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Abstract

The traditional technique to generate a global state-graph representation for a concurrent system is to
calculate the product of state-graph representations of the local processes. We develop new techniques, and
prove their correctness, to help condensing intermediate state-graphs in the iterative product-calculation.
Experiments with Fischer’s timed mutual exclusion protocol have been carried out to justify the approach.

1 Introduction

A concurrent system is usually described as a set of local processes [4, 8, 10, 15, 16]. To generate a repre-
sentation for the global state space, either explicitly or implicitly, for model-checking is difficult because global
state-graph construction can easily grow out of memory space, even when the local process representations are
simple[1, 4, 14]. We propose a framework to construct global state-graphs by iteratively composing local process
representations. Two new techniques are then presented and proven for the condensation of the intermediate
state-graph representations in the iterations.

Here we first give a brief description of our idea. A state-graph is a representation for system behavior with
nodes and arcs. Each node represents, and is called, a state subspace which is a subset of the global state-space.
Each arc is an arrow going from a source node to a destination node and represents transitions from a state in
the source state subspace to a state in the destination state subspace. Suppose we have a concurrent system
S represented by m local processes with state-graphs Gy, ...,G,, respectively. The traditional technique of
generating a global state-graph for S is Cartesian product calculation, i.e., calculating G1 x G2 X ... X Gp,. Such
a product calculation can be done in an iterative way described in table 1(a). Our idea is to realize the framework
shown in table 1(b), which allows us to condense G in each iteration with a set of provenly correct condensation
operators. merge() is a binary state-graph product calculator and produces a state graph which is usually
bigger than its two arguments and thus represents refinement of state-graphs. condense;(),...,condense,()
are state-graph condensation operators which try to make their argument state-graphs smaller. In the following,
we describe our major techniques used to condense state graphs. The first two are our originals.

e Stability of variable values. In a concurrent system, we can usually deduce the ranges of variable
contents in a state subspace by analysis on read-write event ordering. For example, suppose we have a state
subspace named ¢ in which y = 0 (y is a register-like variable) is invariably true. Suppose from ¢, we have
two outgoing transitions ej, ey with triggering conditions y = 1 and y # 1 respectively. Now if we know in
all the state-graphs of the local processes, nobody else will write to y with value 1, then we can eliminate
e1 from g because we know its triggering condition will never be true as long as the system keeps staying
in g. We shall give an example in subsection 4.1 to illustrate how the idea works in more details.
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product(Gr.. .G { product(G.l: .. ,.Gm) {
(1) G = G (1) G.—. Gu;
(2) for i =2 to m, do { (2) fori:=2tom,do {
(1) let G = G x Gi: (1) let G := merge(G, G;);
) (2) let G := condense (... (condense,(G))...);
}
(3) return Gj (3) return G-

(a) (b)

Table 1: Global state-graph calculation through Cartesian product calculation

e Shielded local timers. We shall prove lemma 2 which says from a state, if a local (used only by one process)
timer has no effect in triggering conditions of triggerible transitions, invariance conditions, and specification
before any reset statement, then the timer’s current reading is of no effect to the system behaviors. This
observation can be used to broaden the state subspace equivalence relation and thus condense state-graphs.
We shall give example in subsection 4.2 to illustrate how the idea works in more details.

e Zones. Timer readings in a state of dense-time system are symbolically recorded in a Difference-Bound
Matrix[2, 9].

e Symmetry under index permutation. The technique is adapted from [10] to deal with timers[2, 9].
For the verification of a set of identical processes, such a technique is indispensable.

After we have defined our process description language and specification language formally in sections 2 and 3
respectively, we shall explain the techniques with examples and prove their correctness in section 4.

We implement the ideas and report in section 6 our experiment on Fischer’s timed mutual exclusion protocol.
Compared to the technology of pure symbolic manipulation [2, 3, 4, 5, 11, 12], one major advantage of our
approach is the possibility for incorporation of condensation techniques which utilize information derivable from
those intermediate state-graphs generated in the iterations. To utilize such information after the final global
state-graph is generated will be too late to avoid state-graph size explosion.

Section 2 describes the syntax and semantics of our interested real-time concurrent systems. Section 3 describes
our specification language TCTL[1]. Section 4 contains lemmas 1 and 2 and explains with examples our idea
of value stability and timer shieldedness. Section 5 discusses implementation details. Section 6 describes our
experiments. Section 7 is the conclusion.

We shall adopt the following notations. Given a set or sequence F, |F| is the number of elements in F. For
each element e in F', we also write e € F'. N is the set of nonnegative integers, Z is the set of integers, and RT
is the set of nonnegative reals.

2 Timed mode transition systems

A real-time concurrent system is composed of many processes. Each process runs autonomously and interacts
with others through read-write operations to global variables and timers. In addition, each process has its own
local variables and timers which no other processes can access. For a system with m processes, we shall use integer
1,...,m to identify the m processes.

Given a timer set H and a variable set F', a state predicate n of H and F' is a formulus constructed according
to the following syntax.

nu=y=cly=plezte~az' +d|z~c|-n|nVvy



y is a variable in F'. ¢,d are natural numbers. p is a process identifier. x,z’ are timers in H. ~ is an inequality
operator in {<,<,=,>,>}. Common shorthands like truth, falsehood, conjunction, and implication can be
defined. Notationally, we let BY be the set of all state predicates of H and F.

Definition 1 : PTMTS
Process timed mode-transition system (PTMTS) is defined to describe behaviors in an atomic process in a real-
time concurrent system. Notationally, we use subscript p to denote those transitions, local variables, and timers
of process p. A PTMTS for process p is a tuple 4, = (X, X,,, YY), I,, T,,) with the following restrictions.
e X is the global timer set, X,, is the local timer set, Y is the global variable set, and Y, is the local variable
set.
® g, €Y, is a special local variable which records the current mode of process p.
e [, is a state predicate in Bffjé ? denoting the invariance condition of process p. (Thus the global invariance
condition is A\, ., <, Ip-)
e 1), is the set of transition rules with the following form.
(gp = cAn) = [ap := d; K]
Here ¢ and d are natural numbers. 7 is a state predicate in BX{LLJJ()X(’Z o) denoting the transition triggering
condition. k is a finite sequence of assignment statements which is executed on the happening of the
transition. Each assignment statement in « has the following syntax.
y:=c |ly=p;|z:=0
Again y e YU (Y, — {gp}), * € X UX,, pis a process identifier, and c is a natural number.
Initially all timers and variables contain zeros. The processes act by performing transitions in an interleaving
fashion, i.e. at any moment, at most one transition can happen. Right before a transition e = (¢, = i A n) —
[9p = j; K] € T, happens, A, is in mode 7 and 7 is satisfied. On the happening of e, which is instantaneous,
variables are assigned new values and timers are reset to zeros according to «, and then A, enters mode j. In
between the happenings of transitions, all variable contents stay unchanged and all timer readings increment at
a uniform rate. [

Example 1 : For each process of Fischer’s timed mutual exclusion protocol, we have a PTMTS (X, X,,, Y, Y}, I, T),)
with X =0, X, ={z,}, Y ={l}, Y, ={ap}, [, =, =0V (gp =1A0< zp Az, <1) Vg, =2V gy, =3, and

(qp =0A1=0) = [gp := Ly, := 03],

(gp =1Azp <1) = [gp:=2;1:=p;zp:= 0;],
I, = (@p =2AN1#p) = [gp = 0],

(gp =2Nzp=1N1=Dp) = [gp = 3;],

(gp = 3) = [gp := 0;1:= 0;]

In Figure 1, we draw the PTMTS as a timed automaton which is more visually readable. The circles are modes
and the starting mode is doubly circled. Inside the circles, we put down the mode names and invariance conditions
enforced by I, in the modes. On each transition, we put down the triggering condition (n), if any, above the
assignment statements (x), if any. For example, in mode ¢, = 1, 0 < , < 1 must be true for process p. In mode
gp = 1, when z,, < 1, process p may assign p to variable [, reset x, to zero, and enter mode g, = 2. We also label
each transition with boldface number near their sources for later use. [

Given a PTMTS A4, = (X, X,,,Y,Y,, I,,T},) and a variable y in YUY}, we let Dy,., be the union of {0} and
the set of values assigned to y in T,. That is, D4,y is the domain of y.

Definition 2 : States A real-time concurrent system, in our definition, is represented as a set of PTMTS’s.
Suppose we are given a real-time concurrent system S with m PTMTS’s Ay,..., A,, such that for all 1 <1i < m,
Ap =(X, X}, Y, Yy, Ip, Tp). A state of S is a mapping v from XU, <, <,,, Xp UY Ul <<, Yp such that for each
l<p<mandz € XUU ., Xp, v(z) € R*; foreach y € Y, v(y) € Ui<p<m D4,y and for 1 <p < m and
Yy €Yy, v(y) € Da,.y. A state v is an initial state iff for all 2 € X UU, e, Xp UY UU ey Yoo (2) = 0. ||
Given a state and a state predicate n, we can define v |= 7 (v satisfies n) in a traditional inductive way.



Figure 1: Fischer’s timed mutual exclusion protocol

viEy=ciff v(y) =c

viry=piffv(y) =p

vEzte~a +diff v(z)+ce~v() +d

vEz~ciffv(z) ~c

v |= - iff it is not the case that v =7

vEngvy iffvEngorvEY

Given a state v and § € RT, we let v + § be a mapping identical to v except that for each z € X U Ulgpgm Xp,
(v+6)(x) = v(z) +J. Given a sequence of assignment statements k, we let v be a new mapping identical to v
except that variables are assigned new values and timers are reset to zero according to .

Definition 3 : runs Suppose we are given a real-time concurrent system Ay, ..., Ay, such that A, = (X, X,,,Y, Y}, I,,, Tp)
for all 1 < p < m. A v-run is an infinite sequence of state-time pair (vo,to)(v1,t1) ... Ve, tk) .o .. .. such that
vV=up, toty ... tg...... is a monotonically increasing real-number (time) divergent sequence, and for all k > 0,

o forall ¢ € [0, 51 — ti], ve +t E Ni<p<p Ip; and
o either vy + (k41 — tk) = Vg41; or there are p € {1,...,m} and (g, = v&(gp) A1) = [ap := Vk+1(qp); 6] € Ty
such that vg + (tg41 — tr) E n and (v + (b1 — te))K = Viy1-
If a v-run describes the behavior of the system from the beginning of computation, then we require v to be an
initial state. |

3 TCTL and model-checking

Our verification framework is model-checking. That is, the system description is given in PTMTS’s and the
specification is given in TCTL formulae[l, 11], and a verification problem instance asks if a given concurrent
system with PTMTS processes satisfies a given TCTL formulus. A TCTL formulus has the following syntax.

¢ n=mn|30¢" | IPUY" | ~¢" | ¢ V ¢
UUlSPSm Xp

X
Here 7 is a state predicate in BYUU . dO¢' means there exists a computation, from the current state,
1<p<m P

along which ¢’ is always true. 3¢'U/#"” means there exists a computation, from the current state, along which ¢’
is true until ¢ becomes true. Traditional shorthands like 3¢, VO, VO, VU, A, and —, can all be defined.
The satisfaction of a TCTL formula ¢ by a state v in a real-time concurrent system S, written S,v = ¢, can
be defined in a standard way.
e S,v |=n iff v satisfies n as a state predicate.
e S,v |=30¢ iff there is a v-run (v, to)(v1,t1) ... (Ve tk) .. .. such that for all £ > 0 and ¢ € [0, tx41 — t&],
S,v +t = ¢.



o S,v=3JoUe" iff there is a v-run (vo,to)(v1,t1) .- (Ve k) .. .. ,ak>0,and a t € [0,tg41 — t] such that
— S,u+t E¢'; and
— forall 0 < h <kandt €[0,thr1 —tn], if tp +t' <t +t, then S,vp, +1' |E .
e S,v = ¢ iff it is not the case that S;v |E ¢
e SvEoVY it SSyE@or SviEQ
Also we write S |= ¢ (S satisfies ¢) iff for the initial state v of S, S,v = ¢.

Example 2 : The mutual exclusion specification of Fischer’s protocol in figure 1 is YO- A, <p <p,<m(q1,, =
3Aqy =3). - |

4 How do the condensations work ?

In this section, we discuss the techniques we used to condense state-graphs. Subsections 4.1 and 4.2 discuss our
newly developed techniques in details with lemmas and examples. Specifically, lemma 1 in subsection 4.1 derives
value-stability properties of state subspaces of those intermediate state-graphs and can be used to eliminate state
subspaces and transitions which can never happen. Lemma 2 in subsection 4.2 derives a path-based property for
timer-elimination and can be used to deduce the behavior-equivalence among states.

Subsection 4.3 discusses briefly how we incorporate the techniques of symbolic manipulation. Subsection 4.4
discusses how we adapt the technique of verification by symmetry to dense-time systems.

4.1 Variable value stability under concurrent read/write

Suppose we have an intermediate state-graph composed from state-graphs for processes with identifiers in set H.
For a given global variable y, we let Dg., be the set of values written to y by processes with identifiers in H but
NOT by processes without identifiers in H. We present the following lemma, with proof sketch, which governs
the stability of global variable values, derivable from intermediate state-graphs, in concurrent read/write systems.

LEMMA 1 Suppose we are given a variable y and a finite run segment (v, tn)(Vhe1,the1) - - - (Vk, tx) such that
for all h <i < k, v; goes to viy1 without making assignment to y on a transition from a process with identifier
i H.
o If we enter state vy with an assignment y := a;, then for all h < i < k,t; < t < tiy1, vi+t E
Noe(Di,—(ap ¥ #
o If we enter state vy, without an assignment to y but with a triggering condition y = a, then for all h <1 <
k‘,ti S t S ti+1, Vi + t |: /\be(DH;yf{a}) Y 7é b
o If we enter state v, without an assignment to y but with a triggering condition y # a with a € Dy, then
forallh<i<kt;<t<tip1,vi+tEy#a

Proof : If the values in Dy, are not going to be written to y by other processes with identifiers not in H, since
we have the full knowledge that processes with identifiers in H will neither write values in Dg., to y along the
segment, thus the lemma must hold. |

Example 3 : In figure 2, the square boxes represent state subspaces described by the state predicate inside
while the arcs represent transitions with transition indices and process identifiers labeled by their sides. The
crossed-out arcs represent transitions detected as untriggerible by lemma 1. For example, in state subspace 2, we
can deduce [ # 1 and thus conclude transition 4; will never be triggered from state subspace 2. Thus lemma 1
can be used to early delete arcs and nodes which eventually is unreachable in the final state-graphs. |



state subspace 0
g1 =1Nqg=1Aga=1AN1>z1 >2x2>23>0

21 22
state subspace 1 state subspace 4
G =2ANq@=1Ag=1A1>z2>23>21 >0 g1 =1ANqg=2Ag3=1AN12>21>23>222>0
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state subspace 2 (deduce [ # 1) state subspace 5 (deduce | # 2)
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Figure 2: Illustration of lemma 1

4.2 Irrelevance of shielded timers

Here we present the following concept to condense timer recordings based on path conditions in state-graphs. An
atom is a state predicate without negation (—) and disjunction (A). A timing atom is an atom in which one or
two timers are used. A timing atom in one of the following forms: z ~c, z+c~2' +d, and 2’ +c ~ z +d
is called an z’s timing atom. A literal is either an atom, called positive literal, or an atom preceded by a logic
negation (), called negative literal.

A set T' of timing atoms is shielded in a state v with respect to a state predicate n iff the truth values of the
timing atoms in T' together do not affect the truth value of 7. Formally speaking, we define Q(T', v, n) inductively
as follows.

o (T, v,x) = {true, false} if x € T.

e Q(T,v,x) ={v E x}if x is atomic and x ¢ T.

o QI v,~n)={-b|beQI,v,n)}.

e QLy,pvy)={bVvd |be QT,v,n);b € QT,v,n)}.
Here we assume that —true = false, —false = true, trueV true = true, trueV false = true, false V false = false, and
false V true = true. Then T is shielded in v w.r.t. 5 iff |QQ(T,v,n)| = 1. For instance, in example 1, timing atom
set {0 < xp,x, < 1} is shielded in any state satisfies g, =0 w.rt. I, = ¢, =0V (¢, =1A0< 2, Az, <1)Vg, =
2Vq, =3.

Definition 4 : Timer shieldedness Suppose we are given a model-checking problem instance with system S
and TCTL formulus ¢. Let U, be the set of all timing atoms of . A timer z is shielded in a state v for the
problem instance iff
(1) z is not used in the specification ¢; and
(2) for any k € N and v-run (vo,t0)(v1,t1) ... Wk, tk) -« ---- , if either
(a) k> 0 and v_; goes to v on a transition n — [k] such that |Q(U,, vg—1 + tg—1,n)| > 1; or
(b) k> 0 and for some t € [0, tg41 — t], | WUy, vi + t:/\lgpgm L) >1,
then there is a 0 < h < k such that vp_1 goes to vy, on a transition n’ — [...;z :=0;...]. [
Condition (2) is a path property which intuitively says that if the current reading of timer z is not tested (with
invariance conditions or triggered transitions) before it is reset, then the current reading of timer z is of no

influence to system behavior in the future.
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Figure 3: Illustration of lemma 2

LEMMA 2 For every subformula v of the specification formulus and every two states v,v' such that v and v'
are identical except for the readings of x which is shielded in both v and V', S,v |= ¢ iff S,v' E

Proof : Suppose we have a v-run (vo,t0)(v1,t1) ... (Vk,tk) oo .- We want to establish that we can construct
another v'-run (vg,t0)(¥1,t1) ... (Vp,te) .o ... such that for all k£ > 0, v;—1 goes to v and v},_; goes to v}, on the
same transition ey = n — [k] of the same process. Note that v, v’ only differ at readings of timers in A.

Assume the construction is impossible because there is a least & > 0 such that e, can be triggered in the
v-run but cannot be triggered in the v'-run due to either unsatisfied triggering condition or unsatisfied invariance
condition. Since the only difference of the two runs is caused by the different readings of  in v and v'. This implies
either Q(U,, vg—1+tg—tg—1,nm) > Lor QU,, vy, Algpgm I,) > 1 which again implies by our shieldedness condition,
that before ey, there is another transtion which has reset  to zero in both runs. This means (vg—1 +tp —tx—1)(x) =
(V},_y + ty — tg—1)(x) which is a contradiction to our assumption. Thus we know the construction can be made
and by induction on the subformulus structure, we can show the “iff” relation. [

Example 4 : In figure 3, we illustrate how lemma 2 works. Figure 3 can be thought as a condensation from
figure 2. Let us examine how this condensation is possible. By analyzing the intermediate state-graphs G after
merging the state-graphs for process 1,2, and 3, we can deduce that in figure 2, z; is shielded in state subspace 2;
T is shielded in state subspace 5; and x, x5 are shielded in both state subspaces 3 and 6. To convince ourselves
of these, let us look at state subspace 2 and timer z;. Condition (1) is satisfied obviously (check example 2).
Condition (2) can be established as follows. In state subspace 2, process 1 is in mode ¢; = 2 from which, z; is
read only by process 1 with transition 4; before any reset. But from example 3, we already knew that from mode
¢1 = 2, transition 4, is not triggerible. Thus we deduce conditions (1) and (2) are both satisfied.

After shielding the clocks in different state subspaces, we find that according to lemma 2, state subspaces 3
and 6 are equivalent. Thus we can just keep one of them. However, we note the readers that the shieldedness of
the timers in this example are detected only after we have eliminated arcs using lemma 1. |

Note that the second condition in the definition of shieldedness is a path condition. In section 5, we shall give
an algorithm which detects a set of shielded timer in a sequence.



0 (O,S) ( 7<) (_27<) (_37<) 0 (O,S) (07<) (_27<) (_17<)

Ty (1,<) ] 0, ) [ (-1,<) | —— Ty (1,<) ] (0,<) | (-1,<) | (0,<)

T2 — 16,91 0,9 | (1,<) P 3,216,105 |(1,<)

€T3 (47<) - (17<) (ng) T3 (47<) (47<) (17<) (O,S)
(a) (b)

Table 2: Two zones in Difference Bounds Matrices

4.3 Zones

The prevailing technology of symbolic manipulation partitions real-time system state spaces using the concept
of zones[2, 9]. A zone is a matrix which defines the integer difference between timer readings. For example,
in a system state with timers xy = m,zo = 4,23 = %, a zone representation which the state is in is shown
in table 2(a). A special timer 0 is added as xzo which always reads zero. Entry (z;,z;) = (¢,~) means that
x; —xj ~ c. By applying the all-pair shortest path algorithm, we can transform the zone representation to a
canonical representation, as shown in table 2(b).

In our implementation, we shall record the zones instead of the actual readings of timers for each state. This
symbolic technique is also crucial in condensation of state-space representations.

4.4 Region and transition condensation by symmetry

In a real-time concurrent system with isomorphic processes, utilizing symmetry is a must in efficient verification.
The idea is very similar to the one presented in [10] except we extend the symmetry to cover timing inequalities of
timers in zones. For example in figure 3, after permuting process identifiers 1 and 2, we find that state subspaces
1 and 4 are equivalent after permutation; and state subspaces 2 and 5 are also equivalent after permutation.
Thus we can delete state subspaces 4 and 5 by connecting an arcs from subspaces 0 to 1 with transition 2, and
permutation (2 1 3). Note this condensation leaves the state-graph as a multi-graph.

5 Implementation

This section describes some implementation details. Compared to table 1, we have implemented the merge()
operator and two condense operators. condense; () is shield() and utilizes lemma 2 to detect the equivalence
among state subspaces. condenses() is symmetry() and utilizes a process identifier sorting procedure to calcu-
late process identifier permutations and detect symmetric equivalence under process identifier permutation.
e On-the-fly merging of two state-graphs
Here we define operator merge() which given two state-graphs G1,G» in a real-time concurrent system,
returns a new state-graph merge(G1,G>) representing the behavior of all processes described by G and
G5. The operator utilizes on-the-fly construction technique. In addition, it uses lemma 1 to further detect
behavior-equivalence among state subspaces.
e Shielded timer detection
Lemma 2 tells us that we can conceal literals of those shielded timers in a state subspace recording. To
utilize the timer-shieldedness technique in subsection 4.2, we have to record the set of shielded timers in
each state-graph node. One tricky point is that two timers can both be individually shielded in a state but
they are not together shielded. The reason follows. Given a state v and a conjunction like LAz < 1Az' < 2,
it may happen that v = L, v £ x < 1, and v [~ 2’ < 2. Thus it is clear that when we conceal both z < 1



shield(G) /* G = (V,wo, Shielded, E) with state subspace labelling function Shielded() and timers
Z1,...,2Tn in sequence */ {
(1) For each v € V, do {
(1) let Shielded(v) := 0;
(2) For i:=1 to n, if z; is shielded in v, then {
(1) Shielded(v) := Shielded(v) U {z;};
(2) conjoin out (see table 4) z; from all state subspace recordings of v and outgoing transition
recordings from v.

}
}

(2) return G;

}

Table 3: the shield() operator

conjoiny (@) /* ¢ is a conjunction of literals. */ {
(1) Let n:= ¢
(2) Iteratively for each y € Y, do {
(1) Rewrite every literal of ¢ such that all literals take one of the following three forms :
e Type 1: w ~ z where w is z-free and ~€ {<, <};
e Type 2: z ~w where w is z-free and ~€ {<, <};
e Type 3 : in the literal, there is no x-appearances.
Let G1,G2, s be the sets of Type 1, 2, 3 literals respectively.

VANIZAY

/\I/\!
A
A

(2) Letn:= (/\uwmeglwwrw,e% w o~y ~) u)') A (/\reG3 T) where ~(~,~") is computed
according to the table on the right.

}

(3) return n;

}

Table 4: conjoin, (®) to remove variable z from &

and z' < 2, the truth value of the conjunction changes. A remedy for this problem is to one by one test the
shieldedness of timers and condense state subspaces as shown in table 3.

e Symmetry among transitions
symmetry(G) condenses state-graphs by adapting the process symmetry technique[10] to real-time timing
constraints. Basically, we build the operator on a sorting procedure for the process identifiers in a state
subspace. The output of the sorting procedure is a permutation on process identifiers which is then recorded
on transitions.
One implementation detail is about how to condense on the symmetry of transitions. The condensation
by symmetry will introduce multiplicity of arcs between a pair of state subspaces. Thus it is important to
detect the equivalence under symmetry of those arcs with labeled permutations.
One intrigueing scheme is to choose to keep only one transition among those equivalents under symmetry.
Thus more computation will be needed to reconstruct back those deleted transitions while we need them in
the merger and model-checking procedure. However, we can also show that for symmetric TCTL formulas,
the answer for model-checking is not affected even if we do not reconstruct those deleted transitions. Due
to page-limit, we have to abandon the elaboration.



Balarin Wang &

#proc | strong | weak | KRONOS | Wong-Toi | UPPALL Hsiung
6 115s 18s 1174s 74s ~ 20s 20s

7 398s | 48s M/O 164s ~ 140s 62s

8 986s | 116s M/O 375s N/A 182s

9 | 2220s | 24T7s M/O 891s N/A 483s

10 | M/O | 576s N/A N/A N/A | 12128

11 N/A | N/A N/A N/A N/A 3057s

times in seconds; M/O: memory overflow; N/A: not available;

Table 5: Verification time comparison

#proc 2 3 4 5 6 7 8 9 10 11

merge() #region | 70 | 225 | 555 | 1123 | 2017 | 3347 | 5231 | 7801 | 11204 | 1545
#transitions | 160 | 729 | 2119 | 4696 | 9125 | 16364 | 26910 | 42808 | 65514 | 7608

shield() #region | 31 | 100 | 231 | 447 | 774 | 1241 | 1880 | 2726 | 3817 | 1194
#transitions | 70 | 307 | 842 | 1794 | 3379 | 5844 | 9301 | 14340 | 21336 | 6366

symmetry() #region | 16 | 39 76 | 130 | 204 301 424 576 760 | 220
#transitions | 35 | 109 | 247 | 472 | 810 | 1290 | 1944 | 2807 | 3917 | 1064

Table 6: Intermedate state-graph sizes for 10 processes

6 Experiments on Fisher’s mutual exclusion protocol

We have experimented our approach and algorithms on Fischer’s timed mutual exclusion protocol (check exam-
ple 1). Table 6 compares our performance with those performance numbers presented in [4]. Our implementation
is on Sun UltraSparc 200MHz. Note that Balarin and Wong-Toi’s work are all based on approximation while
ours is based on exact verification. Besides the hardware performance upgrade, we note the readers that the time
complexity of our implementation increases slower, with respect to concurrency sizes, than previous research on
exact verification.

Specifically, we list the sizes of intermediate state-graphs for the verification of Fischer’s protocol with 11
processes in table 6. The sudden jump-down of state-graph sizes from 10 to 11 is due to causality analysis. A
lot of the variable-value changes in the intermediate state-graphs are not explained by causality while in the final
state-graph, every one of them must be explained. Note that in our approach, the space requirement after the
index-normalization and timer-shielding is reduced to a factor of one order of magnitude in each iteration.

In fact, when we analyze the state subspaces generated in the iterations in our algorithm, we observe the
following pattern. The set of processes is partitioned into five groups. The first two groups contain processes in
mode g, = 0 and g, = 1 respectively. The second group contains all processes in mode ¢, = 2 except the one
that enters mode g, = 2 last. The fourth group contains all processes in mode g, = 3. The fifth group contains
a single process which last enters mode ¢, = 2. We found that except for timers used by processes in group 2
and 5, all other timers are shielded. This analysis can be carried out manually to show that our time complexity
against Fischer’s mutual exclusion protocol is polynomial.

7 Conclusion

We propose to iteratively refine and condense state-graphs for efficient verification. There is abundant knowledge
in those intermediate state-graphs which can be deduced to condense the state-space representation. In the long

10



run,

we anticipate to have more proven state-graph operators coming out which extend to another dimension of

verification efficiency.
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