A Simple Model of Distributed Functional Data Structures
and Its Implementation®

Tyng-Ruey Chuang

Institute of Information Science
Academia Sinica
Taipei 115, Taiwan

trcQiis.sinica.edu.tw

Abstract

We report results from experimenting with a par-
allel functional programming environment based
on distributed data structures. The main results
are: 1) A distribution model to support efficient
fold /unfold operations over data structures. The
distribution model is simple yet general, and easy
to implement. 2) A novel programming envi-
ronment assembled from currently available hard-
ware/software systems. Functional programs exe-
cute in SPMD (Single Program Multiple Data) style
under this environment and exhibit good speedup.

1 Motivation

The development in recent years on computer sys-
tems, software tools, and functional languages seem
to have converged to a point where it is natural to
conduct the following experiment: to build an en-
vironment for parallel functional programming by
assembling readily available hardware and software
systems. We have just done that, on and off for two
months starting in mid February, 1998, and the out-
come is quite satisfactory. We report here results
from our experiment, with emphasis on a simple
model of distributed functional data structures.
Developments in the following four areas are suf-
ficiently mature for us to conduct this experiment.

Hardware system. Workstation clusters based
on distributed or shared memory systems are

*Alternatively titled as Do-it-yourself parallel functional
programming. This paper is available on-line as technical re-
port TR-IIS-98-010 from the Institute of Information Science,
Academia Sinica, via http://www.iis.sinica.edu.tw.

very affordable today. Multiple CPU’s are in-
terconnected on the desktop ready to be pro-
grammed.

Communication library. There exist standard,
portable, and efficient libraries to exchange
data among multiple processors over network
or via shared memory. Examples include MPI
(Message Passing Interface) and PVM (Paral-
lel Virtual Machine). These libraries all have
C language interface.

Functional language. Many implementations of
modern functional programming languages
also have C language interface. Examples in-
clude Objective Caml, SML/NJ, and Glasgow
Haskell. Also quite importantly, the paramet-
ric module systems of the ML family provide
a convenient way to build new libraries (i.e.,
structures in ML) based on existing libraries
(i.e., functors). This abstraction power and the
associated discipline help derive type-safe and
distributed implementations of algebraic data
types (ADTs).

Programming model. Functional programs, and
their parallelizations, based on fold /unfold op-
erations over algebraic data types are well
studied.! The SPMD (Single Program Mul-
tiple Data) model for programming symmet-
ric multiprocessors is also well understood.?

'The fold/unfold primitives are the bases of the
Bird-Meertens formalism, and are also called catamor-
phisms/anamorphisms [9].

2Under the SPMD models, many copies of the same pro-
gram execute at the same time, one on each processor. Data
are exchanged among the various executing programs by ex-

Fold /unfold operations are the high-level func-
tional abstractions we aim to implement, by
using low-level side-effecting SPMD code, for
programming multiprocessor systems.

We use the following specific components from
the above four areas to conduct the experiment:
IBM SP2 [15], MPI [10], Objective ML [8], and
fold /unfold primitives [9] with SPMD programming
model. From these, we quickly build up a work-
ing environment, using ezisting hardware/software
resources, for parallel execution of functional pro-
grams, and observe good speedup. We are a little
surprised by how well the experiment goes. (This
certainly a testimony to the high quality of the com-
ponents we used). Since we are not aware of similar
experiments, we think our experience deserves to be
shared.

We use the four selected hard-
ware/software/model components because they are
familiar and available to us. Other selections of
components are certainly possible. The language
Objective Caml plays important role in our exper-
iment because it glues the other three components
wonderfully. It generates native PowerPC code on
IBM SP2 and provides C interface to MPI. It has a
parametric module system that allows us to manage
the generation of new, distributed, implementations
of ADT’s based on existing sequential implementa-
tions.

There are two goals we set up to achieve.

(1) The same program executes both on single- and
multi-processor systems, using our distributed
implementations of ADT’s. If the programs
use fold /unfold operations, they should exhibit
speedup on multiprocessor systems.

(2) The module signature of the distributed imple-
mentation of an ADT is the same as the one of
the sequential implementation. However, cus-
tomized distributions can be specified by pro-
grammers by additional predicates (this will be
made clear in Section 2). The distributed data
is used in a purely functional style, and the
users do not worry about low-level mechanism
for data distribution.

We shown in the next section, Section 2, the distri-
bution model and implementation principle we used

plicitly subroutine calls to the underlining communication
library.

to achieve (2). Section 3 show results that confirm
(1). We then relate our approach to other work in
Section 4.

2 A Simple Model of Distribution

We assume that the functional program is executed
under the SPMD model on multiple processors.
However, unlike imperative SPMD programs, there
will be no explicit calls to underlining communi-
cation library to exchange data among the proces-
sors. On each processor, the program executes as
if it has the whole data structure, and the out-
come from all processors will be identical. Note
that functional languages have its advantage over
imperative languages in parallel processing because
these data structures, though distributed, will not
be side-effected once they are generated.

The distribution model we use is a simple one.
Parts of a data structure can either be replicated or
partitioned. If the part is replicated, then each pro-
cessor have a copy of the part and knows that it is a
replica. If the part is partitioned, then only one pro-
cessor has it, it knows that it has the only copy, and
all other processors know that this processor has it.
Collective operations on a distributed structure are
equally straightforward. For data that is replicated,
each processor operates on its own replica, indepen-
dent to one another. For data that has been par-
titioned, the processor that owns the unique copy
operates on it and sends the result to all proces-
sors. Furthermore, work on data partitions can be
carried out independently and in parallel on all pro-
cessors. After partial results from all partitions are
computed, however, they are exchanged in a coordi-
nated matter such that all processors get all partial
results. Then each processor merges its local set of
partial results independently.

What we describe above is at the implementtaion
level. This is to be provided by us by a mechani-
cal transformation of the original implementation of
ADT’s. At the user-level, programmers use our dis-
tributed implementations of ADT’s and don’t con-
cern such details. Computations on data structures
of those ADT’s will be automatically distributed.
We will use an example, of data type tree, through-
out this section to explain the model and its imple-
mentation in detail. The general principle, however,
apply to other data types.

2.1 Polynomial data types and their
fixed points

The functional data structures we distribute are val-
ues of polynomial (or, sum-of-product) data types
and their fixed points. It is called a polynomial
data type because the set of its values is the dis-
joint sum of several sets of product values, with
products from different sets distinguished by value
constructors (“tags”).

The following is an example of polynomial data
type. Values of type quad are all pairs, but are dis-
tinguished from on another by the four tags AA, AB,
BA, BB. The types of pair-products are parameter-
ized by type variables ’a and ’b.

type (a, ’b) quad = AA of ’a * ’a
| AB of ’a * ’b
| BA of ’b * ’a
| BB of b * ’b

The following recursive definition of data type tree:

type ’a tree = AA of ’a * ’a
| AB of ’a * ’a tree
| BA of ’a tree * ’a
| BB of ’a tree * ’a tree

can be alternatively expressed as the fixed point of
the following type equation:

type ’a tree = (’a, ’a tree) quad

where quad is viewed as a type function of two vari-
ables. In Objective Caml (as in many functional
languages), one needs an extra tag, named Rec be-
low, when defining tree as the fixed point of quad:

type ’a tree = Rec of (’a, ’a tree) quad

Accompanying the above definition, is a pair of in-
jection and projection functions up and down that
move values in between types (’a, ’a tree) quad
and ’a tree.?

Rec t
q

let up ¢t
let down (Rec q)

Note that one can choose an identifier other than
Rec as the tag in the definition of tree. Functions
up and down provide a level of abstraction that sep-
arates us from this non-essential naming decision.

3These two functions are usually named in and out. How-
ever, in is a keyword in Objective Caml, so we use up and
down.

2.2 Fold/unfold functions over recursive
data types

It is well known that for a data type that can be
expressed as the fixed point of a polynomial, as
shown above for type tree, fold/unfold functions
can be systematically defined to provide reduc-
tion/generation operations for values of that type,
as shown below for type tree.

let rec fold f t =
match down t
with AA (u, v) ->
| AB (u, v) ->
| BA (u, v) ->
| BB (u, v) —->

(AA (u, W)

(AB (u, fold f v))

(BA (fold f u, v))

(BB (fold f u,
fold f v))

Hh Hh Hh Hh

let rec unfold g s =
match g s
with AA (u, v) -> up (AA (u, v))

| AB (u, v) -> up (AB (u, unfold g v))
| BA (u, v) -> up (BA (unfold g u, v))

| BB (u, v) -> up (BB (unfold g u,
unfold g v))

We put all related declarations about data type
tree together as a signature (module type in Ob-
jective Caml) and name it as TREE in Figure 4 in
Appendix A.

The above definitions of fold /unfold also express
potential parallelism during the evaluation of their
return values. For if the tag is BB, then evaluations
for the two constituting parts of this product can be
conducted in an independent and parallel matter.
The challenge is to specify this distribution of work
such that it can be easily understood and utilized
by users, and efficiently implemented by existing
hardware and software systems.

2.3 The distribution model

We now describe in detail how values of type tree
are distributed, and, once distributed, how they are
accessed. Though we use type tree as an example,
the distribution model is not specific to it, and can
be applied to any polynomial data types and their
fixed points. To ease further discussion, we say that
a functional data structure is built up with nodes,
which are tagged values of product types. In a
node, its constituting parts may again refer to other

S £ £ 40 6

Thetree at
processor 0

The original tree

@ replicanode
@ loca node
O remote node

Legend:

The tree at
processor 1

The tree at
processor 3

Thetree at
processor 2

A tree consisting of only replica nodes

A tree of the original implementation

Figure 1: A tree distributed to four processors.

nodes. Note that in strict functional languages, pro-
grammers cannot construct values whose nodes re-
fer to one another in cycles (except when mutable
values are used). The nodes of a value will be struc-
tured like a directed acyclic graph (dag).

As an example, for tree value, the nodes will be
tagged quad values and they form no cycle. For the
following discussion, we limit all nodes to be tagged
quad values, and the term tree refers to tree value.
A node can have parents if it is used to build an-
other tree (via the up function), and it can have
children if parts of it are also trees (as exempli-
fied by nodes with AB, BA, or BB tags). In single-
processor execution of tree programs, all nodes re-
side in (the memory) of the single processor. In
multiple-processor execution, nodes are distributed
over processors. When a tree is distributed, its con-
stituting nodes at each processor are classified into
three disjoint categories: replica nodes, local nodes,
and remote nodes. The three categories represent
the following three disjoint distribution properties:

(a) A replica node is replicated at all processors.
(b) A local node is available only at one processor.

(c) At each other processor where it does not have
the local node, it has a corresponding remote
node.

with the following additional constraints:

(d) A replica node can have replica, local, and re-
mote nodes as children.

(e) Local and remote nodes do not have any child.

(f) A local node contains the sub-tree consist-
ing of itself and all of its descendant nodes
in their original, non-distributed, implementa-
tions. This sub-tree is called local tree.

(g) A remote node keeps the id number of the only
processor that has the corresponding local tree.

Using this data distribution model, we can easily
describe how a tree is distributed. We use the term
distribution tree to refer to the tree consisting of
replica, local, and remote nodes (but not the local
trees) at each processor. Figure 1 shows a tree dis-
tributed to four processors. The original tree has 6
sub-trees, of which one is replicated to all proces-
sors. The other 5 sub-tree are assigned to the four
processors in a round robin matter. They become
local trees and each is headed by a local node. Given
above data distribution model, the corresponding
data access model for fold /unfold operations is quite
straightforward.
For fold operation:

(1) Each processor travels its distribution tree and
perform fold operations only at local trees.
This is a synchronization-free stage.

(2) Each processor travels its distribution tree and
perform fold operations over all nodes. If it
encounters a local node, it already folded the
local tree at stage (1). It now broadcasts this
result to all other processors. If it encounters

a remote node, then it waits the result to be
broadcast. After the broadcasting, the fold op-
eration resumes, independently, on all proces-
sors. Note that the trees are traveled in the
same order on all processors, and as a con-
sequence, the broadcasting operations will be
matched in order as well. This stage needs m
synchronizing broadcasts where m is the total
number of local nodes over all processors.

For unfold operation:

(1) Each processor generates its distribution tree.
A user-provided predicate is used to guide
whether a node should be replicated or not by
applying it to the node. If the predicate returns
true, then the node is replicated; and repli-
cated nodes are recursively unfolded to produce
distribution tree. Otherwise the node will not
be replicated, and a processor will be assigned
to generate the corresponding local tree at the
next stage; all other processors are instructed
to have the corresponding remote nodes. This
is a synchronization-free stage.

(2) Each processor travels its distribution tree and
generates its own local trees. This stage is
synchronization-free.

The cost involved by a fold /unfold operation can
be estimated as well. For a tree of n nodes in the
original implementation, let replica(n) denote the
number of replica nodes in the distribution tree at
one processor (note: the number is the same for
all processors), and local;(n) the total size of local
trees at processor i¢. Suppose there are k proces-
sors. Then the total work, work(n), and elapsed
time, time(n), for a fold/unfold operation over the
distributed data structure will be

work(n) = wy - k- replica(n) + wsy - Z local i (n)
0<i<k
time(n) =ty - replica(n) + t2 - max local;(n)

0<i<k

where w1, wo, t1, to are some constants. For fold op-
eration, an additional term for broadcasting must
be added to the time function. (We will address
broadcast issues shortly in Section 2.4.) The two
equations are quite evident from the above two-
stage descriptions of distributed fold/unfold oper-
ations.

2.4 Values vs. references

When folding a distributed tree, the result from
folding the local tree associated with a local node
must broadcast to all the corresponding remote
nodes. How is this result sent? Should it be sent
as a data item readily to be used (i.e., value), or
just a notice informing the remote node its avail-
ability at the local node (i.e., reference)? There
are tradeoff between sending as values and refer-
ences. Values are more convenient as they can be
immediately consumed at the other ends. How-
ever, they pose two problems. First, the values have
to be packed at the sending side and unpacked at
the receiving side using an external format. The
task can be time-consuming and not type-safe. We
are greatly helped by Objective Caml’s Marshal
package, which provides a pair of to_string and
from_string functions that packs/unpacks a value
of any type to/from a string. The string is broad-
cast at the local-node side and received at the
remote-node sides. The second problem is that
sometimes one really wants the value to remain at
the local-node side. For example, a tree mirroring
function can be formulated as a fold function, and
one would expect the local tree mirror stays at the
local node. This reduces communication overhead
greatly. In general, if the fold function is a tree-
to-tree structural transformation operation, then it
would be better to let partial results remain local;
hence no broadcast operation is needed.

Currently two versions of fold are provided. One
for value result and the other one for reference re-
sult. The value one has identical type signature
of the original (non-distributed) fold function. The
reference one is a little complicated as one will need
to pass additional information about the resultant
distributed structure.

Similarly, two versions of unfold are provided as
well. One version will always generate a distributed
tree with a root-level local node at one processor
(hence all other processors with root-level remote
nodes). That is, the whole tree effectively resides
in one processor, and other processors only have
references to it. As a consequence, fold operations
on the resultant tree cannot be parallelized. This
version has identical type signature of the original
unfold function. The other unfold function need an
additional predicate to tell it whether the currently
generated node will be replicated or not. If the
predicate returns true, replica nodes are generated

at all processors. If not, a local node is generated
at only one processor. When generating the local
tree associated with a local node, the predicate is
not consulted. This way, the programmers can sup-
plied (high-level) policy for data distribution while
(low-level) distribution mechanism is implemented
by the unfold operation. The predicates are like
data distribution directives (which are user hints
supplied as special comments) in High Performance
Fortran [6]. Only that they are much more flexible
(because they are general functions) and they are
not just hints (because distributions are dictated
by them).

Here is another note related to value vs. refer-
ence: Sometimes, one would like a sub-tree to be
shared by several nodes in such a way that no mul-
tiple copy of the sub-trees is generated. However,
we do not do so in the original unfold operation. As
a consequence, in the distributed unfold operation,
multiple copies of a local tree will be generated and
assigned to processors as well. We can design a un-
fold function that preserve sharing by first compar-
ing the to be generated value to all previous gen-
erated values, and reuse the previously generated
value if there is a match. A sharing-preserving dis-
tributed unfold operation could be similarly imple-
mented but it would need cross-processor communi-
cation for checking shared values. This seems com-
plicated and expensive. We decide adhere to the
simple, not sharing-preserving, unfold operation.

2.5 Incremental data accesses

Incremental data accesses produce and consume
distributed data using the up and down functions.
Currently, the up function always produce replica
nodes. Similarly, down will produce a replica quad
value when applied to a replica node. However, if
the down function is applied to a local/remote node,
then it produces a quad value with its constitut-
ing nodes being respectively local /remote. This im-
plementation decision ensures that each down func-
tion call takes only constant time (though it may
involve communication in case of a local/remote
node). The other implementation decision, that
down call always produces a result that is entirely
replicated, has cost proportionally to the size of the
value it is applied to.

If the input to a down call is a local/remote node,
then this node is side-effected to become a replica
node with the returned quad value (whose consti-

tuting nodes are still local/remote). This way, re-
peated down invocations to the same local/remote
node will not incur repeated communication over-
head. Only the first call needs to broadcast the
resultant node.

2.6 Data redistribution and

load-balancing issues

In our model, we do not provide functions for data
redistribution. Instead, data will be explicitly re-
generated by programmers to have the desirable
distribution from existing data. This is often done
by first using a fold operation on the old data to
replicate its value to all processors. After the repli-
cated data is adjusted (to have balanced heights,
for example) at all processors, a unfold operation
is used on the adjusted data to distribute it to all
processors. This means that load-balancing has to
be explicitly performed by the programmers.
Nevertheless, a limited form of task parallelism
is provided by our current implementation. Re-
call that a reference version of unfold is provided
to generate the entire tree local to one processor,
and the corresponding remote nodes to all other
processors. Note as well that this version of unfold
is synchronization-free. Therefore, if a sequence of
this kind of unfold operations are invoked, and the
processors assigned to generate the top-level local
trees take terms in a round robin matter, then the
over-all computation load can be distributed.

2.7 Objective Caml binding for MPI
routines

We use the C interfacing facility provided by Objec-
tive Caml to bind the C interfaces of MPI routines.
Only 5 MPI-related Object Caml functions are de-
fined. Their names and types are:

val initialize: string array —> unit
val finalize: unit -> unit

val size: unit -> int
val rank: unit -> int

val broadcast: ’a option -> int -> ’a

Functions initialize and finalize are called be-
fore and after all MPI routines are invoked respec-
tively, as required by MPI. Functions size and rank
are used, respectively, to query the total number of

processors (np) and the id of the current processor.
The processor id is a unique integer number starting
from 0 and less than np.

The broadcast function sends a value of arbi-
trary type from a processor to all processors. At
the sending end, it is called as

broadcast (Some value) root

where value is the value to be broadcast, and root
the sender’s processor id. At the receiving ends, it
is called as

broadcast None root

where again root is the sender’s processor id. Th
execution of broadcast is blocking: the execution
is resumed only when all processors have issued the
broadcast function and the value is exchanged. All
broadcast functions, including the one at the send-
ing end, return with value. The original broadcast
function in MPI (MPI_BCAST) is very restrictive. It
requires that both the sending end and the receiv-
ing ends all spell out the type of the data to be ex-
changed, as well as the location and size of the send-
ing/receiving buffers. Our Objective Caml imple-
mentation of broadcast is more abstract and easier
to use. We are greatly helped by Objective Caml’s
Marshal package which pack/unpack a value of ar-
bitrary type to/from a string. The string is then
exchanged using the native MPI_BCAST functions.
Note that, although broadcast is polymorphic, it
is not type-safe because pack and unpack are not. If
the receiving end insists on interpreting the broad-
cast string by the wrong type, it will get the wrong
value.

2.8 A little code walk

We show here some code segments in the implemen-
tation of distributed tree values and the associated
fold/unfold operations. All declarations related to
the distributed version of tree are collected in a
signature called D’TREE, as shown in Figure 4 in
appendix. We define a functor D’Tree that takes
a structure with TREE signature (i.e., the original
implementation for tree) and produces a structure
with signature D’ TREE. What we show here are some
code segments in functor D’ Tree.

First, the type node denotes the three kinds of
nodes in a distribution tree:

type (’a, ’b) node = Replica of ’a
| Local of ’b
|

Remote of int

Now the type tree of signature D’ TREE is defined
as

type ’a tree = Rec of ((’a, ’a tree) quad,
’a Base.tree) node ref

in functor D’ Tree. In the above, Base is the original
implementation module for tree, and Base.tree
the type of the original tree.

The following function, fold3, travels the distri-
bution tree and applies functions £, g, and h to its
nodes depending on their tags.

let rec fold3 (f, g, h) t =
match t with Rec r -> match Ir
with Replica (AA (u, v)) -> f (AA (u, v))
| Replica (AB (u, v)) —>
f (AB (u, fold3 (f, g, h) v))
| Replica (BA (u, v)) ->
f (BA (fold3 (f, g, h) u, v))
| Replica (BB (u, v)) ->
f (BB (fold3 (f, g, h) u,
fold3 (f, g, h) v))
| Local s -> g s
| Remote k -> h k

It is used to build a two-stage traversal function
fold’:

let fold’ (f, g) (£’, build’) t =

let up’ x = build’ (Replica x)

in let local’ x = build’ (Local x)

in let remote’ x = build’ (Remote x)

in
fold3 (up’ $ £’, local’, remote’) (
fold3 (up, local $ (Base.fold (g $ £)),

remote) t)

In the above, symbol $ is the infix operator for func-
tion composition. The first pair of functions, (£,
g), tells how to fold a local tree, while the second
pair, (£°, build’), tells how to fold the distribu-
tion tree. The fold’ function can be thought as
the reference version of the fold function as the ar-
gument build’ is often supplied with value build
in signature D’TREE. Function build is the de-
fault mapping from node values to distributed tree
values, and contains no synchronizing broadcast.
Functions build, up, local, and remote can be
considered as the constructors for distributed tree
value, and are defined as

let build n = Rec (ref n)

let up q = build (Replica q)
let local t = build (Local t)
let remote k = build (Remote k)

An illustrating example will be shown in Section 3,
where fold’ is used to perform tree mirroring.

The value version of the fold function is then de-
fined as

let fold £ t =
let pid = MPI.rank ()
in let id x = x
in let synch node =
match node
with Replica x -> x

| Local x =>
MPI.broadcast (Some x) pid
| Remote x —->

MPI.broadcast None x
in
fold’ (£, id) (£, synch) t

where explicit broadcasting is used to exchange data
during the folding of the distribution tree.

Similarly, two unfold functions are provided.
Function unfold’ needs an additional user-suppiled
predicate to tell if the generated node will be repli-
cated over all processors or not. Of the nodes not
to be replicated, each will be placed on a single pro-
cessor in a round robin matter, and the correspond-
ing local tree generated at the processor. Function
unfold, which will always generate the whole tree
as a root-level local tree on some processor, is de-
fined as

let unfold g s = unfold’ (g, fun x -> false) s

where predicate fun x -> false says no node will
be replicated.

3 Examples

We show five test cases and their performance re-
sults. The code segements of the test cases are
shown in Figure 2 and 3. In the code segments,
structure T is the original implemenetation of tree,
and structure DT the distributed implementation.
Each test case first uses unfold to generate a tree,
then applys fold to the generated tree. Wall clock
time* is measured for the completion for the two

“The Unix.gettimeofday function in Objective Caml is
used.

operations, not including the startup time for load-
ing the program to the Parallel Operation Environ-
ment of IBM SP2. We run the programs on a non-
dedicated cluster of 8 processors. Each reported
time is the result of a single run, and may be ef-
fected by the computation load of the machine at
the time. (The computation load of the machine is
very light, however.) We test each case for 5 scenar-
ios: original version (using structure T) on one pro-
cessor, distributed version (using structure DT) on
one, two, four, and eight processors. Measurements
from the first two scenarios give us some feedback
of the overhead of the distribution implementation
over the original imlpementation.

The test case count first generates a (height-
balanced) tree of n numbers (0,1,2,...,n—1) using
generation function iota, then counts the numbers
in the tree using reduction function count. The
tree generation is guided by a predicate iota_rep
so that the tree is evenly distributed to all avail-
able processors. (For a tree of 1000 numbers over 4
processors, processor 1 will have the local tree with
numbers 0 to 249, processor 2 the local tree with
numbers 250 to 499, etc.)

Similarly, the test case swap generates the same
tree, but perform a tree mirroring operation on the
tree. Two versions of swap are tested. The value
version results in each processor receiving a mirror
of the entire tree, while the reference version let the
lcoal mirrors stay distributed. Note that the same
reduction function swap is used in all versions of the
swap test case.

In the test cases of count and swap, the trees
can be made to evenly distributed to all available
processors. Hence, for load-balancing purpose, it
is sufficent to let each processor has only one local
tree, and let all local trees be of the same size. For
some applications, we may not know how to evenly
disrtibute the tree in this matter. For such applica-
tions, we can parition the tree into many local trees
(more than the number of available processors) of
sufficient granularity and let the unfold operation
assign the local trees to processors in a round robin
matter. This achieves load-balancing. The test case
fib is such an example. We first generate the “call
graph” for function fib(n), where the call graph is a
tree with leave values either being integer 0 or 1. A
leave value of k represents a call to function fib(k).
Since fib(0) = 1 and fib(1) = 1, the number of leaves
is exactly the value of fib(n). Once the call graph is

Common code segment: count (original):

module T = Tree(Quad) let 4 = T.unfold iota (0, n-1)
module DT = D’Tree(Common) (T) let m = T.fold count d

count (distributed):

let d = DT.unfold’ (iota, iota_rep) (0, n-1)
let m = DT.fold count d

let n = (* data size %)

let iota (x, y) =
ify-x=1
then AA (%, y)

else if y - x = 2 swap (original):

then AB (x, (x+1, y)) let d = T.unfold iota (0, n-1)
else BB ((x, (x+y)/2), let b = T.fold (T.up $ swap) d
((x+y)/2+1, ¥)) swap (distributed, by value):

))) let d = DT.unfold’ (iota, iota_rep) (0, n-1)
let iota_rep (x, y) = (* if true, replicate *) let b = DT.fold (T.up $ swap) d

- + 1) > / (MPI.si
v - =) > @/t size 0)) swap (distributed, by reference):

let fibtree x = let d = DT.unfold’ (iota, iota_rep) (0, n-1)
if x = 2 let b = DT.fold’ (swap, T.up) (swap, DT.build) d;

then AA (0, 1)
else if x = 3

then AB (1, 2) fib (original):
else BB (x-2, x-1) let d = T.unfold fibtree n
let m = T.fold count d
let fibtree_rep x = (* if true, replicate *) fib (distributed):

(n - x) <= (MPI.size ())
let d = DT.unfold’ (fibtree, fibtree_rep) n

let count quad = let m = DT.fold count d

match quad
with AA (u, v) -> 2
| AB (u, v) > 1 + v
| BA (u, v) > u + 1 let d = T.unfold iota (0, n-1)
| BB (u, v) > u + v let b = mirror d

direct swap, no fold (distributed):

let d = DT.unfold’ (iota, replicate) (0, n-1)
let b = d_mirror d

direct swap, no fold (original):

let swap quad =
match quad
with AA (u, v) -> AA (v, u)
| AB (u, v) -> BA (v, u)
| BA (u, v) -> AB (v, u) Figure 3: Five test cases. Part 2.
| BB (u, v) -> BB (v, u)

let rec mirror tree = generated, we assign the sub-tree corresponding to

match T.down tree fib(z) as a local tree to a processor if n—z > k. This

with AA (u, v) -> T.up (AA (v, u)) .
| AB (u, v) -> T.up (BA (mirror v, u)) ensures there are sufficient number of local trees,
| BA (u, v) -> T.up (AB (v, mirror u)) and each local tree is of sufficient granularity. Test
| BB (u, v) -> T.up (BB (mirror v, case fib also shows how distributed data structures
mirror u)) can be used to drive parallel functional evaluations
(even if no data structure is evident in the definition
let rec d_mirror tree = of the ﬁlncﬁons)

match DT.down tree . . L

with AA (u, v) -> DT.up (AA (v, w)) The final test case is direct swap which is used

| AB (u, v) -> DT.up (BA (d_mirror v, u)) Dot to measure potential speedup, but to measure
| BA (u, v) -> DT.up (AB (v, d_mirror u)) the overhead of distributed incremental data ac-
| BB (u, v) -> DT.up (BB (d_mirror v, cesses. Direct recursive definition is used to define
d_mirror u)) the tree mirroring function, instead of using fold op-

eration. There is no expected speedup in programs

Figure 2: Five test cases. Part 1.

written in this style. Furthermore, traveling a whole
tree using only down calls will involve excess com-
munication overhead for the distributed tree, and,
as shown by the timing results, the overhead also
increases as more processors take parts during the
communication.

As shown by the performance results in Table 1,
the distributed versions achieve good speedup once
the data sizes are large enough and fold /unfold op-
erations are used. It also shows that the reference
version of distributed fold operation does perfrom
much better than the value version, just as one ex-
pects. We like to point out two observations. First,
the one-processor run of the distributed, value ver-
sion, of the swap test case takes very long time
(1175.37 sec.). This probably is caused by pack-
ing/unpacking a tree of 1,000,000 numbers to/from
a string and sending/receiving it to/from itself. The
physical memory probably is exhausted, so we ob-
serve very bad paging behavior. Second, there are
several “super-linear” speedup: e.g. 8-processor
run of distributed count vs. the original run (8.01
vs. 69.49), and 8-processor run of distributed swap
(reference version) vs. the original run (17.01 vs.
144.25). This is entirely possible because not only
we have four times the CPU power, we also have
four times the physical memory space. This helps
reduce garbage collection time.

We breifly mention two issues in our approach to
distributed functional data structures. The first is-
sue is: how does one handle distributed structural
transformation functions between different ADT’s?
For example, can one transform a distributed tree
value into a distributed list value by using the ref-
erence version of fold’ function? One can do that
by using functions List.up and DistList.build
(of the corresponding 1ist algebraic data type and
its distributed implementation, instead of T.up and
DT.build in the swap case), and use a suitable quad
to cons reduction function in the call to function
fold’.

The second issue is about data structures that
are distributed in more complicated forms. We can
go beyond unfold-based distributions and build cus-
tomized distributed data structures by using the up,
local and remote functions and processor id’s. For
example, the following expression places a local tree
at processor 0, and have all other processors refer
to processor 0 for it. It then builds a distributed
tree my_tree based on that tree at all processors.

10

count:
data || original distributed
size || 1 proc. | 1 proc. | 2 proc. | 4 proc. | 8 proc.
108 69.49 72.61 34.16 16.86 8.01
10° 5.24 5.27 2.89 1.08 0.76
10% 0.10 0.10 0.23 0.60 0.57
10° 0.00 0.00 0.04 0.66 0.64
swap (value version):
data || original distributed
size || 1 proc. | 1 proc. | 2 proc. | 4 proc. | 8 proc.
108 144.25 | 1175.37 | 163.29 | 116.20 | 114.35
10° 12.21 16.76 9.65 8.35 6.98
10% 0.20 0.46 0.78 1.22 0.80
10° 0.04 0.02 0.64 0.69 1.05
swap (reference version):
data || original distributed
size || 1 proc. | 1 proc. | 2 proc. | 4 proc. | 8 proc.
108 144.25 | 219.05 88.27 35.60 17.01
10° 12.21 18.46 10.43 4.78 1.56
10% 0.20 0.92 1.33 1.21 0.66
10° 0.04 0.01 0.70 0.74 0.62
fib:
data || original distributed
size | 1 proc. | 1 proc. | 2 proc. | 4 proc. | 8 proc.
32 247.17 | 255.75 | 154.89 74.02 27.75
30 94.47 98.72 56.09 21.37 12.07
20 0.09 0.12 0.18 1.04 0.52
10 0.00 0.10 0.09 0.08 0.08
direct swap, no fold:
data || original distributed
size || 1 proc. | 1 proc. | 2 proc. | 4 proc. | 8 proc.
10° | 13487 | 153620 | N/A| NJA| N/A
10° 10.14 69.38 | 136.70 | 162.99 | 239.03
10% 0.11 5.64 12.22 15.74 13.06
10° 0.00 0.07 1.00 1.64 1.35

Note: N/A means the execution time is too lengthy to
be included here.

Table 1: Performance results, in seconds.

let my_tree =

if MPI.rank () =0

then DT.up (AB (0, DT.local (T.up (AA (1, 2)))))
(* this branch executes on proc. 0 *)

else DT.up (AB (0, DT.remote 0))
(* this executes on all other procs. *)

Though more flexible, programs written in this
way are easy to be in errors and difficult to reason
about.

4 Related Work and Conclusion

Parallel function programming is a broad area that
attracts many researchers [5]. Approaches based
on fine-grain data parallelism and coarse-grain task
parallelism have been well studied (see, for example
[1, 4, 11, 14]). Parallelism exploited by functional
primitives or program skeletons is also well under-
stood (see, for example [2, 3, 7, 9, 13]). Distributed
data structures have been active research subjects
as well (see, for example [12]).

Our work differs from the above work in several
ways. First, previous works on parallel executions
of functional programs often assume a shared mem-
ory model where data is shared among the pro-
cessors with almost no cost [1, 4, 11]. Their em-
phases are task creation and management, e.g. on
scheduling the task queue, and on concurrent mem-
ory management. On the contrary, our functional
programs are executed in SPMD style (hence no
need of task scheduling). However, we assume a dis-
tributed memory model (which is more realistic for
common workstation clusters); hence data distri-
bution and communication must be carefully man-
aged. Like High Performance Fortran, we separate
the policy of data distribution (which is controled
by users) from the mechanism of data distribution
(which is the responsibility of the system). How-
ever, our distribution policies can be much more
flexible.

Secondly, our work shares the common themes
of exploiting parallelism by using structured primi-
tives (or skeletons) [1, 2,3, 7,9, 13]. However, many
of the skeleton approaches have yet to be realized as
running systems. The exceptions are works on APL
and NESL, and works on using structured Fortran
and C prgram skeletons to compose larger paral-
lel programs. They deal with limited kinds of data

11

types, such as array and list, while ours applied to
any polynomial data types.

We have presented a programming environment
based on a simple model of distributed data struc-
tures for parallel functional programming. Our ap-
proach can be considered as coarse-grain data par-
allelism. The environment is assembled and inte-
grated using currently available hardware and soft-
ware systems. Our experiements and results show
that such a “do-it-youself” environment can be
set up, functional programs using distributed data
structures are easy to construct, and parallelism in
the programs is indeed expressed and exploited. We
expect to run larger programs using the environ-
ment, and to further experiment with new designs
and implemenations of data distribution models.

References

[1] Guy E. Blelloch. NESL: A nested data-
parallel language (version 3.1). Technical Re-
port CMU-CS-95-170, School of Computer
Science, Carnegie Mellon University, USA,
1995.

[2] Wai-Mee Ching and Alex Katz. An experi-
mental APL compiler for a distributed memory
parallel machine. In Proceedings of Supercom-
puting 94, pages 59-68. Washington, D. C.,
USA, November 1994. TEEE Computer Soci-
ety Press.

[3] Murray Cole. Algorithmic Skeletons: Struc-
tured Management of Parallel Computation.
Research Monographs in Parallel and Dis-
tributed Computing. MIT Press, 1989.

[4] Benjamin F. Goldberg. Multiprocessor Ezecu-
tion of Functional Programs. PhD thesis, De-
partment of Computer Science, Yale Univer-
sity, April 1988. Available as technical report
YALEU/DCS/RR-618.

[5] Kevin Hammond. Parallel functional program-
ming: An introduction. In First International
Symposium on Parallel Symbolic Computation,
September 1994. World Scientific Publishing

Company.

[6] High Performance Fortran Forum. High Per-
formance Fortran Language Specification, ver-
sion 2.0. Technical report, Center for Re-

[10]

[12]

[15]

A

search on Parallel Computation, Rice Univer-
sity, Texas, USA, January 1997.

Paul Kelly. Functional Programming for
Loosely—coupled Multiprocessors. Research
Monographs in Parallel and Distributed Com-
puting. MIT Press, 1989.

Xavier Leroy. The Object Caml system release
1.07: Documentation and user’s manual. IN-
RIA, France, December 1997.

Erik Meijer, Maarten Fokkinga, and Ross Pa-
terson. Functional programming with bananas,
lenses, envelopes and bared wire. In John
Hughes, editor, Functional Programming Lan-
guages and Computer Architecture, pages 124—
144. Cambridge, MA, USA, August 1991. Lec-
ture Notes in Computer Science, Volume 523,
Springer—Verlag.

Message Passing Interface Forum. MPI: A
Message—Passing Interface Standard, version
2.0. Technical report, University of Tennessee,
Knoxville, Tennessee, USA, July 1997.

R. Mohr, D. A. Kranz, and R. H. Halstead.
Lazy task creation: A technique for increas-
ing the granularity of parallel programs. IFEE

Transaction on Parallel and Distributed Sys-
tems, 2(3):264-280, July 1991.

Anne Rogers, Martin Carlisle, and John H.
Reppy. Supporting dynamic data structures on
distributed-memory machines. ACM Transac-
tion on Programming Languages and Systems,
17(2):233-263, March 1995.

David B. Skillicorn. Architecture-independent
parallel computation. IEEE Computer,
23(12):38-43, December 1990.

Guy L. Steele Jr and W. Daniel Hillis. Connec-
tion Machine Lisp: Fine-grained parallel sym-
bolic processing. In Proceedings of the 1986
ACM Conference on Lisp and Functional Pro-
gramming, pages 279-297. Cambridge, MA,
USA, ACM, August 1986.

Various Authors. Scalable parallel computing.
IBM Systems Journal, 34(2):143-325, 1995.

Module Signatures

12

module type QUAD =

sig
type (’a, ’b) quad = AA of ’a * ’a
| AB of ’a * ’Db
| BA of ’b * ’a
| BB of ’b * ’b
end
module type COMMON =
sig
type (’a, ’b) node = Replica of ’a
| Local of ’b
| Remote of int

end

module type TREE =

sig

module Quad: QUAD

type (’a, ’b) quad = (’a,

’b) Quad.quad

type ’a tree

val
val

val
val
end

up: (’a, ’a tree) quad -> ’a tree
down: ’a tree -> (’a, ’a tree) quad

fold: ((’a,’b) quad->’b) -> ’a tree -> ’b
unfold: (’b->(’a,’b) quad) -> ’b -> ’a tree

module type D’TREE =

sig

module Common: COMMON

module Base:
type (’a, ’b) node =
type (’a, ’b) quad

TREE
(’a, ’b) Common.node
(’a, ’b) Base.Quad.quad

type ’a tree

val
val
val
val

val

val
val

val

val

end

build: ((’a, ’a tree) quad,

’a Base.tree) node -> ’a tree
up: (’a, ’a tree) quad -> ’a tree
local: ’a Base.tree -> ’a tree
int -> ’a tree
down: ’a tree -> (’a, ’a tree) quad

remote:

fold: ((’a,’b) quad->’b) -> ’a tree -> ’b
unfold: (’b->(’a,’b) quad) -> ’b -> ’a tree

fold’: (((’a,’b) quad->’c) * (’c->’b))

-> (((’a,’d) quad->’f) * ((’f,’b) node->’d))

-> ’a tree -> ’d

unfold’: ((’b->(’a,’b) quad) * (’b->bool))
-> ’b -> ’a tree

Figure 4: Signatures of TREE and D’TREE, for orig-
inal and distributed implementations of data type

tree.

