST functions�
Note that	 although broadcast is polymorphic	 it
is not type�safe because pack and unpack are not� If
the receiving end insists on interpreting the broad�
cast string by the wrong type	 it will get the wrong
value�

��� A little code walk

We show here some code segments in the implemen�
tation of distributed tree values and the associated
fold�unfold operations� All declarations related to
the distributed version of tree are collected in a
signature called D�TREE	 as shown in Figure � in
appendix� We de�ne a functor D�Tree that takes
a structure with TREE signature �i�e�	 the original
implementation for tree� and produces a structure
with signature D�TREE� What we show here are some
code segments in functor D�Tree�

First	 the type node denotes the three kinds of
nodes in a distribution tree�

type ��a� �b� node � Replica of �a

� Local of �b

� Remote of int

Now the type tree of signature D�TREE is de�ned
as

type �a tree � Rec of ���a� �a tree� quad�

�a Base�tree� node ref

in functor D�Tree� In the above	 Base is the original
implementation module for tree	 and Base�tree

the type of the original tree�
The following function	 fold
	 travels the distri�

bution tree and applies functions f	 g	 and h to its
nodes depending on their tags�

let rec fold
 �f� g� h� t �

match t with Rec r 	
 match �r

with Replica �AA �u� v�� 	
 f �AA �u� v��

� Replica �AB �u� v�� 	

f �AB �u� fold
 �f� g� h� v��

� Replica �BA �u� v�� 	

f �BA �fold
 �f� g� h� u� v��

� Replica �BB �u� v�� 	

f �BB �fold
 �f� g� h� u�

fold
 �f� g� h� v��

� Local s 	
 g s

� Remote k 	
 h k

It is used to build a two�stage traversal function
fold��

let fold� �f� g� �f�� build�� t �

let up� x � build� �Replica x�

in let local� x � build� �Local x�

in let remote� x � build� �Remote x�

in

fold
 �up� � f�� local�� remote�� �

fold
 �up� local � �Base�fold �g � f���

remote� t�

In the above	 symbol � is the in�x operator for func�
tion composition� The �rst pair of functions	 �f�
g�	 tells how to fold a local tree	 while the second
pair	 �f�� build��	 tells how to fold the distribu�
tion tree� The fold� function can be thought as
the reference version of the fold function as the ar�
gument build� is often supplied with value build

in signature D�TREE� Function build is the de�
fault mapping from node values to distributed tree

values	 and contains no synchronizing broadcast�
Functions build	 up	 local	 and remote can be
considered as the constructors for distributed tree

value	 and are de�ned as

�

let build n � Rec �ref n�

let up q � build �Replica q�

let local t � build �Local t�

let remote k � build �Remote k�

An illustrating example will be shown in Section �	
where fold� is used to perform tree mirroring�

The value version of the fold function is then de�
�ned as

let fold f t �

let pid � MPI�rank ��

in let id x � x

in let synch node �

match node

with Replica x 	
 x

� Local x 	

MPI�broadcast �Some x� pid

� Remote x 	

MPI�broadcast None x

in

fold� �f� id� �f� synch� t

where explicit broadcasting is used to exchange data
during the folding of the distribution tree�

Similarly	 two unfold functions are provided�
Function unfold� needs an additional user�suppiled
predicate to tell if the generated node will be repli�
cated over all processors or not� Of the nodes not
to be replicated	 each will be placed on a single pro�
cessor in a round robin matter	 and the correspond�
ing local tree generated at the processor� Function
unfold	 which will always generate the whole tree
as a root�level local tree on some processor	 is de�
�ned as

let unfold g s � unfold� �g� fun x �� false� s

where predicate fun x 	
 false says no node will
be replicated�

� Examples

We show �ve test cases and their performance re�
sults� The code segements of the test cases are
shown in Figure
 and �� In the code segments	
structure T is the original implemenetation of tree	
and structure DT the distributed implementation�
Each test case �rst uses unfold to generate a tree	
then applys fold to the generated tree� Wall clock
time� is measured for the completion for the two

�The Unix�gettimeofday function in Objective Caml is
used�

operations	 not including the startup time for load�
ing the program to the Parallel Operation Environ�
ment of IBM SP
� We run the programs on a non�
dedicated cluster of � processors� Each reported
time is the result of a single run	 and may be ef�
fected by the computation load of the machine at
the time� �The computation load of the machine is
very light	 however�� We test each case for � scenar�
ios� original version �using structure T� on one pro�
cessor	 distributed version �using structure DT� on
one	 two	 four	 and eight processors� Measurements
from the �rst two scenarios give us some feedback
of the overhead of the distribution implementation
over the original imlpementation�

The test case count �rst generates a �height�
balanced� tree of n numbers ��� ��
� � � � � n��� using
generation function iota	 then counts the numbers
in the tree using reduction function count� The
tree generation is guided by a predicate iota rep

so that the tree is evenly distributed to all avail�
able processors� �For a tree of ���� numbers over �
processors	 processor � will have the local tree with
numbers � to
�
	 processor
 the local tree with
numbers
�� to �

	 etc��

Similarly	 the test case swap generates the same
tree	 but perform a tree mirroring operation on the
tree� Two versions of swap are tested� The value
version results in each processor receiving a mirror
of the entire tree	 while the reference version let the
lcoal mirrors stay distributed� Note that the same
reduction function swap is used in all versions of the
swap test case�

In the test cases of count and swap	 the trees
can be made to evenly distributed to all available
processors� Hence	 for load�balancing purpose	 it
is su�cent to let each processor has only one local
tree	 and let all local trees be of the same size� For
some applications	 we may not know how to evenly
disrtibute the tree in this matter� For such applica�
tions	 we can parition the tree into many local trees
�more than the number of available processors� of
su�cient granularity and let the unfold operation
assign the local trees to processors in a round robin
matter� This achieves load�balancing� The test case
�b is such an example� We �rst generate the �call
graph� for function �b�n�	 where the call graph is a
tree with leave values either being integer � or �� A
leave value of k represents a call to function �b�k��
Since �b��� � � and �b��� � �	 the number of leaves
is exactly the value of �b�n�� Once the call graph is

�

Common code segment�

module T � Tree�Quad�

module DT � D�Tree�Common��T�

let n � 				 �
 data size
�

let iota �x� y� �

if y � x � �

then AA �x� y�

else if y � x � �

then AB �x� �x
�� y��

else BB ��x� �x
y�����

��x
y���
�� y��

let iota�rep �x� y� � �
 if true� replicate
�

�y � x
 �� � �n � �MPI	size ����

let fibtree x �

if x � �

then AA ��� ��

else if x � �

then AB ��� ��

else BB �x��� x���

let fibtree�rep x � �
 if true� replicate
�

�n � x� �� �MPI	size ���

let count quad �

match quad

with AA �u� v� �� �

� AB �u� v� �� �
 v

� BA �u� v� �� u
 �

� BB �u� v� �� u
 v

let swap quad �

match quad

with AA �u� v� �� AA �v� u�

� AB �u� v� �� BA �v� u�

� BA �u� v� �� AB �v� u�

� BB �u� v� �� BB �v� u�

let rec mirror tree �

match T	down tree

with AA �u� v� �� T	up �AA �v� u��

� AB �u� v� �� T	up �BA �mirror v� u��

� BA �u� v� �� T	up �AB �v� mirror u��

� BB �u� v� �� T	up �BB �mirror v�

mirror u��

let rec d�mirror tree �

match DT	down tree

with AA �u� v� �� DT	up �AA �v� u��

� AB �u� v� �� DT	up �BA �d�mirror v� u��

� BA �u� v� �� DT	up �AB �v� d�mirror u��

� BB �u� v� �� DT	up �BB �d�mirror v�

d�mirror u��

Figure
� Five test cases� Part ��

count �original��

let d � T	unfold iota ��� n���

let m � T	fold count d

count �distributed��

let d � DT	unfold� �iota� iota�rep� ��� n���

let m � DT	fold count d

swap �original��

let d � T	unfold iota ��� n���

let b � T	fold �T	up � swap� d

swap �distributed� by value��

let d � DT	unfold� �iota� iota�rep� ��� n���

let b � DT	fold �T	up � swap� d

swap �distributed� by reference��

let d � DT	unfold� �iota� iota�rep� ��� n���

let b � DT	fold� �swap� T	up� �swap� DT	build� d�

�b �original��

let d � T	unfold fibtree n

let m � T	fold count d

�b �distributed��

let d � DT	unfold� �fibtree� fibtree�rep� n

let m � DT	fold count d

direct swap� no fold �original��

let d � T	unfold iota ��� n���

let b � mirror d

direct swap� no fold �distributed��

let d � DT	unfold� �iota� replicate� ��� n���

let b � d�mirror d

Figure �� Five test cases� Part
�

generated	 we assign the sub�tree corresponding to
�b�x� as a local tree to a processor if n�x � k� This
ensures there are su�cient number of local trees	
and each local tree is of su�cient granularity� Test
case �b also shows how distributed data structures
can be used to drive parallel functional evaluations
�even if no data structure is evident in the de�nition
of the functions��

The �nal test case is direct swap which is used
not to measure potential speedup	 but to measure
the overhead of distributed incremental data ac�
cesses� Direct recursive de�nition is used to de�ne
the tree mirroring function	 instead of using fold op�
eration� There is no expected speedup in programs

written in this style� Furthermore	 traveling a whole
tree using only down calls will involve excess com�
munication overhead for the distributed tree	 and	
as shown by the timing results	 the overhead also
increases as more processors take parts during the
communication�

As shown by the performance results in Table �	
the distributed versions achieve good speedup once
the data sizes are large enough and fold�unfold op�
erations are used� It also shows that the reference
version of distributed fold operation does perfrom
much better than the value version	 just as one ex�
pects� We like to point out two observations� First	
the one�processor run of the distributed	 value ver�
sion	 of the swap test case takes very long time
�������� sec��� This probably is caused by pack�
ing�unpacking a tree of �	���	��� numbers to�from
a string and sending�receiving it to�from itself� The
physical memory probably is exhausted	 so we ob�
serve very bad paging behavior� Second	 there are
several �super�linear� speedup� e�g� ��processor
run of distributed count vs� the original run �����
vs� �
��
�	 and ��processor run of distributed swap
�reference version� vs� the original run ������ vs�

����
��� This is entirely possible because not only
we have four times the CPU power	 we also have
four times the physical memory space� This helps
reduce garbage collection time�

We brei�y mention two issues in our approach to
distributed functional data structures� The �rst is�
sue is� how does one handle distributed structural
transformation functions between di�erent ADT�s�
For example	 can one transform a distributed tree
value into a distributed list value by using the ref�
erence version of fold� function� One can do that
by using functions List�up and DistList�build

�of the corresponding list algebraic data type and
its distributed implementation	 instead of T�up and
DT�build in the swap case�	 and use a suitable quad
to cons reduction function in the call to function
fold��

The second issue is about data structures that
are distributed in more complicated forms� We can
go beyond unfold�based distributions and build cus�
tomized distributed data structures by using the up	
local and remote functions and processor id�s� For
example	 the following expression places a local tree
at processor �	 and have all other processors refer
to processor � for it� It then builds a distributed
tree my tree based on that tree at all processors�

count�
data original distributed
size � proc� � proc� 	 proc�
 proc� � proc�

���
��
� �	�
� �
��
 �
��
 ����
��� ��	
 ��	� 	��� ���� ���

��� ���� ���� ��	� ��
� ����
��� ���� ���� ���
 ��

 ��

swap �value version��
data original distributed
size � proc� � proc� 	 proc�
 proc� � proc�

��� �

�	� ������� �
��	� ��
�	� ��
���
��� �	�	� �
��
 ��
� ����
���
��� ��	� ��

 ���� ��		 ����
��� ���
 ���	 ��

 ��
� ����

swap �reference version��
data original distributed
size � proc� � proc� 	 proc�
 proc� � proc�

��� �

�	� 	����� ���	� ���
� �����
��� �	�	� ���

 ���
�
��� ���

��� ��	� ���	 ���� ��	� ��

��� ���
 ���� ���� ���
 ��
	

�b�
data original distributed
size � proc� � proc� 	 proc�
 proc� � proc�

�	 	
���� 	����� ��
��� �
��	 	����
�� �
�
� ����	 �
��� 	���� �	���
	� ���� ���	 ���� ���
 ���	
�� ���� ���� ���� ���� ����

direct swap� no fold�
data original distributed
size � proc� � proc� 	 proc�
 proc� � proc�

��� ��
��� ���
�	� N�A N�A N�A
��� ����

���� ��
��� �
	��� 	�����
��� ���� ��

 �	�		 ����
 ����

��� ���� ���� ���� ��

 ����

Note� N�A means the execution time is too lengthy to

be included here�

Table �� Performance results	 in seconds�

��

let my�tree �

if MPI	rank �� � �

then DT	up �AB ��� DT	local �T	up �AA ��� ������

�
 this branch executes on proc	 �
�

else DT	up �AB ��� DT	remote ���

�
 this executes on all other procs	
�

Though more �exible	 programs written in this
way are easy to be in errors and di�cult to reason
about�

� Related Work and Conclusion

Parallel function programming is a broad area that
attracts many researchers ���� Approaches based
on �ne�grain data parallelism and coarse�grain task
parallelism have been well studied �see	 for example
��	 �	 ��	 ����� Parallelism exploited by functional
primitives or program skeletons is also well under�
stood �see	 for example �
	 �	 �	
	 ����� Distributed
data structures have been active research subjects
as well �see	 for example ��
���

Our work di�ers from the above work in several
ways� First	 previous works on parallel executions
of functional programs often assume a shared mem�
ory model where data is shared among the pro�
cessors with almost no cost ��	 �	 ���� Their em�
phases are task creation and management	 e�g� on
scheduling the task queue	 and on concurrent mem�
ory management� On the contrary	 our functional
programs are executed in SPMD style �hence no
need of task scheduling�� However	 we assume a dis�
tributed memory model �which is more realistic for
common workstation clusters�� hence data distri�
bution and communication must be carefully man�
aged� Like High Performance Fortran	 we separate
the policy of data distribution �which is controled
by users� from the mechanism of data distribution
�which is the responsibility of the system�� How�
ever	 our distribution policies can be much more
�exible�

Secondly	 our work shares the common themes
of exploiting parallelism by using structured primi�
tives �or skeletons� ��	
	 �	 �	
	 ���� However	 many
of the skeleton approaches have yet to be realized as
running systems� The exceptions are works on APL
and Nesl	 and works on using structured Fortran
and C prgram skeletons to compose larger paral�
lel programs� They deal with limited kinds of data

types	 such as array and list	 while ours applied to
any polynomial data types�

We have presented a programming environment
based on a simple model of distributed data struc�
tures for parallel functional programming� Our ap�
proach can be considered as coarse�grain data par�
allelism� The environment is assembled and inte�
grated using currently available hardware and soft�
ware systems� Our experiements and results show
that such a �do�it�youself� environment can be
set up	 functional programs using distributed data
structures are easy to construct	 and parallelism in
the programs is indeed expressed and exploited� We
expect to run larger programs using the environ�
ment	 and to further experiment with new designs
and implemenations of data distribution models�

References

��� Guy E� Blelloch� Nesl� A nested data
parallel language �version ����� Technical Re�
port CMU CS
� ���	 School of Computer
Science	 Carnegie Mellon University	 USA	
�

��

�
� Wai�Mee Ching and Alex Katz� An experi�
mental APL compiler for a distributed memory
parallel machine� In Proceedings of Supercom�

puting ���	 pages �
 ��� Washington	 D� C�	
USA	 November �

�� IEEE Computer Soci�
ety Press�

��� Murray Cole� Algorithmic Skeletons� Struc�

tured Management of Parallel Computation�
Research Monographs in Parallel and Dis�
tributed Computing� MIT Press	 �
�
�

��� Benjamin F� Goldberg� Multiprocessor Execu�

tion of Functional Programs� PhD thesis	 De�
partment of Computer Science	 Yale Univer�
sity	 April �
��� Available as technical report
YALEU�DCS�RR�����

��� Kevin Hammond� Parallel functional program�
ming� An introduction� In First International

Symposium on Parallel Symbolic Computation	
September �

�� World Scienti�c Publishing
Company�

��� High Performance Fortran Forum� High Per�
formance Fortran Language Speci�cation	 ver�
sion
��� Technical report	 Center for Re�

��

search on Parallel Computation	 Rice Univer�
sity	 Texas	 USA	 January �

��

��� Paul Kelly� Functional Programming for

Loosely	coupled Multiprocessors� Research
Monographs in Parallel and Distributed Com�
puting� MIT Press	 �
�
�

��� Xavier Leroy� The Object Caml system release

���� Documentation and user�s manual� IN�
RIA	 France	 December �

��

�
� Erik Meijer	 Maarten Fokkinga	 and Ross Pa�
terson� Functional programming with bananas	
lenses	 envelopes and bared wire� In John
Hughes	 editor	 Functional Programming Lan�

guages and Computer Architecture	 pages �
�
���� Cambridge	 MA	 USA	 August �

�� Lec�
ture Notes in Computer Science	 Volume �
�	
Springer Verlag�

���� Message Passing Interface Forum� MPI� A
Message Passing Interface Standard	 version

��� Technical report	 University of Tennessee	
Knoxville	 Tennessee	 USA	 July �

��

���� R� Mohr	 D� A� Kranz	 and R� H� Halstead�
Lazy task creation� A technique for increas�
ing the granularity of parallel programs� IEEE
Transaction on Parallel and Distributed Sys�

tems	
����
��
��	 July �

��

��
� Anne Rogers	 Martin Carlisle	 and John H�
Reppy� Supporting dynamic data structures on
distributed�memory machines� ACM Transac�

tion on Programming Languages and Systems	
���
��
��
��	 March �

��

���� David B� Skillicorn� Architecture independent
parallel computation� IEEE Computer	

���
���� ��	 December �

��

���� Guy L� Steele Jr and W� Daniel Hillis� Connec�
tion Machine Lisp� Fine grained parallel sym�
bolic processing� In Proceedings of the
�
�

ACM Conference on Lisp and Functional Pro�

gramming	 pages
�

�� Cambridge	 MA	
USA	 ACM	 August �
���

���� Various Authors� Scalable parallel computing�
IBM Systems Journal	 ���
����� �
�	 �

��

A Module Signatures

module type QUAD �

sig

type ��a� �b� quad � AA of �a
 �a

� AB of �a
 �b

� BA of �b
 �a

� BB of �b
 �b

end

module type COMMON �

sig

type ��a� �b� node � Replica of �a

� Local of �b

� Remote of int

end

module type TREE �

sig

module Quad� QUAD

type ��a� �b� quad � ��a� �b� Quad	quad

type �a tree

val up� ��a� �a tree� quad �� �a tree

val down� �a tree �� ��a� �a tree� quad

val fold� ���a��b� quad���b� �� �a tree �� �b

val unfold� ��b����a��b� quad� �� �b �� �a tree

end

module type D�TREE �

sig

module Common� COMMON

module Base� TREE

type ��a� �b� node � ��a� �b� Common	node

type ��a� �b� quad � ��a� �b� Base	Quad	quad

type �a tree

val build� ���a� �a tree� quad�

�a Base	tree� node �� �a tree

val up� ��a� �a tree� quad �� �a tree

val local� �a Base	tree �� �a tree

val remote� int �� �a tree

val down� �a tree �� ��a� �a tree� quad

val fold� ���a��b� quad���b� �� �a tree �� �b

val unfold� ��b����a��b� quad� �� �b �� �a tree

val fold�� ����a��b� quad���c�
 ��c���b��

�� ����a��d� quad���f�
 ���f��b� node���d��

�� �a tree �� �d

val unfold�� ���b����a��b� quad�
 ��b��bool��

�� �b �� �a tree

end

Figure �� Signatures of TREE and D�TREE	 for orig�
inal and distributed implementations of data type
tree�

�

