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Abstract

In this paper, we propose a new automatic approach to reconstructing a model for the 3D
environment by use of an active binocular head. To efficiently store and access the depth
estimates, we propose the use of the inverse polar octree which can transform both the
unbounded estimate and the unbounded estimation error into a bounded 3D space with ap-
propriate resolution. The depth estimates are computed by using the asymptotic Bayesian
estimation method, which includes the use of Markov random fields. In order to apply
this method, the active binocular head (the IIS head) has been calibrated with very high
accuracy. The path of the local motion required by the asymptotic Bayesian method is de-
termined online automatically to reduce the ambiguity of stereo matching. Some rules for
checking the consistency between the new observation and the previous observations have
been developed to properly update the inverse polar octree. Experimental results have shown
that the proposed approach is very promising for automatic generation of 3D models which

can be used for rendering a 3D scene in a virtual reality system.
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1 Introduction

In the last few years, virtual reality (VR) has found many applications in different areas,
such as education, business and entertainment. Because of the rapid growth of VR applica-
tions, automatic generation of 3D models from images has attracted much attention recently.
One popular approach to reconstructing 3D models from images is to use the stereo vision
techniques. However, it is well known that stereo correspondence is a very difficult prob-
lem. Although some multiple-baseline stereo vision systems have been proposed to simplify
the stereo correspondence problem [1, 2], the results of 3D reconstruction obtained by us-
ing automatic stereo matching algorithms [3] are still not reliable enough for practical use.
Therefore, most 3D reconstruction systems used at the present time choose to solve the
stereo correspondence problem either manually or semi-automatically [4, 5].

If one wants to render a 3D scene by computing the shading of an object given the position
of light sources and surface properties of the object, the 3D model of the object has to be very
accurate because the computed shading appearance is very sensitive to 3D noise. On the
other hand, when using image-based techniques to render a 3D scene with texture extracted
from real images, the quality of the rendered image is more tolerable to inaccurate 3D data.
Knowing that image-based techniques do not require accurate 3D reconstruction and that
the stereo correspondence problem is an ill-posed problem, we do not intend to reconstruct
highly accurate 3D model of the scene. Instead, our goal is to reconstruct an approximate
3D model having some associated texture information such that this approximation model,
together with the texture information, can be used to synthesize images which look similar
to the real ones when observing from arbitrary viewpoints within a pre-specified viewing
area. In other words, if the synthesized image looks different from the real image when
observing from a new point of view, then our goal is to update the current scene model so
that the model will be consistent with all the previous views the vision system has observed.
Hopefully, the scene model will become more accurate as the vision system samples more
viewpoints within the specified viewing area.

In this paper, we propose a new approach to reconstructing a model of the 3D environment

automatically by using a well-calibrated active binocular head [6]. The reconstructed 3D



points and their gray level values are stored in a volumetric data structure, i.e., the inverse
polar octree, which will be described in section 2. An active control scheme has been used to
minimize the ambiguity in stereo matching. The 3D structure of the scene is estimated by
using the asymptotic Bayesian estimation method [7]. Details of the reconstruction process
is described in section 3. Some experimental results on reconstructing the 3D model of a

complex scene are presented in section 4. Concluding remarks are given in section 5.

2 Inverse Polar Octree

Two internal representations are frequently used to describe a 3D scene, namely the 3D mesh-
based representation and the voxel-based representation. Because 3D data will be accessed
repeatedly for examining the consistency of the 3D estimates observed from different views
during the reconstruction process which will be described in the next section, we need to find
a representation that can provide efficient access of the 3D data stored. Since the complexity
of accessing a voxel in an octree, which is O (log(NN)), is much lower than that of accessing a
3D point in a mesh-based representation, we have chosen the voxel-based octree to store the
reconstructed 3D information. To use the voxel-based 3D representation, we have to first
solve the problem of packing the 3D information contained in the infinite 3D space into the
finite memory space in the computer. To deal with this problem, we first notice that the 3D
measurement error of a stereo vision system is inversely proportional to the distance between
the object and the stereo cameras[8]. This fact suggests that uniform quantization of the
3D data obtained by the stereo vision system should be inefficient. A better quantization
scheme is to have the resolution of the volumetric representation inversely proportional to
the object distance. However, non-uniform quantization will result in complicated octree
representations. Our solution to this problem is to take an inverse polar transform before
quantizing the estimated 3D data into voxels. This inverse polar transform can be an inverse
cylindrical transform or an inverse spherical transform. As an example, the inverse spherical

transform is described in the following :

1. Transform the 3D Cartesian coordinates, (z, y, z), to a spherical coordinate system,

(p, 0, ¢).



2. For the 3D spherical coordinates, (p, 6, ¢), compute its inverse polar coordinates,

(L, 6, ).

There are two major advantages of taking the inverse spherical transform. The first one
is that, after the transformation, all the surrounding 3D objects farther than a minimum
distance to the observer, say R,,;,, will be enclosed within a sphere with radius ﬁ. In other
words, the infinite 3D world outside a sphere is now mapped into a finite sphere, as shown
in Figure 1. The second advantage is that, after taking the inverse spherical transform, we
can apply a uniform quantization because the estimation error is now bounded, which is
explained below in more detail.

Let p be the distance of an object point away from the observer. Since the 3D estimation
error is proportional to the object distance, the 3D estimation error of the object point is
approximately k - p, where k is a constant determined by the configuration of the stereo
cameras. That is, the estimate of the object distance may be (1 + k)p. Notice that the
estimation error is unbounded because the estimation error will approach infinite as the
object distance approaches infinite. However, after the inverse polar transformation, the

1

object distance is now mapped to PR Since the 3D estimation error is usually much

smaller than p, i.e., K < 1, we have

1 1 k
DR M

Here, the second term of the right hand side of equation (1) is the transformed estimation
error, which is now bounded by WRW if p > R, If we choose the quantization unit to
be ﬁ, then the estimation error will be less than the quantization error for all the object
points outside the sphere of radius R,,;,. It is important to have a quantization error larger
than the estimation error, because if the estimation error is larger than the quantization
unit, then there will be many undesired “ghost” voxels that are caused by the estimation
noise and are located around the real object position. The increase of resolution, after the
quantization unit is smaller than ﬁ, will result in not only much larger memory occupation

but also sparser scattering of 3D measurement data, which will make the data integration

more difficult.



After taking the inverse polar transform, 3D data are stored in an octree data structure
according to the three coordinate values, %, 0, and ¢. Let Af and A¢ be the angular
resolution of the octree. The octree is created in the spherical coordinate system to maintain

the uniform angular resolution, as shown in Figure 2. That is, two 3D points with 3D

coordinates (p, 0, ¢) and (p, 6 + Af, ¢ + A¢) will be stored at (%, 0, ¢) and (%, 6 +
Af, ¢+ Ag), respectively, which shows that the angular resolution will not change after the

inverse polar transformation and the quantization into an octree.

3 Automatic 3D Reconstruction

3.1 Visually-Inconsistent Regions

The schematic diagram of our active 3D reconstruction process is shown in Figure 3. We
assume that a well-calibrated active binocular head equipped with an accurate position and
orientation sensor, such as InterSense IS-900 CT, Fastrak, or Flock of Birds, is available
for exploring and reconstructing the 3D environment. That is, the camera parameters of
the stereo cameras on the binocular head are known at any time instant, based on the
configuration and the kinematic model of the binocular head and the readings of the position
and orientation sensors. Hence, we can adopt the asymptotic Bayesian estimation method
which assumes the camera parameters are know for each camera position.

To save the reconstruction time, we do not apply the asymptotic Bayesian estimation to
an image region unless it is necessary, or more precisely, unless it is a visually-inconsistent
region (which is defined below). If a set of camera parameters are specified, we can synthesize
an images according to the current world model stored in the inverse polar octree. Next,
the synthesized image is subtracted from the observed image to obtain a difference image.
The difference image is thresholded and then filtered by using the morphological opening to
remove noise. The regions contained in the resulted binary image indicate where the depth
information are either incorrect or not available, which implies that the depth information in
these regions needs to be updated with the observed image. The above regions will be referred

to as the visually-inconsistent regions because the observed image is visually inconsistent



with the synthesized image according to the inverse polar octree. At the very beginning, the
inverse polar octree contains no valid data. Hence, the whole image is visually-inconsistent,
and has to be processed to estimated 3D depth as described in the next subsection. Once
some 3D depth estimates are stored in the inverse polar octree, only the visually-inconsistent

regions have to be processed.

3.2 Depth Estimation

To estimate the 3D depth, we first partition the visually inconsistent regions into small
square blocks, and then assume that each square block in the left image is projected from a
3D planar patch having a constant depth. The depth estimation method we used in this work
is mainly the asymptotic Bayesian estimation method[7], which is described briefly below.
Suppose that the depth, d, of a square patch, P, in the left image is to be estimated, and
that the current estimate of the inverse covariance matrix of d is ®, which is a one by one
matrix (i.e., a scalar) in this case. Instead of directly determining the stereo correspondence
using the left and right images, we first move the left camera locally and incrementally in
order to compute a rough estimate of the depth of the surface patch (the way we determine
the path of the local motion will be described in the next subsection). Now, suppose we
obtain a new left image after a local motion. Since the binocular head is well calibrated,
we have the relative geometric relation (i.e., the relative camera position and orientation) of
the stereo image pair taken by the left camera at the initial and the new positions. Based
on this geometric relation, we can compute, for each pixel in the initial image patch, the
corresponding image point in the new image if a depth estimate, d, is given. For convenience,
let s be the center of an image patch in the initial reference image and let w,(s, af) denote
its corresponding image point in the new image i.e., (the nth image), as showed in Figure 4.
The depth of the image patch, d, can be refined by minimizing

Ju(d) = =(d —dp 1)'®, 1(d—dy 1) + = Z (un(s,d)) — I, (s)]?, (2)
25
where I,(s) and I,,(u,(s,d)) are the intensity value of pixel s in image 1 and the intensity
value of pixel u,(s,d) in image n, respectively, and ®,_; denotes the inverse covariance

matrix of the estimated depth dy1 given images 1, 2, ..., n — 1. The inverse covariance



matrix can be updated by using the following equation:

[ (5. ) — h(sn?} (3)

®, =&, 1 + o 12
LT 9dod | 2

seP d:d;z
For more details, please refer to [7].
The asymptotic Bayesian process for estimating the depth of an image patch P is sum-

marized in the following.
1. Compute d, by minimizing the error function in (2) using a gradient descent method.
2. Update ®,, with equation (3).

According to our experience and analysis, 50 millimeters of incremental local motion
can reduce the depth uncertainty to some extent such that the search region for stereo

correspondence is less than 10 pixels in our setup, i.e.,

~

‘un(sa dn) - un(s, dtrue)

<5, (4)

where dj. is the true value of the depth. Therefore, once the effective motion baseline
created by the incremental local motion is greater than 50 millimeters, our system will use
the image taken by the right camera as the new input image of the asymptotic Bayesian
estimation process (i.e., a big jump) and perform an exhaustive search for the minima of
(2) in the search region [u,ight(s,cfn) — 5, Upignt (S, Jn) + 5], followed by a gradient descent
search to further refine the depth estimate. After the depth estimates of all the patches in
the visually-inconsistent regions are computed with the above process, Markov random fields

can be used to smooth the depth map while preserving the depth discontinuity [9]

3.3 Path Planning for Local Motion

Having a well-calibrated active binocular head, we are able to control the cameras to move
along a path which can minimize the ambiguity of stereo matching. Our path planning
method is based on the following observation. When performing stereo matching, the stereo
correspondence can be determined more easily and reliably if the edge orientation is perpen-

dicular to the epipolar line, as shown in Figure 5. On the other hand, if the edge orientation



is parallel to the epipolar line, then finding stereo correspondence is an ill-posed problem.
To eliminate the ambiguity in stereo matching, the local motion is selected to form epipolar
lines which are perpendicular to most edges having highly uncertain depth estimates. The

following procedure describes the way we determine the local motion:

1. Perform Sobel edge detection on the new input image and record the orientations 6,

of each edge pixel j.

2. For each edge pixel j, get its inverse variance value (i.e., the value of the one by one
inverse covariance matrix, ®;, determined in the asymptotic Bayesian process). Notice
that a larger value of ®; indicates that the depth estimate of pixel j is more reliable

because % is the variance of the depth estimate of pixel j.
J

3. Compute the average edge orientation weighted by its variance value as follows:

N

Zj:¢j>0(<}7i-)
Zj:¢j>0(%) ‘

J

= (5)

Notice that in equation (5), edge orientations corresponding to depth estimates of

higher uncertainty will be weighted more heavily.

4. Compute the horizontal and vertical motion components, H,,,pe and Ve, of the

camera:

Hmove = AH COS(H + g)a (6)

and

Vmove = AV Sin(g + g)a (7)

where Ag and Ay are two predetermined constants specifying the step size of each

movement.

3.4 Consistency Check for a new 3D Observation

By using the asymptotic Bayesian estimation method described in section 3.2, a large amount
of 3D points can be determined. However, since the stereo correspondence may contain some

false matching, consistency check before integrating new depth estimates into the existing



octree is necessary. For the consistency check, image intensity (or more generally, color
information) observed from different viewpoints should be stored for each 3D data contained
in the octree. In the consistency check, two questions are asked. Is the new depth estimate
of a 3D point “consistent” with the previous observations? If we accept a new 3D depth
estimate that is “consistent” with the previous observations, how many voxels in the octree
should be removed to maintain the coherence? Our answers to the above two questions will
be briefly described below.

Suppose a new depth estimate, whose 3D coordinates are p3p, is obtained at a new point
of observation. Let pop(n) be the image location of p3p on the reference image of the new
point of observation, and pop(i) be the projected 2D image location of p3p on the reference
image of the 7th point of observation. We say that the new observation p3p is compatible
with the ith observation if psp is not occluded by the ith observation (or the other way

around) and its color (or graylevel) is compatible with that of the ith observation, i.e.,

|In(p2D(n)) - [i(p2D(i))| < Tc,

where 7¢ is a given threshold value. If two third of the previous observations are compatible
with the new observation, psp, then psp is said to be largely consistent with the previous
observations and is used to update the inverse polar octree. If the new observation is not
largely consistent with the previous observations, it is discarded. For a new observation p3p
that is largely consistent with the previous observations, we should also consider whether
some old data should be removed from the octree if they are not compatible with the new

observation, p3p.

4 Experiments

In our experiment, a well-calibrated binocular head is used to acquire stereo image sequences.
The binocular head is mounted on an X-Y table which is used for simulating a mobile robot
platform. In this section, we show how a complex scene in our laboratory is reconstructed
with the active binocular head. 20 viewpoints for 3D measurement were chosen in advance

and the reference images acquired by the left camera are shown in Figure 7. The relative



position of the objects and these 20 viewpoints are shown in Figure 8, where Object 1 is
the bookshelf in the background, Object 2 is a textured cardboard and Object 3 is the
box. At each viewpoint, a sequence of local movements are performed to estimate the depth
value of visually-inconsistent regions by using the asymptotic Bayesian method. Figure 9
shows a typical image sequence acquired along a path of local motion which is determined
by the method described in section 3.3. Notice that in Figure 9(c) the inverse variance value
increased from left to right as more and more images were acquired and processed. Also,
the computed local motion drove the camera to move both vertically and horizontally to
reduce the ambiguity of stereo matching. Since the vertical camera motion could not be
generated by the X-Y translation table, we moved the tilt joint to generate an equivalent
vertical camera motion, which was possible because the lens center of the camera was located
a distance off the rotation axis of the tilt joint.

The 3D reconstruction obtained by using the images taken at viewpoints A1-A4 is shown
in Figure 10(a). Notice that when observing from viewpoints A1-A4, part of the bookshelf,
e.g., region R marked in this figure, will be occluded by Object 3. Figure 10(d) shows an
image synthesized at a virtual viewpoint, V', which is located between viewpoints A and C,
will contain several “holes” (black image regions) because the 3D information of region R
are still not valid. When the images observed from viewpoints A1-C'4 were used update the
inverse polar octree, the 3D structure become more complete, as shown in Figure 10(b), and
the synthesized image based on the latest updated 3D structure looks better (much of the
“holes” has been patched), as shown in Figure 10(e). However, after all the images observed
at these 20 viewpoints were used to update the inverse polar octree, the 3D structure become
more complete, as shown in Figure 10(c), and the synthesized image based on the updated
3D structure looks much better (most of the “holes” has been patched), as shown in Figure
10(f). The overall reconstruction progress using the images from A-1 to E-4 is shown in

Figure 11 that the virtual camera is set at a virtual viewpoint U to overlook the scene.
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5 Concluding Remarks

We have presented a new approach to reconstruct the 3D environment automatically with an
active binocular head. Active vision has been advocated by many researchers such as Bajcsy,
Aloimonos, and Ahuja about a decade ago. For example, Alominos has shown that many
computer vision problems which are ill-posed, nonlinear and unstable for a passive observer
become well-posed, linear and stable for an active observer[10]. Abbott and Ahuja have stud-
ied the 3D reconstruction problem using an active stereo vision system|[11]. However, most
active stereo vision system has been applied to target tracking and no much progress on 3D
reconstruction using active stereo has ever been made after Abbott and Ahuja’s work mainly
because calibrating an active binocular head is much more difficult than calibrating a fixed
cameras. We have spent many years on calibrating our binocular head and have achieved
very accurate calibration results[6]. Based on our well calibrated binocular head, we have
developed an active stereo vision algorithm which can estimate the 3D depth automatically,
plan and maneuver a sequence of local movements to reduce the ambiguity in stereo match-
ing, and integrate 3D data obtained in different points of observation. Real experiments
have been performed to verify the algorithm proposed in this paper. The experimental re-
sults shows that the proposed algorithm is promising. Currently, we are still improving the
reliability of this algorithm. Also, we are developing a path planning module which can be
used to lead the binocular head to a new point of observation to collect more complete 3D
information. Once the binocular head is mounted onto a mobile robot platform, our path
planning module can be integrated into the local motion module to guide the mobile robot

to move around and acquire information automatically.
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Inverse Polar
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Figure 1: Inverse polar transform.

Figure 2: An illustration of the inverse polar octree.
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Figure 3: The schematic diagram of the automatic 3D reconstruction process.
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Figure 5: Edge parallel to the epipolar line will cause ambiguity in stereo matching.

Figure 6: The active binocular head (the IIS head) used in the experiment.
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Figure 7: 20 reference images acquired by the left camera at the twelve points of view shown

in Figure 8.
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Figure 8: The distribution of the 20 points of view used to acquire the images shown in

Figure 7.
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Figure 9: (a) Typical images acquired in a sequence of local motion whose path is determined
on line. (b) Sobel edge map for each image in (a). (¢) The inverse variance values ® for each

image in (a).
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Figure 10: (a) The 3D data contained in the octree reconstructed at viewpoints Al1-A4
were projected to a plane parallel to the ground. (b) The 3D data contained in the octree
reconstructed at viewpoints A1-C'4. (c) The 3D data contained in the octree reconstructed
at viewpoints A1-E4. (d) An image synthesized at a virtual viewpoint, V, located between
viewpoints A and C by using the octree data shown in (a). (e) An image synthesized at a
virtual viewpoint, V, by using the octree data shown in (b). (f) An image synthesized at a

virtual viewpoint, V, by using the octree data shown in (c).
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Figure 11: (a) The scene is synthesized at the virtual viewpoint, U, located to overlook the
scene by using IPO reconstructed at viewpoints Al. (b), (c), (d), (e), (f), (g) and (h) The
scene is synthesized at U, by using IPO reconstructed at viewpoints A1-A2, A1-A3, A1-A4,
Al-B4, A1-C4, A1-D4 and Al1-FE4 respecively.
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