Prototyping Sparse Fortran 90 Array Intrinsics
with Standard ML Module System*

Tyng-Ruey Chuang

Institute of Information Science
Academia Sinica
Nankang, Taipei 11529, Taiwan

trcQiis.sinica.edu.tw

Abstract

We report work-in-progress of using the Standard ML module system to prototype sparse For-
tran 90 array intrinsic functions. We illustrate type-related issues in a high-level, source-to-source
mapping of Fortran 90 array intrinsics to Standard ML. The prototype sparse library is parameter-
ized by array compression schemes. Various issues involved in using Standard ML as a prototyping
language are also discussed.

1 Motivation

Implementations of high-level programming languages often rely on run-time library to support built-in
language features. For example, garbage collection routines are needed at run-time for languages sup-
porting automatic memory management, and process scheduler for languages support multithreaded
execution. These run-time libraries are often written using high-level languages themselves. A major
benefit of using high-level languages for writing library code is that it allows rapid experimentations
of various design decisions. Sometimes the library is implemented in the source language, in which
case the library may become directly accessible to user programs, and may allow user-defined cus-
tomization or even replacement of the library. Though now one must make sure that the interface to
the user-customized library is type-safe. The module system of Standard ML, which allows parame-
terized and type-checked generation of library units (i.e., structures) by using its functor facility, is an
excellent choice when experimenting with library design, even when Standard ML is not the source
nor the implementation language of the library.

We report in the paper experience in using Standard ML as a prototyping language for library
design. Our source language is Fortran 90, a language supports high-level array computation. Our
aim is to implement in Fortran 90 a library to support sparse array computation. (Dense) array
computation in Fortran 90 is well supported by array intrinsics (i.e., language built-in procedures,

*This paper is available on-line as technical report TR-IIS-98-002 from the Institute of Information Science, Academia
Sinica, via http://wuw.iis.sinica.edu.tw.



details in Section 2). Our goal can be thought of providing a customization of the array intrinsics,
but only for sparse arrays. That is, interface to both the original dense array intrinsics and our sparse
array intrinsics will be kept the same, and equally accessible to the programmers.

Sparse array computation is a challenging topic because efficient computation depends greatly on
the data representations of the sparse arrays (i.e., on how they are compressed), which again depends
on the sparsity structures (i.e., the distributions of non-zero elements) of the arrays [2]. Sparsity
information, however, may not be available at compile-time. Even if an array’s sparsity structure is
available at compile-time, its structure may change over time during execution, which makes it more
difficult for selecting good compression schemes. In parallel sparse array computation, in addition to
compression schemes, one also faces the problem of selecting proper distribution schemes.

For programmers, it will be easier if the languages they use provide run-time support of automatic
selection of data representations for sparse arrays. However, current high-level array languages either
do not support sparse arrays (as in APL and Fortran 90), or only provide fixed compression schemes
(as in MATLAB [5]).

2 Fortran 90 Arrays and Array Intrinsics

Fortran 90 is a much improved language over Fortran 77. It provides rich intrinsic procedures to
support whole array operations. These intrinsic procedures for arrays are called array intrinsics. Array
intrinsics encourage a style of parallel programming known as data parallelism. High Performance
Fortran, which is based on Fortran 90, provides further facility for customizable data distribution
(i.e., array partition) and processor allocation, and is perhaps the only parallel programming language
supported by major computer manufacturers (as well as independent software vendors). Fortran 90
has been gradually accepted to the numerical computing community, as exemplified by the appearance
of the books like Numerical Recipes in Fortran 90 [7].

Each array in Fortran 90 has a shape, referring to both its rank (the number of dimensions) and
extents (the lengths along each dimension). The shape of an array is specified by a rank-one integer
array whose elements are the extents along each dimension. The size of an array is the total number of
elements in the array. The rank of an array cannot be larger than 7. Array elements are homogeneous
and can be of intrinsic data types (such as integer, real, complex, logical, and character) or
derived data types (i.e., user-defined data types).

Array operations are well supported in Fortran 90 because the language provides the following
language features.

Better array notations. For a n x n real array a declared by

real, dimension (n, n) :: a

Then the notation a(1l, :) refers to its first row, and a(:, n) its last column. Further,
a(1:n:2, 2:n:2) is the sub-array whose elements each has both an odd row index and an
even column index in a. These are called array sections and can appear at either sides of an
assignment.



Elemental intrinsic operations. Most Fortran 90 intrinsic functions (such as abs, +, etc.) are
elemental, meaning that the argument can be an array of arbitrary shape as well as a scalar
value. For example, the assignment a = a + a doubles the value of each element in array a.
Note that it is required the two array operands to the + function are of the same shape. That
is, they must be conformable. Storage for arrays can be be allocated either at compile-time or
run-time. The life-time of run-time allocated arrays can be controlled by programmers by using
storage management procedures allocate and deallocate (which are similar to malloc and
free in C).

Most Fortran 90 intrinsic functions are generic as well. For example, + can be used for integer
number addition and real number addition. In Fortran 90, one can create new, user-defined,
generic functions by overloading existing function names or operators. However, Fortran 90
provides no easy facility to define new, user-defined, elemental functions. This is one of the
reasons why we use Standard ML to prototype sparse array intrinsics: Standard ML provides a
parameterized module facility from which elemental functions can be easily built up.

Transformational array intrinsics. Fortran 90 provides several powerful array transformation pro-
cedures, such as the following.

merge returns an conformable array whose elements are selected from two source arrays based
on a boolean mask array.

spread returns an array whose rank is one greater than the input array by duplicating the input

array along some given dimension.
pack packs an array of arbitrary shape into an rank-one array using a mask array.
unpack unpacks an rank-one array into an array of arbitrary shape using a mask array.

reshape maintains the Fortran order (i.e., column major) of the elements in the input array
but puts them in an array of different shape.

cshift returns the result of circularly shifting every one-dimensional sections of the input array.
eoshift returns the result of end-of shifting every one-dimensional sections of the input array.
sum, product, ... are reduction operations.

etc.

These intrinsics can be used to write concise array expressions. As an example (taken from [7]),
the calculation

n
wi:Z|xi+xj|, 1=1,...,n
j=1
can be realized as
real, dimension (n) :: x, w
real, dimension (n, n) :: a

)
[}

spread(x, dim=2,ncopies=n) + spread(x, dim=1, ncopies=n)

sum(abs(a), dim=1)



of which the first expression can be illustrated by

I T I v T T2 I3
T2 T2 T2 - T T2 I3

i+ = Ts T: =
2¥) ? + J T3 X3 I3 e + 1 Tro X3

Detailed descriptions of Fortran 90 array intrinsics can be found in standard reference (such as [1])
and are omitted here.

3 Standard ML as a Prototyping Language

Fortran 90 does supports modular programming development. Its module facility allows one to define
the interface of an abstract data type without revealing its implementation. Program units can be
type-checked at link-time to assure type-safe linkage of imported modules. (Though not necessary
every Fortran 90 compiler performs this check. Still, this is a big improvement over C, so to speak.)
User-defined functions/procedures can be overloaded to maintain ad hoc polymorphism.

Fortran 90 further supports pointers (again, safer than C), recursive user-defined data types,
recursive functions and procedures, passing functions/procedures as arguments (but not returning as
results), dynamic storage allocation/deallocation. Combining these language features with its module
facility, one can develop very sophisticated user library in Fortran 90.

We are in the process of building in Fortran 90 a library to support sparse array intrinsics [4]. By
sparse array intrinsics, we mean that sparse arrays are used in the same ways as (dense) arrays in
Fortran 90. That is, convenient notations can be used, elemental intrinsic functions can be applied to
sparse arrays, and transformational array intrinsics applies to sparse arrays as well. Being a library,
there are certain restrictions on the level of convenience it can achieve. Still, we are able to provide a
library that supports the following style of sparse array programming;:

type (sparseld_real) :: x, w
type (sparse2d_real) :: a
call bound (x, n)

call bound (w, n)

call bound (a, n, n)

spread(x, dim=2,ncopies=n) + spread(x, dim=1, ncopies=n)

w = sum(abs(a), dim=1)

where we take the example in Section 2 and rewrite it using our sparse library. Notice that functions
spread, sum, abs, + have been overloaded to support sparse arrays. Also notice that storage alloca-
tion (call bound) have to be performed manually (since Fortran 90 does not support initialization
constructors).

However, we gradually find out that Fortran 90 is not a good language for building sparse array
intrinsic library. The main two reasons are the following.



e Although Fortran 90 is a typed language, it is not suitable for programming about types. For
a sparse array intrinsic library to fully function, it has to support arrays of every ranks, as well
as every applicable intrinsic data types. This means that for the + function, one has to define
21 different addition functions (7 ranks, 3 intrinsic data types — integer, real, complex) and
overload + to the 21 functions. (Let’s call this process the elementalization of the + operator.)
Most of the code in the 21 functions looks the same. Since Fortran 90 is a monomorphic language,
one really cannot do much here.

e Fortran 90 does not have automatic storage management. Managing storage for the various
compression schemes of sparse arrays becomes tiresome. One major goal of the sparse library is to
experiment different kinds of data representations of sparse arrays, and the interactions between
them and the various transformational array intrinsics (reshape, cshift, etc.). The burden of
manual management of storage, and the bugs so introduced, prevents quick experimentations of
new compression schemes.

Standard ML, on the other hand, has a polymorphic type system and supports automatic memory
management. These two features along fills the above two gaps in the Fortran 90 language, and allow
one to quickly devise new ways of constructing sparse array routines. The parameterized module
facility in Standard ML further helps us prototype the sparse library. Functors in Standard ML allow
one to specify the construction of a structure (library code) based on the signature (library interface)
of other structures or functors. The construction can be applied as needed but the specification can
be checked for type correctness in advance. This allows one to automatically generate type-safe sparse
library code based on existing sparse library code.

Take the example of elementalization of the + operator above. Omne can achieve this easily in
Standard ML by the following. One first defines a signature INTRINSIC for intrinsic data type a
signature ELEMENTAL_INTRINSIC for elementalized intrinsic data type, a signature BLOCK for whole
array operations. One then specify a functor Elemental that accept structures of INTRINSIC and
BLOCK signatures and produce a structure of signature ELEMENTAL_INTRINSIC. Finally the various
different addition functions can be produced, automatically, by applying the Elemental functor to
various combinations of INTRINSIC and BLOCK structures. The following is a sample code segment.

signature INTRINSIC =

sig
type t
val + : t x t > t
val * : t x t > t
val ABS : t > t
end

signature ELEMENTAL_INTRINSIC =
sig
type t



type ’a array

val + : t array * t array -> t array
val * : t array * t array -> t array

val ABS : t array -> t array
end

signature BLOCK =

sig
type ’a array
val mapl: (’a -> ’b) * ’a array -> ’b array
val map2: (’a * ’b -> ’c) * ’a array * ’b array -> ’c array
val map3: (’a * ’b * ’c -> ’d) * ’a array * ’b array * ’c array —> ’d array
val fold: ’a * (’a * ’a -> ’a) * ’a array -> ’a
end

functor Elemental (structure B: BLOCK; structure I: INTRINSIC):> ELEMENTAL_INTRINSIC
where type t = 1.t

and type ’a array = ’a B.array
struct
type t = 1.t
type ’a array = ’a B.array
val op + = fn (A, B) => B.map2 (I.+, A, B)

val op * fn (A, B) => B.map2 (I.*, A, B)

fun ABS A = B.mapl (I.ABS, A)

end

One thing that is supported in Fortran 90 but lacking in Standard ML is the mechanism to simul-
taneously overload the + operator at the top-level to the various addition functions in the resulting
structures. But one can argue that overloading is just syntactic sugaring, and is less important than
automatic code generation in library design. More examples of parameterized library code generation
is described in the next section.

4 Mapping Fortran 90 Arrays to Standard ML

Our objectives in using Standard ML to prototype a sparse array library is to allow quick experimen-
tations of various data representation schemes for sparse arrays, and to observe their effects on the



implementation of various Fortran 90 array intrinsics (especially for the higher-rank, transformational
array intrinsics). We are not aiming at a perfect imitation of the full Fortran 90 array intrinsics in
Standard ML. The first priority is to design Standard ML functors that are parameterized by various
design decisions in the construction of a sparse library. The other priority is to model type-related
properties of Fortran 90 arrays in the prototype. We want to use the prototype to express Fortran
90-style array computation in Standard ML, and to check the array expression (now in Standard ML)
at different stages (compile-time or run-time) for conformance to various Fortran 90 rules about array
properties.

Let us address the type-related properties first. For example, Fortran 90 check the rank of an
array expression at compile-time, so we want the prototype to check this property at compile-time as
well. It causes a compile-time error to add a rank-one array to a rank-two array in Fortran 90, so the
corresponding array addition expression in Standard ML will cause a static elaboration error. Fortran
90, however, checks whether or not the two arrays are of the same shapes (and same size) only at run-
time. Therefore, the prototype should implement this check at run-time too. Syntactic sugaring, such
as operator overloading and automatic type coercion, however, will not be addressed in the prototype
and will need explicit resolutions using long identifiers (i.e., structure_name.operator_name) and
type-conversion functions.

Since the rank of an array is an elaboration-time property in the Standard ML prototype, it is
only nature to designate 7 structures for arrays with one structure for arrays of each rank. For now,
we can call the 7 structures R1, R2, ..., R7. Note that it is necessary to refer to R;_1 inside Ry because
the type of subscript operation in Ry will refer to the array type in Rx_1. The 7 structures can have
different signatures, but that will lead to code explosion since each of the functors that accept array
structures will need seven different versions just to be type-checked. With a little twist, we use a single
signature for the 7 structures, and generate the 7 structures by successively iterative applications of
an array-constructing functor. This part of the prototype code looks like the following:

signature BLOCKS =

sig
structure B: BLOCK
include BLOCK
val \ : ’a B.array * int -> ’a  array
val ? : ’a array * int -> ’a B.array
end
functor Block () :> BLOCK (* Fake scalars as arrays! *)
where type ’a array = ’a (* But let the SML type checker know!! *)
struct

type ’a array = ’a

f A
f (A, B)

fun mapl (£, A)
fun map2 (f, A, B)



fun map3 (£, A, B, O

fun fold (e, f, A)

Blocks (structure
type ’a B.array =

f (A, B, C)

Base: BLOCK; structure Indexable: VECTOR):> BLOCKS
’a Base.array

type ’a array = ’a B.array Indexable.vector

= R.tabulate (n, fn i => a)

R.sub (A, 1)

A) = R.tabulate (R.length A, fn i => B.mapl (f, A7i))

end
functor
where

struct
structure B = Base
fun \ (a, n)
fun ? (A, i)
infix 8 7
fun mapl (f,

end

structure RO
structure R1

structure R7

Block

Blocks (structure Base=R0O; structure Indexable

Blocks (structure Base=R6; structure Indexable

9)

]
~—

)

A little complication can occur because the ranks of the resulting arrays of some Fortran 90 array

intrinsic function may actually depend on the sizes of its argument arrays. For example, for any

array A of size 6, reshape (A, (/2, 3/)) will return a rank-two array of shape (/2, 3/). (Note:

(/2, /3) is the Fortran 90 notation for a constant, rank-one integer array of elements 2 and 3.) While

reshape (A, (/6/)) will return a rank-one array. Recall that size is not a static property of a Fortran

90 array. Fortran 90 solves this problem by requiring those argument arrays to be of constant sizes

(e.g., (/2, 3/) has constant size 2, and (/6/) has constant size 1), hence allows static rank-checking

of the array expression. However, it is difficult to specify and check the constant size requirement in

our Standard ML prototype because the prototype is a library, not a compiler.

Our workaround is to provide 7 different reshape functions, with one for each possible size of the

second argument:

val
val
val
val
val
val
val

reshapel:
reshape?2:
reshape3:
reshape4:
reshapeb:
reshape6:
reshape7:

array * int ->

array
array
array
array
array
array

*

* X ¥ X ¥

(int
(int
(int
(int
(int
(int

* X ¥ X X *

’a Rl.array
int) -> ’a R2.array

int * int) -> ’a R3.array

int * int * int) -> ’a R4.array

int * int * int * int) -> ’a Rb.array

int * int * int * int * int) -> ’a R6.array

int * int * int * int * int * int) -> ’a R7.array

Note that the second array argument is now realized as a tuple in the prototype.



Now let us return to the issues of using parameterized Standard ML functors to model design
decisions when building a sparse library. Perhaps the most important decision is about how the arrays
are compressed. Currently we are only experimenting various compression schemes for vectors (i.e.,
rank-one arrays) and progressively compress an array, rank after rank. (This rules out the possibility
of compressing higher-rank arrays by k-way search trees with whole array indices as keys, for example.)
However, in our design, the compression at each rank may not be the same. All compression schemes
are currently specified by the VECTOR signature (as from the SML/NJ Basis Library), but need
different implementations. The part of the code looks like:

signature FO0ARRAY =

sig
structure R1: ARRAYS
structure R2: ARRAYS
structure R3: ARRAYS
structure R4: ARRAYS
structure R5: ARRAYS
structure R6: ARRAYS
structure R7: ARRAYS
sharing type R2.B.array = Rl.array
and type R3.B.array = R2.array
and type R4.B.array = R3.array
and type R5.B.array = R4.array
and type R6.B.array = Rb.array
and type R7.B.array = R6.array
val \ : ’a * int -> ’a Rl.array (*  array constructor  *)
val \\ : ’a * (int * int) -> ’a R2.array (* array constructor  *)
val \\\\\\\ : ’a * (int * int * int *int * int * int * int) -> ’a R7.array
val ? : ’a Rl.array * int -> ’a (¥ array indexing  *)
val ?? : ’a R2.array * (int * int) -> ’a (¥ array indexing %)
val 7?77?7777 : ’a R7.array * (int * int * int *int * int * int * int) -> ’a
end
functor F90Array (structure Indexablel: VECTOR;
structure Indexable2: VECTOR;
structure Indexable3: VECTOR;
structure Indexabled4: VECTOR;
structure Indexableb5: VECTOR;
structure Indexable6: VECTOR;



structure Indexable7: VECTOR;
structure Integer: INTRINSIC where type t = int;
structure Real: INTRINSIC where type t = real;
structure Logical: INTRINSIC where type t = bool;
functor Block: fBLOCK;
functor Blocks: fBLOCKS;
functor Elemental: fELEMENTAL;
functor Arrays: fARRAYS) :> FO0ARRAY
where type ’a Rl.B.array = ’a
struct
local
structure BO = Block ()
structure Bl = Blocks (structure Base=B0; structure Indexable = Indexablel)
structure B2 = Blocks (structure Base=Bl; structure Indexable = Indexable2)
structure B7 = Blocks (structure Base=B6; structure Indexable = Indexable7)
in
structure R1 = Arrays (structure Blocks = Bl; structure Integer = Integer;
structure Real = Real; structure Logical = Logical;
functor Elemental = Elemental)
structure R2 = Arrays (structure Blocks = B2; structure Integer = Integer;
structure Real = Real; structure Logical = Logical;
functor Elemental = Elemental)
structure R7 = Arrays (structure Blocks = B7; structure Integer = Integer;
structure Real = Real; structure Logical = Logical;
functor Elemental = Elemental)
infiz 8 1 A1 ATL AR AL VAL AN
infix 8 7 ?7 7?77 7?77 7?7777 ?7??TYT PPV
val op \ = R1.\
fun op \\ (x, (a,b)) = R2.\ (x \ b, a)
fun op \\\\\\\ (x, (a,b,c,d,e,f,g)) = R7.\ (x \\\\\\ (b,c,d,e,f,g), a)
val op ? = R1.7
fun op 7?7 (A, (a,b)) = R2.7 (A,a) 7 b
fun op 7777777 (A, (a,b,c,d,e,f,g)) = R7.7 (A,a) 7?77?77 (b,c,d,e,f,g)
end
end

In the above, signature ARRAYS is similar to BLOCKS but with more detailed specification, and Arrays a
functor that produces a structure of ARRAYS signature. Notice the series of sharing type constraints

10



in signature FOOARRAY, and the additional where type assurance for the resulting FOOARRAY signature
for functor FOOArray. Chaining the 7 array structures in this way assures that arrays of different ranks
admit certain kinds of interoperability between them (i.e., the lower-rank sub-arrays of a higher-rank
array have the same implementations of lower-rank arrays.)

Also notice in the above that block B always use compression scheme Indexablej,. This need
not be the case. We can have {B;}; compressed using a permutation of the compression schemes
{Indexable;};. However, in order to specify this we need a functor that is parameterized by values
from a set of constants, and allows conditional elaboration in the functor body. (A permutation is an
array of constants 1,2,...,n, though not necessarily in the exact order). The current Standard ML
module system does not support this.

5 On-going and Related Work

We discuss here several pragmatic issues when using Standard ML as a prototyping language. In this
paper, Standard ML is a prototyping language in the sense that an expression in the source language
(Fortran 90 in this case) has a corresponding expression in Standard ML; and the operational semantics
of the source expression can be observed by evaluating the corresponding Standard ML expression. In
our usage of Standard ML as a prototype language, the smaller the semantic difference between the
source language and Standard ML, the easier the prototyping process. Our effort is greatly helped by
the facts that both Fortran 90 and Standard ML are strict and statically typed languages, and that
Fortran 90 array expressions are often written in a functional style.

One problem with this style of prototyping is that, though operational semantics of the two ex-
pressions have a direct mapping, their performance characteristics may be quite different. This effects
one’s judgment of whether or not one has reached a good prototype because performance of its coun-
terpart in the source language may be much slower/faster than the prototype. A similar problem
occurs when one wants to provide an implementation as described in the prototype using the source
language. How should the translation be done? Manual mapping is tedious and error-prone. Worst
yet, manual translation may be difficult since the prototyping language (Standard ML) often is of
much “higher-level” than the source language (Fortran 90). In general, one may have to develop an
automatic translator from the prototyping language to the source language. This task can be greatly
reduced if the prototyping language has an “open” implementation such that user-defined functions
can be hooked to the compiler/interpreter. We are evaluating the feasibility of using the “visible
compiler” of Standard ML of New Jersey, Version 109, to help the translation back to Fortran 90.

Chen and Cowie used Standard ML to prototype Fortran 90 compilers for massively parallel
machines [3]. However, our perspective of a prototyping process is quite different from theirs. They
basically used Standard ML as a high-level implementation language for compiling a program from the
source language (Fortran 90) to a program in the target language (assembly code). We use Standard
ML as both the implementation language and target language, and the “compilation process” is a high-
level source-to-source translation to be performed by the users. The eventual goal of our prototype,
which is not yet completed, will be to produce a library in the source language. In short, we design
libraries while they implement compilers.

Leroy implemented a Standard ML-like module system as a functor parameterized by the base

11



language and its associated type-checking functions [6]. The implementation is in Caml (Special

Light), a Standard ML-like language. One can say that he provided a prototype for a Standard ML-

like module system in Caml, while we provided a prototype for sparse, Fortran 90-like array intrinsics

in Standard ML. The two efforts share a similar perspective of the prototyping process and both use

Standard ML-like languages.

References

1]

2]

[4]

[5]

[6]

Jeanne C. Adams, Walter S. Brainerd, Jeanne T. Martin, Brain T. Smith, and Jerrold L. Wagener.
Fortran 90 Handbook. Intertext Publications/McGraw-Hill Inc., 1992.

Aart J. C. Bik and Harry A. G. Wijshoff. Automatic data structure selection and transformation
for sparse matrix computations. IEEE Transations on Parallel and Distributed Systems, 7(2):109-
126, February 1996.

Marina Chen and James Cowie. Prototyping fortran-90 compilers for massively parallel machines.
In Proceedings of the ACM SIGPLAN ’92 Conference on Programming Language Design and
Implementation, pages 94-105. San Francisco, California, USA, June 1992. ACM Press.

Tyng-Ruey Chuang, Rong—Guey Chang, and Jenq Kuen Lee. Sampling and analytical techniques
for data distribution of parallel sparse computation. In Eighth SIAM Conference on Parallel
Processing for Scientific Computing. Minneapolis, Minnestota, USA, March 1997. 8 pages. SIAM
Press.

John R. Gilbert, Cleve Moler, and Robert Schreiber. Sparse matrices in MATLAB: Design and
implementation. SIAM Journal on Matriz Analysis and Applications, 13(1):333-—356, January
1992.

Xavier Leroy. A modular module system. Research Report 2866, INRIA, France, April 1996.

William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery. Numerical
recipes in Fortran 90: The Art of Parallel Scientific Computing. Cambridge University Press, 1996.

12



