Optimal Processor Mapping for Linear-
Complement Communication on Hypercubes

and Their Variations

Yomin Hou
Department of Computer and Information Science
National Chiao-Tung University, Hsinchu, Taiwan, ROC
Email: ymhou(@cis.nctu.edu.tw

Chien-Min Wang
Institute of Information Science, Academia Sinica
Taipei, Taiwan, ROC
Email: cmwang(@iis.sinica.edu.tw

Chiu-Yu Ku
Avanti Technology Inc., Taipei, Taiwan, ROC
Email: cykul@avanticorp.com

Lih-Hsing Hsu
Department of Computer and Information Science
National Chiao-Tung University, Hsinchu, Taiwan, ROC
[hhsu(@cis.nctu.edu.tw

Abstract

In this technical report, we address the problem of minimizing channel contention of
linear-complement communication on wormhole-routed hypercubes. Our research reveals
that, for traditional routing algorithms, the degree of channel contention of a lin-
ear-complement communication can be quite large. To solve this problem, we propose an
alternative approach, which applies processor mapping at compile time. In this compiler
approach, processors are logically reordered according to the given communication(s) so
that the new communication(s) can be efficiently realized on the hypercube network. It is
proved that, for any linear-complement communication, there exists a reordering mapping
such that the new communication has minimum channel contention. An O(#°) algorithm is
proposed to find such a mapping for an n-dimensional hypercube. An algorithm based on
dynamic programming is also proposed to find an optimal reordering mapping for a set of
linear-complement communications. Several computer simulations have been conducted,

and the results clearly show the advantage of the proposed approach.

Keywords: Hypercubes, linear-complement communication, channel contention, proc-

essor mapping, wormhole routing.

1. Introduction

In a message-passing multi-computer, efficient schemes to move messages among
the processors are required for obtaining fast and efficient parallel algorithms. This prob-
lem is called the message routing problem. Many studies on the message routing problem
have been based on store-and-forward routing, where the message latency is proportional
to the product of the message length and the number of routing steps. Hence, most of
them have concentrated on minimizing the number of routing steps in moving messages
among processors [4], [15], [16], [17], [19], [20]. On the other hand, wormhole routing
has been widely adopted recently due to its effectiveness in inter-processor communication
[1], [2], [21]. With wormhole routing, each message is divided into a number of flits. The
header flit(s) carries the address information and governs the route while the remaining
flits of the message follow in a pipeline fashion. The pipelined nature of wormhole routing
provides two attractions. First, in the absence of channel contention, the network latency
would be relatively insensitive to the path length [9], [21]. Second, the large message
buffers for each router are obviated; only small flit buffers are required [21].

However, channel contention can have a severe impact on the network latency of
wormhole routing. Channel contention happens when multiple messages simultaneously
use the same channel in their routes. If £ messages are contending for the same channel,
only one of them can reserve the channel and be forwarded through it. The other messages
have to wait until the channel is released and then contend for it again. In the worst case,
the network latency will become 4 times. Hence, an important issue on wormhole-routed

parallel computers is to minimize channel contention between messages. Many studies

have tried to improve the adaptability of routing algorithms to solve the contention prob-
lem [5], [7], [10], [11], [14], [21]. However, this approach requires extra hardware sup-
port, such as buffer space and control logics. Moreover, the complexity of adaptive
routers significantly increases their inter-router setup delay and flow control cycle times
[6]. Consequently, the claims of performance advantages in channel utilization may not be
able to be balanced against losses on achievable implementation speed. For these reasons,
we try to solve the contention problem by compiler approaches rather than routing algo-
rithms at run-time.

In this report, we focus on the problem of minimizing the channel contention of lin-
ear-complement communication on wormhole-routed hypercubes. The hypercube is one of
the most efficient networks for parallel computation. It can efficiently simulate any other
network of the same size. In particular, the N-node hypercube can simulate any O(N)-node
array, binary tree, or mesh of trees with only a small constant factor slowdown [13]. Fur-
thermore, it is complete symmetric and decomposable into sub-hypercubes [22]. These
properties, in addition to its simplicity, make it be an excellent and popular architecture for
distributed memory parallel computers [1], [2].

Linear-complement communication (LCC) is a class of communications where the
address bits of the destination of each message are linear combinations of the address bits
of its source and their complements. Many important problems, like fast Fourier transform,
matrix transposition, polynomial evaluation, etc., can be effectively solved on parallel com-
puters, which have an efficient scheme to support this type of communications. To
minimize the channel contention of LCC, we adopt a new approach that applies processor

mapping at compile time. In the compiler approach, processors are logically rearranged

according to the given communications before the executable code of the given parallel
program is generated. In this way, no extra data movement will be incurred. By appropri-
ately rearranging the processors, the new communications can be efficiently realized on the
hypercube network. It can be proved that, for any LCC, there exists a reordering mapping
such that the new communication has minimum channel contention. An O(#°) algorithm is
proposed to find such a mapping for an n-dimensional hypercube. For a parallel program
containing more than one LCC, a dynamic programming algorithm is proposed to find an
optimal reordering mapping. With these results, compiler techniques can be used to mini-
mize the channel contention of LCCs on hypercubes. In addition, only the e-cube routing
is assumed in the proposed approach, and no extra hardware is needed. Therefore, it is of
practical use. Experiments based on computer simulation have been conducted, and the
results clearly show the advantage of the proposed approach.

Related researches for store-and-forward interconnection networks have been re-
ported. Most of them focused on subsets of LCC, such as linear-complement permutation
(LCP) and bit-permute-complement permutation (BPC). For example, Boppana and
Raghavendra [4] considered LCPs on hypercubes, Nassimi and Sahni [19], [20] dealt with
BPCs on meshes and hypercubes, and Masuyama [16], [17] dealt with BPCs on chordal
rings and hypercubes. However, none of these methods can be applied to /in-

ear-complement scatter (LCS) or linear-complement gather (LCG). Lin and Wang [15]

: o s .
considered another set of communications represented by (dj -mask formalism. Though

this representation scheme can encode a broad class of communications, it still can not

represent a LCS or LCG with a single (fzj -mask. All the above researches tried to give

efficient routing algorithms. Hence, they require new-designed hardware and can not be
applied to existing parallel computers. Moreover, these researches aim at minimizing the
number of routing steps, and are not suitable for wormhole-routed networks.

The rest of this report is organized as follows. Section 2 introduces the notations and
definitions. In Section 3, we describe the compiler approach. Some properties and an al-
gorithm of processor reordering mapping are presented in Section 4. In Section 5, a dy-
namic programming algorithm is proposed for a set of LCCs. Section 6 shows the experi-
mental results based on computer simulation. In Section 7, we show the method to apply
the processor mapping approach for performing LCCs on SCI Origin 2000. Finally, con-

clusions are given in Section 8.

2. Background

When a communication is performed, messages are generated by a set of source
nodes and transmitted through the interconnection network to their destination nodes. The
communication latency is the interval from the time the source nodes begin to send mes-
sages until the last destination node has received the message. If some of the paths for
transmitting these messages contend for the same channel, then the communication latency
will be increased. The more paths contend for the same channel, the longer communication
latency is required. Therefore, the maximum number of paths contending for the same
channel has a severe impact on the communication latency. Let the degree of channel con-
tention for a communication be defined as the maximum number of paths contending for
the same channel. In this report, we consider the problem of performing LCC on a hyper-

cube computer with the e-cube wormhole routing capability. Our goal is to minimize the

degree of channel contention so that LCC can be performed efficiently. In this section, the

definitions and notations of these terminologies will be clarified.

2.1 The hypercube network

An n-dimensional hypercube is a directed graph which contains N = 2" nodes and
nx2" channels. Each node corresponds to an n-bit binary string, b,.16,...b1by. We shall use
a binary vector [b b, ... b,.] to represent it. Two nodes are connected with a pair of
channels, one for each direction, if and only if their binary strings differ in exactly one bit.
As a consequence, each node is incident to » other nodes through » different channels, one
for each bit position. The channel from node x to x' is denoted by (x, x'), and said to be at

dimension & if x and x' differ in the Ath bit position.

2.2 Linear-complement communication

The messages generated when performing a communication operation usually can be
formulated by some specific pattern. For example, in the bit-reverse communication op-
eration, the source and destination nodes of each message can be represented by [xo x; ...
Xp1]' and [xX,1 Xn2 ... Xo]', respectively. In what follows, we will define the class of lin-
ear-complement communications on an n-dimensional hypercube. The addition and
multiplication in this subsection are modulo-2, i.e., they are defined in the finite field, GF(2)

[18].

Definition 1: A communication is a linear-complement communication (LCC) if there ex-
its a binary matrix 4,, and an n-dimensional binary vector b such that, for every message

with source node x, its destination node y is given by the equation y = Ax+b.

Definition 2: A LCC with a binary matrix 4,x, and an n-dimensional binary vector b is a

linear-complement permutation (LCP) if A,x, 1s non-singular, 1.e., rank(4) = n.

Definition 3: A LCC with a binary matrix 4,x, and an n-dimensional binary vector b is a

linear-complement gather (LCG) if rank(A4) <n.

Scatter, the dual operation of gather, can be implemented by simply reversing the di-
rection of message transmission of gather. Thus, we can define linear-complement scatter

as follows.

Definition 4: A communication is a linear-complement scatter (LCS) if there exists a bi-
nary matrix A, rank(4,x,) < n, and an n-dimensional binary vector b such that, for every

message with destination node y, its source node x is given by the equation Ay+b= x.

Example 1. The bit-reverse communication operation on an 8-dimensional hypercube is a

linear-complement communication,

Yo
Wi
Y2
Yi| =
Y4
Vs
Vs
Ya

— o

o~ w [~
+

()

[eN

—_ O O O O O o O
O = O O O o o O
S O = O O O O O
S O O = O O O O
S O O O = O O O
S O O O o = O O
S O O O o o = O
S O OO o D
LT s R o SRR o SR o SE o S S o
=lelalel el ol el

-

T
L
T
L
T
L
T
L

For any source-destination pair (x, y) in a LCC defined above, to obtain the address
of y is equivalent to performing a linear transformation of the n-dimensional vector space
on x and then adding a constant binary vector. Since there is an one-to-one correspon-

dence between the nxn binary matrices and linear transformations on an n-dimensional

6

vector space over GF(2), we shall utilize this property in the following sections.

2.3 Routing strategies

The interconnection network must allow every node to send messages to every other
node. In the absence of a complete network, we need a routing algorithm to determine the
path selected by a message to reach its destination. Efficient routing algorithms are critical
to the performance of the interconnection network.

The e-cube routing algorithm is the simplest deadlock-free routing strategy on
wormhole-routed hypercubes, which reserves the required channels in a strictly increasing
order of dimensions. It allows messages to be forwarded only over channels at higher di-
mensions than that of the last traversed channel. Many current hypercube computers use
the e-cube routing because of its simplicity and ease of implementation. However, the
e-cube routing establishes only one shortest path between each pair of source-destination
nodes, and does not take the advantage of the flexibility provided by hypercubes.

Fully adaptive routing strategies can route messages along any of the shortest paths
available in the hypercube network. Unfortunately, multiple channels are needed for a pair
of neighboring nodes in order to help these strategies prevent deadlock. This means that
extra hardware supports, such as buffer space and control logics, have to be added to the
routers. Some partially adaptive routing strategies without the need of multiple channels
have been proposed, such as [5], [7], [11], and [14]. Although they can better utilize the
flexibility provided by hypercubes, the complexity of adaptive routers significantly in-

creases the inter-router setup delay and flow control cycle times [6].

Furthermore, even though a partially adaptive routing strategy is used, our simula-

tion results reveal that the average network latency grows much more rapidly than ex-
pected as the network throughput increases. This limits the utilization of the communica-
tion capacity of an interconnection network. For example, when the adaptive routing
strategies in [7] or [14] is used, the throughput of performing bit-reverse on an
8-dimensional hypercube is always less than 1/8 of the communication capacity of the hy-
percube network. The main reason for the poor performance is that there exists a set of 8
source-destination pairs contending for the channel (000100 00],[0000 000 0]).
Similar conditions also happen when performing matrix-transpose or reverse-flip. The
adaptive routing strategy in [11] also suffers from similar problems when performing ma-
trix-transpose or bit-reverse.

From the above discussions, it is shown that the adaptive routing algorithms can not
appropriately solve the contention problem for performing LCCs on hypercubes. Hence, in
this report, we propose a compiler approach called processor mapping to minimize the
channel contention. The hypercube network is assumed to support only e-cube routing.

Thus, no extra hardware is needed and the proposed approach is of practical use.

3. The Compiler Approach

In the proposed compiler approach, the communications to be performed in a paral-
lel program can be detected by compilers automatically or specified by programmers.
These communications will be transformed into the matrix form for the optimization proc-
ess. Next, according to the given communications, an optimal processor mapping is de-
termined. The compiler then can generate the SPMD (Single Program Multiple Data) node
program for each processor accordingly. By appropriately choosing a processor mapping,

8

the new communications can be efficiently realized on the hypercube network.

As an example, consider executing the parallel loop show in Fig. 1(a) on hypercubes.
The function reverse(i, n) returns the bit-reverse of i, i.e., reverse(i, n)= ipx2" ™+ i;x2"+...
in.2x2+ in.1, for the loop index i=in.1x2" '+ inox2"?+... i;x2+ i. If array elements b[i] and r[i]
are distributed on processor P;, and the task of executing iteration i is also assigned to
processor P;, then the compiler can determine that the communication to be performed is
bit-reverse and transform it into the matrix form as shown in Example 1. The SPMD node
program without processor mapping can be generated as shown in Fig. 1(b) for compari-
son.

With processor mapping, the compiler has to determine an optimal one-to-one map-
ping function f according to the given communication. The function f maps virtual proc-
essor x onto physical processor x'=f(x). From the view point of virtual processors, data
distribution and iteration assignment remain unchanged; i.e., array elements b[i] and r[i] are
distributed on virtual processor VP; and the task of executing iteration i is also assigned to
virtual processor VP;. The only difference is that virtual processor VP; is now mapped onto
the physical processor Py;. Accordingly, the SPMD node program for each processor can
be generated as shown in Fig. 1(c). Though the communication to be performed between
virtual processors is still bit-reverse, the one between physical processors is changed. It
will be proved in the next section that the degree of channel contention can be reduced by
appropriately choosing the mapping function f. The algorithm of finding an optimal map-
ping function will be also proposed in the next section.

Since sending and receiving of data can be accomplished by hardware as shown in

Fig. 1(b), the only overhead of the program shown in Fig. 1(c) at run-time is the mapping

real b[2", r[2"]

doall i = 0 to 2"-1 do
b[i] = r[reverse(i,n)]

enddo

(a) An example parallel loop.

real b_local, r_local
i = get_pid()
send(reverse(i,n), r_local)

receive(reverse(i,n), b_local)
(b) An example SPMD node program.

real b_local, r_local

y = get_pid()
send(f(reverse(f'l(y),n)), r_local)
receive(f(reverse(f'l(y),n)), b_local)

(c) An example SPMD node program for mapping f.

real b_local, r_local

int to_virtual[2"], to_physical[2"]

i =v_get pid() /* v_get_pid() returns to_virtual[get_pid()] */
v_send(reverse(i,n), r_local) /* v_send(v_pid, data) calls send(to_physical[v_pid], data) */
v_receive(reverse(i,n), b_local) /* v_receive(v_pid, data) calls receive(to_physical[v_pid], data) */

(d) An alternative SPMD node program for mapping f.

Fig. 1. An example parallel loop and its corresponding SPMD node programs.

between virtual processors and physical processors. This overhead can be minimized as
array indexing operations as shown in Fig. 1(d). Apparently, this overhead is far less than
the communication latency and, therefore, can be neglected. Note also that the SPMD
node program shown in Fig. 1(d) is very similar to the one shown in Fig. 1(b) except that
the functions get_pid(), send(), and receive() in Fig. 1(b) are replaced by the functions
v_get_pid(), v_send(), and v_receive(), respectively. This property makes code generation

with processor mapping much easier. In addition to generating the node program, the

10

compiler has to determine an appropriate mapping function and set up the two mapping
arrays to_virtual[] and to_physical[] for use in the node program.

Another issue arises when more than one communications will be performed in a
parallel program. Our approach is to search for an optimal processor mapping for all the
communications. We shall propose a dynamic programming algorithm for that purpose in
Section 5. Another approach is to perform processor re-mapping at run-time. However, it

may result in significant overhead at run-time. Thus, it is not considered in this report.

4. Processor Mapping

First, we shall show that the degree of channel contention for a LCC is directly re-
lated to the ranks of sub-matrices of the binary matrix A of the LCC. A sub-matrix of the
binary matrix 4 is the matrix obtained from A by retaining entries in some row(s) and col-
umn(s) and deleting other entries. We shall use 4, to denote the ith row of 4 and 4” to
denote the ith column of 4. The following definition defines the special sub-matrices and

their notations to be used in this report.
Definition 5: A sub-matrix of the binary matrix A obtained by retaining rows in the set R
and columns in the set C is denoted as Axc.

We shall use L, to denote the set of non-negative integers smaller than i. Therefore,

given integer 7 and j, ALi,Lj is the upper-left sub-matrix of 4 with 7 rows and j columns.

Example 2 shows the sub-matrix 4; , of a4x4 matrix 4.

11

a0,0 aO,l a0,2 a0,3
a0,0 aO,l
- al,O al,l al,Z a1,3 .
Example 2. Given A= , 4, , 1isequalto |a,, a, | mi
3-52 > >
Cl2 0 Cl2 1 a2,2 Cl2 3
a2,0 aZ,l

Theorem 1: Given a LCC y = Ax+b, the maximum number of paths that contend for the

same channel at dimension 7, denoted as 7(4,), can be determined as follows,

, when x, = y,

0

, otherwise.

Proof: For any channel /= ([zoz1 ... z; ... Zo1], [20 21 ... Z, ... z,1]') at dimension 7, suppose

that / is in the path from node x= [xo X; ... X,.1]' to node y= [Jo y1 ... yn1]' according to the

e-cube routing, then we have [x; x;+1 ... X,1] = [2i 21 ... Zoa] and Yo y1 ... v = [20 21 ... Zia

z.]". Since y=Ax+b, we have

Yo Zy oo Aoy 00 Ao | X Ao; oz 0 Qo | Z b,
B4 Z iy diyp ot g || X Ay Ay 7 Q|| 2 b,

D= L= L A
Yi Z; Ao diy o G || X a,; Qg ina | 200 b,

Note that the number of paths contending for channel / is equivalent to the number
of solutions of [xy x; ... x.1]". According to Linear Algebra, either there is no solution, or

rrak(A0) distinct solutions satisfying the above set of equations.

there are exactly 2
Note also that no solution means no path passing channel /. Hence, for all channels at di-

mension 7, there is no solution if and only if y,=x;. In all other cases, there exists a channel

—rank(ALi+l I)

at dimension 7 such that exactly 2 paths contend for it. mi

The above theorem shows that the degree of channel contention is determined only

12

by the ranks of sub-matrices of the binary matrix 4. As an example, we shall compute the
degree of channel contention of matrix-transpose on an 8-dimensional hypercube accord-

ing to Theorem 1.

Example 3. Consider the matrix-transpose communication on an 8-dimensional hyper-

cube,

Yo
b
V2

— o

+

Vi
Vs
Vs
Y7]

() EN

[eN

=
W
I

S O O = O O O O
S O = O O O O O
(R =R e i e i e B e B e
—_ O O O O O o O
S O OO o D
S O O O O o = O
S O O O o = O O
S O O O = O O O
LS SR o SR o SR o SRS o SR S o
=lelalel el ol el

-

T
L
T
L
T
L

According to Theorem 1, the degree of channel contention at each dimension can be
computed as follows: 7,=2""=1, T1=2""=2, T,=2*"=4, 7:=27'=8, T,=2"'=8, T;=2""=4,

7x=25°=2 and 75=2""=1. O

Definition 6: The degree of channel contention of a LCC y=Ax+b is defined to be

MAX{T,(4,b)} and denoted by 7(4,b).

0<i<n-1

To minimize 7(A4,b), the binary matrix A must be "changed" and, at the same time,
the LCC must be correctly performed. To meet these two requirements, we propose an
alternative approach, called processor mapping. In this approach, processors are logically

reordered by a linear or reordering mapping, which are defined formally as follows.

Definition 7: A processor mapping is said to be a linear mapping if there exists a binary

13

matrix (,x, such that, for every node x, it is mapped to node x’ = Ox.

Definition 8: A processor mapping is a reordering mapping if it is a linear mapping and

the matrix () is a permutation matrix, i.e. each row and column of O has exactly one 1.

Reordering mapping has the property that the neighboring relation of processors is
kept unchanged after processors are reordered. Since the communication between neigh-
boring processors is the most frequently used class of communications, this property
provides a great advantage for practical use. In order to ensure that the LCC will be per-
formed correctly, the communication after processor reordering mapping must be changed

as shown in the following theorem.

Theorem 2: Given a LCC with a binary matrix 4 and a binary vector b, the new commu-
nication after the reordering mapping with a permutation matrix Q is a LCC with a binary

matrix OAQ 'and a binary vector Ob.

Proof: Fig. 2 provides a good explanation for this theorem. For a source node x in the
LCC with A4 and b, the destination node y can be computed by the equation, y=Ax+b. Af-

ter reordering mapping by O, we have x'=0Ox and)'=Qy. Since O is non-singular, we can

x —»Q x'=0
(4.5) (QAQ™.0b)
y=Ax+b —>Q y’:QAQ'lx’+Q

Fig. 2. The new communication after reordering mapping QO for y=Ax+b.

14

derive x=0"'x'. Hence we have y'= Qy= Q(Ax+b)= 04 (0" O)x + Ob= QA0 'x' + Ob. O

In other words, the degree of channel contention after the reordering mapping is
now determined by QAQ™. By choosing an appropriate processor mapping O, the degree
of channel contention could be greatly reduced. In the following discussion, we will show
how to find an optimal reordering mapping for a LCC. First, notice the special situation in
Theorem 1 that 7(A4,5)=0 at dimension 7. It only happens when y,=x; for all x, 1.e., A,=1;
and b=0, where / is the identity matrix. Since 7(A,b)=0 means no communication at di-
mension 7, we wish to keep it unchanged when performing processor mapping. It can be
accomplished by applying an reordering mapping O, which moves the ith row of 4 to the

last dimension, before searching for an optimal mapping. Hence, the ith row and column in

A will be moved to the last dimension in QAQ™". Since [QAQ’1 JLH)LH = A, gy, and
T,.(QAQ™, Ob) = T(A, b)= 0, we can just consider the sub-matrix A; gy gy When

minimizing channel contention of 4. Without loss of generality, we may assume 74(4,5)>0

for 0<i<n-1 in the following discussion.

Theorem 3: Consider an LCC, y = Ax + b, on an n-dimensional hypercube. If O,, is a

non-singular matrix, then 7(QAQ™, Ob) > 277",
Proof: Let B= QAQ"'. From Theorem 1, 7,.(QAQ", Ob)= 2") ince

MAX {1 —rank ([QAQ’1]Lm .)}2 n—1- rank(BLH L)2 n-1-rank(4), it can also be ob-

0<i<n-1

tained that 7(QAQ™, Qb) > 27", _

Theorem 4: For any non-singular binary matrix 4,., there exists a permutation matrix

15

O,xn such that rank([QAQ"I]) = i for 0<i<n-1.

Lis L
Proof: The proof of this theorem is by mathematic induction on the integer i. Obviously, it

is true for /=0. Suppose that it is true for 0<i<k. There must exist a permutation matrix Q

such that rank([Q4Q™]) = i for Osisk.

Lis L
We shall prove that it is also true for 0<i<k+1. Note that

Y=k.

L1 Ly

(k+1)2rank([040™'] ; y2rank(|040™' | ; y2rank(|0A0™]

If rank([QAQ™|)#k+1, it must held that

r+2-Lin

rank([QA0™'])=rank([0407] Y=k.

Liva> Ly Li1-Lin

Since 4 is non-singular and Q is a permutation matrix, we have rank(QAQ™") = rank(4) =

n. This means the columns in QAQ" are linearly independent. Hence, we have

rank([QAQ‘I]L »)=k+1. In other words, there must exist a row j=k+1 that is linearly

independent of rows O to & in [QAQ’I] . Let Q be the permutation matrix ex-

Ly> Ly

changing rows j and k+1. Accordingly, Q"l must be the permutation matrix exchanging

column j and A+1. We can derive rank([Q(QAQ‘1)é‘l]L) = i for 0<i<k, and

+1>51

rank([Q(QAQ-1)Q-l] PR

Since (QQ)_1 =070, it can be derived that

rcmk([(éQ)A(@Q)_l}) — i for O<i<k+1.

Liv-Ly

Since (QQ) is also a permutation matrix, this theorem is true for 0<i<k+1. Therefore, by

16

induction, this theorem is true for 0<i<n-1. This completes the proof of this theorem. mi

Corollary 1: For any LCP, there exists a reordering mapping such that the new commu-
nication has no channel contention.

Proof: This corollary can be derived from Theorem 1 and Theorem 4. mi

Following the method in the proof of Theorem 4, we can design an algorithm, as
shown in Fig. 3, to find an optimal reordering mapping for any LCP. The input of the al-

gorithm, LCP_Optimizer, is a LCP y=Ax+b, and the outputs are the optimal reordering

/* Given: a LCP, y=Ax+b, where A is a nxn matrix and b is a vector.
Goal: find an optimal reordering mapping Q and the new communication y'=Dx’+d, where D:QAQ'1 and d=Qb.

Initial values for Q, D, and d: Q=I, D=A, and d=b. */

1. LCP_Optimizer(GF_Matrix A, GF_Vector b, GF_Matrix Q, GF_Matrix D, GF_Vector d){

GF_Matrix V=D; /* V will be used for finding independent rows. */
GF_Vector R=0; /* To mark independent rows. */
4. inti, j, k;
5. for(i=0; i< n-1; i++){ /* At the beginning of iteration i, D has already been optimal for dim<i and will be

optimized for dim=i+1. */

6 for(j=0; j<n; j++) /* To find a new independent row in sub-matrix Dy g+1). */
7 if(V[j][i]'=0 && R[j]==0) break;

8. if(j>i+1)1 /* The new independent row is not in Dy +2),L+1), S0 move it in. */
9 RowSwap(D, i+1, j); ColSwap(D, i+1, j); RowSwap(d, i+1, j);

10. RowSwap(V, i+1, j); ColSwap(V, i+1, j); RowSwap(R, i+1, j);

11. RowSwap(Q, i+1, j);

12. j=itl;

13. }

14. for(k=0; k<n; k++)

15. if(k!'=j && VIK][i]'=0) RowSub(V, j, k); /* V[k]= VIK] - V[j] */

16. R[j]=1;

7.}

18. }

Fig. 3. The proposed algorithm for finding an optimal reordering mapping for a LCP.

17

mapping O and the new LCP y'= Dx'+d, where D= QAQ" and d— Ob. At the beginning of
LCP_Optimizer, D, d, and QO are set to 4, b, and [, respectively. By appropriately ex-
changing the rows and the columns, the desired new LCP can be obtained. An important
work of LCP_Optimizer is to find a set of linear independent rows in some sub-matrix of
D. In order to do that efficiently, a matrix V" is used to find linearly independent rows in a
way similar to Gaussian Elimination, and a vector R is used to mark those rows. R[j] set to
1 means the jth row of some sub-matrix of D is linearly independent, and so is the jth row
of the corresponding sub-matrix of V. Initially, }"is set to D and R is set to 0. During the
processing of LCP_Optimizer, Rank(DLP)Lq)= Rank(VLP)Lq) for any p, ¢q.

The loop from line 5 to line 17 is the main part of LCP_Optimizer. At the beginning

of iteration i, D has already been optimal for those dimensions less than or equal to 7, i.e.,

Rank(D, ,)= Rank(V, ,)=r for 0<r<i, and will be optimized for dimension (i+1). In
the meaning time, the selected linearly independent rows of V), , are all in J; , and

marked by R. Each of those rows contains only one 1 and the other elements are 0. All the

other rows in V, , are zero rows. Hence, to find a new linearly independent row in

DL L

noi+l

and V; ; , we only need to examine column i of J; ; ~ and R as shown at lines
6 and 7. If row j is the newly found independent row and j>i+1, it will be exchanged with
row (it1) so that Rank(D, ,)= Rank(V, ,)= it+1. The required row and column ex-
changing operations are done from line 8 to line 13. At the end of iteration i, except the

newly found independent row, all the other elements in column 7 of V, ; will be cleared

to 0 by subtracting from the new independent row as shown at lines 14 and 15. Therefore,

J will be ready to be used in the next iteration. Since each row or column operation takes

18

O(n) execution time, the complexity of LCP_Optimizer can be proved to be O(1").

Example 4. Consider the matrix-transpose communication on an 8-dimensional hypercube
as shown in Example 3. From Fig. 3, we can compute the optimal reordering mapping Q

and the new LCP as follows.

_ _ T -
bt
y;
;the new LCPis |y; |=
Vi
¥
Ve
¥;

S O OO o D
S O O = O O O O
S O O O o = O O
(R =R e i e i e B e B e
S O O O O o = O
S O = O O O O O
S O O O = O O O
—_ O O O O O o O
S O O O O o = O
S OO O o DO =
S O O O = O O O
S O O O o = O O
S O = O O O O O
S O O = O O O O
— O O O O o o O
(R =R e i e i e B e B e
\]R\ QR\ u‘k\ §<\ w&\ NR\ j<\ OR\
S O O O o o o O

The degree of channel contention at each dimension for the new LCP becomes
T=T\=T,=T5=T=Ts=Ts=T+=2"=1. Compared with Example 3, the degree of channel con-

tention is greatly reduced from 8 to 1, i.e., contention-free, by the reordering mapping. 0O

Theorem 5: For any binary matrix 4,.,, rank(A.x,) < n, there exists a permutation matrix

Onen such that i - rank([0AQ™])<(n - 1) - rank(4) for 0<i<n-1.

Proof: Since rank(A,x,) < n, there exists a column j in 4 such that column j is a linear
combination of other columns. Let P be the permutation matrix exchanging rows j and n-1.
Accordingly, "' must be the permutation matrix exchanging column j and n-1. Let
B=PAP"', we have rank(B, ,)= rank(B) = rank(4).

In the following, we will prove that there exists a permutation matrix (J such that

i-rank([OBO™|)< (n-1)-rank(B, ,) for 0<i<n-1

i+l i

The proof is by mathematic induction on the integer 7. Obviously, it is true for i= n-1.

19

Suppose that it is true for £<i<n-1. There must exist a permutation matrix Q such that

i-rank(|OBO™|)<(1-1)-rank(B, ,) for ksi<n-1.

We shall prove that it is also true for k-1<i<n-1. Consider i=k-1 for the matrix OBQ"™".

If (k-1) - rank([OBQ™|) >(n-1)-rank(B, ,), it must be held that

(k-1) - rank(|OBO™ | L)> k- rank(loBO™]).

L1 Ly

That is rank([OBQ™'|) - 1> rank([OBQ™]). So we can derive

rank([OBO™ |,) > rank(loBO™|, L) and k-1 > rank(loBO™]).

Ly Ly

This means in [QBQ*1]L . the column (4-1) is linearly independent of other columns

and there must exist a column j, 0<j<k-2, which is a linear combination of other columns.
Let Q be the permutation matrix exchanging rows j and k+1. Accordingly, Q"l must be

the permutation matrix exchanging column j and 4+1. We can derive

i - rank(|0(0BO™ 0|)<(n - 1) - rank(B,_,) for ksi<n-1, and

(k-1) - rank([Q(QBQ*1)éi1]L L

ko k-1

) = (k-1) - rank([OBQ""]Lk)Lk)

<k-rank([0BO™|)
<(n-1)-rank(B, ;).

Since (QQ) is also a permutation matrix, the inequality is true for A-1<i<m-1.

Hence, by mathematic induction, it can be proved that there exists a permutation matrix Q

20

such that 7 - rank([QBQ"l]L_ .)S(n - 1) -rank(B, ,) for 0<isn-1. Therefore,

i - rank([Q(PAP*)Q-I]L_)<= 1) - rank([PAP™]) for OSi<n-1.

L,.L
In other words,

i - rank([(QP)A(QP)_I] (- 1) - rank(4) for Osisn-1.

i+ i

Since (QP) is also a permutation matrix, this completes the proof of Theorem 5. mi

Corollary 2: For any LCG or LCS, the new communication with the reordering mapping
in Theorem 5 has minimum channel contention.

Proof: Given a LCG or LCS with binary matrix 4,,, for any reordering mapping O,

MAX i - rank((0A07],)iz (n-1)-rank(4).

0<i<n-1

From Theorem 5, there exists a permutation matrix Q, such that

i—rank ([QAQ -]L,-H,L,-)S (n-1)-rank(A) for 0<i<n-1.
Therefore, by Theorem 5, we can find an optimal reordering mapping such that the new

communication has minimum channel contention. O

Similar to LCP_Optimizer, an algorithm for LCS/LCG can be easily derived follow-

ing the method in the proof of Theorem 5. It is omitted here to save the space.

5. Processor Mapping for a Set of LCCs

From the above section, we can find an optimal reordering mapping for any LCC.
However, there are probably more than one communications in a parallel program. For
efficiently executing such a parallel program, we have to deal with the problem of per-

21

forming a set of LCCs. An example for a set of LCCs is given below, which shows some

frequently used subroutines that may be in a library for image processing, including image

rotation, reflection, FFT, etc.

Example 5. Suppose a 16x16 image is distributed on an 8-dimensional hypercube such

that the pixel at coordinates (px, py) is on the node (pyx16+ px). Some frequently used

subroutines for processing such an image are shown as follows.

1.

To reflect on the diagonal, each pixel (px, py) has to be moved to new position (py,
px), i.e., to be sent from node (pyx16+ px) to (pxx16+ py). The communication on
the hypercube is a LCC, y= A;x+b;, which is the matrix transpose shown in Example
3. Similarly, to reflect on the line py= 15-px, the required communication is y=A4x+
[11111111];to rotate 90° clockwise, the required communication is y=A4x+ [1
11100 00]; and to rotate 90° counterclockwise, the required communication is

y=Ax+[00001111].

To reflect on a vertical line, each pixel (px, py) has to be moved to new position
(15-px, py). The required communication is y= Ix+[1 1 1 1 0 0 0 0]". Similarly, to re-
flect on a horizontal line, the required communication is y= x+[0 0001 1 1 1] to
rotate 180°, the required communicationis y=Ax+[1 111111 1].

To scale the lower-left 8x8 sub-image by factor 2 along both of the axes, each pixel
(px, py) in the sub-image has to be sent to four new positions (2px, 2py), (2px+1, 2py),

(2px, 2py+1), and (2px+1, 2py+1). The required communication is a LCS,

22

Yo
N
Ya
Y3 +
Ya
Vs
Y
V7]

w

o

O OO o oo o0

O OO o oo o0

o oo = O O OO

SO = O oo oo

O = O O o o OO

O OO o oo o0
|

O OO O oo o =
O OO oo O =0
=lelalleNeN ==

Lo TR S SR - S S o

-

4. Consider those pixels of the image to be 256 discrete data and perform 1D FFT on

these data. In addition to the neighboring communications, a bit-reverse communica-

tion is required [8], [12]. The bit-reverse communication, y=A4sx+bs, is the one shown

in Example 1.

5. To perform 2D FFT on the image, the process is to perform 1D FFT for each row of

the image and then perform 1D FFT for each column of the image [12]. For perform-

ing 1D FFT on each row of the image, in addition to the neighboring communications,

the bit-reverse communication for the rows is required. Similarly, for performing 1D

FFT on each column of the image, the bit-reverse communication for the columns is

required.

Yo
36!
Y,
s
Ya
Vs
Ys

Y7]

SO O OO = OO

They are shown as follows.

Yo
36!
Y,
Vi |=
Ya
Vs
Ys
Vs

R
R

S
S

N
N

w
w

o
o

S OO = o oo

o o= O O O OO

O = O O o o OO

- o O O O o o O
+

O OO o oo o0

|

- o O O O o o O

o= O O O O o0

SO = O oo oo

S OO = o oo
+

O OO o oo o0

O OO O oo o =
=l el el el ==l i]
=lelalleNeN ==
SO O OO = OO

O oo o o= OO
O OO oo O =0
O OO O oo o =
Fa R TS K - S S o4
Fa R TS K - S S o4

-
-

O

Since a reordering mapping that is good for some LCCs may be harmful for others,

our goal is to find a reordering mapping that is good enough for all the LCCs to be per-

formed in a parallel program. For different applications, the objective functions of optimi-

23

zation may also be different. Let y= A,x+b,, 0<r<m-1, be the m LCCs to be performed. In
some applications, these LCCs are in different subroutines that will be called dynamically.
Example 5 shows one of such applications. Since we can not determine at the com-
pile-time which and how many times the subroutines will be called, a reasonable choice is

to minimize the maximum channel contention of these subroutines. That is to minimize

MAX (T (4,,5,)) In some other applications, those LCCs may require to be performed

0<r<m-1

simultaneously. Such a situation may happen when messages are scatter-gathered among
processors. Sometimes, the interference between different communications may also lead
to this situation. Since those LCCs are performed simultaneously, it is appropriate to

minimize MAX{S UM (T (4.,b

0<isn—1 0<r<m

))}. There are other possible concerns, such as to mini-

>y

mize SU]\/[{SU]\/I(T (4.,b

0<i<n—-1 0<r<m

))}. In this section, we propose an algorithm to find an

>y

optimal reordering mapping based on the dynamic programming approach. The concept of

dynamic programming can be applied to any of the three objective functions in a similar

way. Without loss of generality, we focus on the problem of minimizing MAX (T (4,,5,))

0<r<m—1

i.e., finding an optimal reordering mapping Q) that minimize

Z\/MX{MAX{I - mnk([QA 0], .)}} |

0<r<m-1 | 0<i<n-1

Though this problem can be solved by an exhaustive search on all possible reordering ma-
trices, the large number of all possible reordering matrices, n!, makes such a solution un-
feasible for a large hypercube computer. Therefore, we present an algorithm based on the
technique of dynamic programming to reduce the search space.

Since the matrix () is a permutation matrix, there is a one-to-one correspondence

24

between reordering mapping and the order of address bits. We shall use R(S) to denote an
optimal ordering of the address bits in the set S. In other words, R(S) define an optimal
reordering mapping for [A4,]ss, 0<r<m-1. For example, the corresponding order of address
bits for the reordering mapping O in Example 4 is R(Ls) = (0,4,2,6,1,5,3,7).The following
theorem provides the theoretical foundation for applying dynamic programming to reduce

the search space.

Theorem 6: There exists an address bit j in S such that (R(S - {j}), j) is an optimal order-
ing of address bits for [4,]ss, 0<r<m-1.

Proof: Let s be the cardinality of S. Suppose that j is the last address bit of R(S). Thus, the
maximum number of channel contention at dimension s-1 must be the same for R(S) and
(R(S - {j}),)). Since R(S-{;j}) 1s optimal for [A4,]s.¢3.5.¢3, (B(S - {j}), j) 1s optimal for [4,]ss

at dimensions O to s-2. Therefore (R(S - {j}), /) must be an optimal reordering for [4,]ss. O

According to Theorem 6, we can designate R(S) as an optimal ordering chosen from
(R(S - {i}), i) for all i in .S and find R(L,) by computing R(S) for all subsets SC/,. The
computing of R(S), for SCL,, can be performed according to the cardinality of S in in-
creasing order. For any SC/,, the number of searches is equivalent to its cardinality.

Therefore, we can compute the total number of searches as follows.

zn:k-C,f :in-C,f__f =n-2""

k=1 k=1
It can be observed the search space is reduced from n! to n-2"". Fig. 4 gives the concept
for computing R(L4). Since the running time for computing each case in the search space is

O(mxn’), the running time for computing R(L,) is O(mxn*x2"). Although the running time

25

R({0.1})

L RU0.2D

R({05)
R({15) ™ R({0,1,2.3})

RU2D ¢

=Yy, R({1.23D)

R LN peaap o

Fig. 4. Search steps for R(L4).
is not polynomial in terms of the dimension n, it is polynomial in terms of the number of

processors. Hence, the algorithm is feasible even for a 16-dimensional hypercube.

Example 6. Consider the two LCCs 4, and 4s in Example 5. We know that A4, is for the
matrix-transpose operation and As is for the bit-reverse operation on an 8-dimensional hy-
percube. From the proposed dynamic programming approach, we can find that R(Ls) =

(3,4,0,7,2,5,1,6). Hence, we can compute

00010000 00100000
00001000 00000010
~ltoooo0oo0o00l 4 00001000
Q_00000001’Q_10000000
00100000 01000000
00000T100 00000T100
01000000 00000001
0000001 0] 0001000 0]
and the two new communications are
(ve] fo 001 00 0 0][x] [0 yel fo 1.0 0 0 0 0 0][x)] [0
yil1oo 10000 0[x] |0 vl 11000000 0[x] |0
y;01000000x;oandy;:00010000x;0
Yol |t o0 0000 0f[x| |0 Yol 1o o1 0000 0flx]| |0
vl looo o000 1||x| |0 yillooo o010 0flx| |0
yilloooo o001 0flx] |0 yillooo o100 0flx] |0
vl o000 o010 0flx] |0 vl 10000000 1|[x] |0
Vil 0000100 0fx] [0 Vil [0 00000 1 0fx] [0

26

After the processor mapping, the degrees of channel contention now become 2 for matrix

transpose and 1 for bit-reverse instead of 8 in the original communications. mi

6. Performance Study

To investigate the performance improvement of the proposed approach, some ex-
periments were carried out by simulating the network behavior of an 8-dimensional hy-
percube. In Subsection 6.1, we compare the e-cube routing and some partially adaptive
routing strategies with our approach. These partially adaptive routing strategies include
P-cube routing proposed by Glass and Ni [11]; the routing strategy proposed by Chiu [7];
minimal (Min) routing proposed by Li [14]; and MIXab3 and MIXbb3 routing proposed
by Chen and Yihng[5]. This simulation is based on those performed in [5] and [11]. In
Subsection 6.2, a practical application, the parallel FFT program, is performed on our
simulator to show the benefit of the proposed approach.

The network architecture assumed in the simulation is described as follows. There
are 256 nodes connected as an 8-dimensional hypercube. Each node consists of a proces-
sor, local memory, a router, and other supporting devices. Between two neighboring
routers, there are two uni-directional channels, one for each direction. A router can com-
municate with its local processor through pairs of ports. A separate buffer with a slot for
one flit is associated with each channel. When more than one input channels contain
header flits waiting for the same available output channel, the arbitration policy is in favor
of the header flit that arrived at the router first. If a header flit in an input channel has more
than one available output channels allowed by the routing strategy, the channel with the
lowest dimension is selected.

27

6.1 Simulation for three communications

Network performance is significantly affected by the communications, which are ap-
plication-dependent. In the following discussion, we consider three communications: ma-
trix-transpose, bit-reverse, and reverse-flip. They are chosen not only because they are
frequently used in many scientific and engineering applications but also because they are
used as tested cases in many routing algorithms, so that we can compare our simulation
with their results. For matrix-transpose, every node x = [Xo X; X2 X3 X4 X5 X5 X7]' sends mes-
sages to node y = [x4 X5 X6 X7 Xo X1 X2 X3]". For bit-reverse, node x = [xo x1 X3 X3 X4 X5 X X7]'
sends messages to node y = [x7 Xs X5 X4 X3 X2 X1 Xo]'. Reverse-flip behaves like bit-reverse

except the address bits of destination node were complemented, i.e., node x= [x(X1 X2 X3 X4

tions are LCPs. We may find reordering mapping for them and see how the performance
can be improved.

In the simulation, processors generate messages at time intervals given by a negative
exponential distribution random variable. Each message is assumed to have 20 flits, in-
cluding the header (flits). A flit requires a cycle to be transmitted through a channel. The
measures of interest in this subsection are average message latency and average sustainable
network throughput. The message latency is the number of cycles spent by a message in
traveling from its source processor to its destination, taking the queuing delay into account.
The average network throughput indicates the average number of flits delivered per cycle
per processor. It is sustainable if the number of messages queued at their source proces-

sors is small and bounded. For a given system, the average message latency, in general,

28

grows as the throughput increases. At low throughput, the network latency is contributed
mainly by the message length and the distance to travel because there is little queuing de-
lay involved. As the throughput increases, more channel contention and longer queuing
delay happened, give rise to a higher message latency. One system exhibits better commu-
nication performance than another if it has a lower message latency for any given through-
put.

Fig. 5 to Fig. 7 show the simulation results of matrix-transpose, bit-reverse, and re-
verse-flip, respectively. In these figures, M-S denotes the simulation result using an opti-
mal reordering mapping for the specific communication, which is proved to be conten-
tion-free in Section 4; and M-G uses the reordering mapping chosen for the three commu-
nications by using the dynamic programming algorithm proposed in Section 5. After the
processor mapping M-G, the degree of channel contention of matrix-transpose is 2, and it
is contention free for bit-reverse and reverse-flip.

From Fig. 5 to Fig. 7, it can be observed that the routing strategies MIXab3,
MIXbb3, Chiu and Min indeed improve the performance over the e-cube routing since the
difference of the inter-router setup delay and flow control cycle time are not considered in
this experiment [6]. The maximum sustainable network throughput of these routing strate-
gies is about 30% to 100% higher than that of the e-cube routing. Their message latencies
are also lower for any given sustainable throughput. The P-cube routing performs quite
different for these three communications. It performs well for reverse-flip but worst for
bit-reverse. From these results, it can be observed that it is very difficult for a routing al-
gorithm to perform well for all communication patterns.

It can be also observed that, for any of these three communications, the network

29

throughput of the e-cube routing is always less than 0.125, which is 1/8 of the network
capacity. As we have pointed out in Section 2, this is due to the degree of channel conten-
tion being 8 for the e-cube routing. In other words, the maximum throughput that can be
achieved is approximately inversely proportional to the degree of channel contention.

After applying M-S and M-G, there is no channel contention for performing these
three communications except performing matrix-transpose after applying M-G. The degree
of channel contention is 2 for matrix-transpose after applying M-G. Theoretically their
throughput can approach 1 and 0.5, respectively. The actual value is somewhat smaller
because of the queuing delay between messages generated by the same processor. As
shown in Fig. 5, its value is about 0.3 instead of 0.5 for M-G. Note also that, for any given
sustainable network throughput, the message latencies of M-G and M-S are far lower than
that of traditional approaches.

With these results, it is obvious that our approach can greatly reduce the network
latency and significantly improve the throughput for LCC. Furthermore, no extra hardware
supports and sophisticated routing strategies are needed. Only the e-cube wormhole rout-

ing is assumed in the proposed approach. Therefore, it is of practical use.

30

Matrix Transpose

latency(cycles)
W W K W
S 65 n» S

[\
w

0 0.1 02 03 04 0.5
throughput(flits/cycle)

—8—c-cube
—&—Min
—— Chiu
—o— Pcube
—>%— MIXab3
—+— MIXbb3
——M-G
——M-S

Fig. 5. Simulation result of matrix-transpose on an 8-dimensional hypercube.

Bit-Reverse
60
55 —e—ccube
—B— Min
= 50 :
0 —A— Chiu
2 45
@ —o— Pcube
5 40 —%— MIXab3
Q
E 35 —+— MIXbb3
30 —— M-G
——M-§
25
0 0.1 0.2 03 0.4 0.5
throughput(flits/cycle)
Fig. 6. Simulation result of bit-reverse on an 8-dimensional hypercube.
Reverse Flip
60 —&— ccube
55 —B— Min
2 50 —A—Chiu
% 45 —o— Pcube
? 40 —%— MIXab3
£ 35 —— MIXbb3
30 —a—M-G
25 ——M-§
0 0.1 0.2 0.3 0.4 0.5
throughput(flits/cycle)
Fig. 7. Simulation result of reverse-flip on an 8-dimensional hypercube.

31

6.2 Simulation for FFT

The Fast Fourier Transform (FFT) is one of the most commonly used algorithms in
digital signal processing and is widely used in applications such as image processing and
spectral analysis. The purpose of this subsection is to investigate the benefit of the pro-
posed approach for such a practical application.

The Discrete Fourier Transform (DFT) of an m-point discrete signal x(7) is defined

m—1

by X(k)=Y x()W¥ , 0<k<m, where W,=e’*™" and j=+/—1. Direct DFT computation
m P

i=0
requires O(m”) arithmetic operations. A faster method of computing the DFT is the FFT
algorithm, which requires only O(m lg m) arithmetic operations. A more detailed analysis
of FFT can be found in [8]. Fig. 8 shows an example of the flow chart of the FFT algo-
rithm for 16 points. The FFT algorithm begins with a bit-reverse permutation of the inputs,
followed by Ig m stages, each stage consisting of m/2 butterfly operations. A FFT input x

can be identified by a binary vector [xo x; X2 ... Xig o»-1)]". In the ith computational stage, the

two inputs of a butterfly operation are [xo x; ... Xi1 ... Xigmn] and [xo X1 ... X, ... Xigenn]"
Ol)%(i)
0 >
0 < AVA AA Q s
L. XX A\\V/4 Y >)
: 0 X0 4 SN\ A\ . 3
D — 0 XX A/
s —» 0 ><, AVA PN AL/
A LB 6 —» 0 XX a N\ AV
B:ZX:A-BW" ;:XX:\XX OW > ;
o —» 0 X<, AVA AA 1 RN,
lo—» 0 XX A\V/A 2 JJN L
1 — 0 XL 4 SN\ AN //)\\\ G
—> - N ///A\\\ NG
55— 0 < AVA 2 O s [T\, 3
— 0_XX /AN /ARG
15— VAN 4 7/ N s

Fig. 8. Flow chart of a 16-point FFT.

32

We can exploit some properties of the FFT algorithm to produce an efficient parallel algo-
rithm. The Parallel_FFT algorithm is described in the following paragraph.

Let the number of data points nm= 2"

, Where n 1s dimensions of the hypercube net-
work, and d is a positive integer. Each input x= [xo X1 ... X4 Xgr1... Xpra1 Xped... Xpiaq1] 1S
assigned to processor [X; X4i1... X,+q.1]". Hence, the m inputs are distributed on the 2" proc-
essors with block-cyclic distribution. There are 2¢ inputs in each block, and 2¢ blocks in
each processor. The Parallel_FFT algorithm follows the (1 + Ig m) stages in the FFT algo-
rithm. In the first stage, a bit-reverse communication between processors is required for
completing a bit-reverse permutation of the inputs. In the following n+2d computational
stages, the first and the last d stages do not require communication operations, and a
neighboring communication is needed for each of the other n stages. The reasons are ex-
plained as follows. In the ith computational stage, 1<i<d, the two inputs of a butterfly op-

. t — t .
eration, [Xo X1 ... Xi1... Xg ... Xpi2a1] and [Xo X1 ... X, ... X4 ... Xyi241], are in the same

i-1
processor [xg Xg1 ... Xn-a1]'. Hence, the data required for computation are all in local
memory and no communication is needed. Similarly, no communication is needed in the
ith computational stage, n+d+1<i<n+2d. In the computational stage i, d+1<i<n+d, the two
inputs of a butterfly operation, [xo X1 ... X4 ... Xi1... Xpeal ... Xpi2aa] and [Xo X1 ... Xy ...

t . t = t
X, | .. Xpidd ... Xpio41] are in processors [Xg ... Xei... Xpga] and [xg ... X, ... Xpaa], TE-

spectively. Therefore, a neighboring communication at dimension i-(d+1) is performed.
After these (1 + /g(m)) stages, the FFT outputs can be obtained, and are also distributed
on the 2" processors with block-cyclic distribution as inputs. The Parallel_FFT algorithm
requires O((m/2")lg(m)) arithmetic operations, and (#+1) communication operations for

each processor.

33

By processor reordering mapping, the channel contention of the bit-reverse commu-
nication in the first stage of the Parallel_FFT algorithm can be obviated, and those neigh-
boring communications will stay unchanged. To see the performance improvement of
processor mapping for the Parallel_FFT algorithm, we simulated the algorithm on an
8-dimensional hypercube. Each input of FFT is a complex number which consists of two
double precision floating-point numbers, one for the real part and the other for the imagi-
nary part. The characteristics of the hypercube computer are based on nCUBE-2. The
software latency is about 164 us for a message. The time required for transmitting one
byte through a channel is about 0.57us. A butterfly operation requires about 5.12 us pro-
vided that the value of W can be found in a pre-computed table. If only half of a butterfly
operation is performed in a processor, about 4.47 us is required.

The simulation results are shown in Table 1. The computation time and neighboring
communication time are the same for all the routing strategies and are not changed after
processor reordering mapping. Bit-reverse communication time is the most important part
in this comparison. We can observe that the performances of those partially adaptive rout-
ing strategies are not so good as expected, and even worse than e-cube routing. This

situation may be caused by the channel contention between the neighboring communica-

FFT | Comp NB Bit-Reverse
Size Time Comm Communication Time
Time e-cube chiu min mixab3 | mixbb3 | pcube map
28 358 1398.6 248.9 276.9 2484 258.1 258.6 299.7| 178.8

2" 163.5 1617.5 467.8 577.8 4672 504.3 504.9 693.5] 2062
2" 736.0 2493.0 13433 | 1781.7| 13428 14893 | 1489.8 | 2225771 3156
2! 3271.7 5995.1 48454 |1 6597.0| 48448 | 5429.1| 5429.7| 83543] 7534

Table 1. Simulation result for the Parallel_FFT algorithm.

34

FFT | Computation Neighboring Bit-Reverse Execution
Size Time Communication Communication Time Time

Time Original | Mapping | Speedup | Original | Mapping | Speedup
2F 35.8 1398.6 248.9 178.8 1.39 1683.3 1613.2 1.04
2! 163.5 1617.5 467.8 206.2 2.27 2248.9 1987.2 1.13
21 736.0 2493.0 | 13433 315.6 4.26 4572.4 3544.7 1.29
2t 3271.7 5995.1 | 48454 753.4 643 141122 10020.2 1.41

Table 2. Speedup after optimal reordering mapping.
tions and the bit-reverse communication since there is no barrier synchronization in the
program. The benefit of processor reordering mapping can be easily observed here be-
cause the bit-reverse communication time is greatly reduced.

Table 2 shows the speedup after applied the processor reordering mapping. The ideal
speedup of the bit-reverse communication time is 2”*" for an n-dimensional hypercube
because the degree of contention is decreased from 2"*" to 1. However, the speedup in
the simulation result is smaller than the ideal speedup due to the effect of the software la-
tency. When the number of data points m is small, the software latency dominates the
communication time. Hence, the performance improvement is not evident. As m increases,
the message size also increases, and the effect of channel contention becomes more critical
for the communication time. Therefore, the performance improvement of processor map-
ping becomes more significant as m increases. From Table 2, it can be observed that the
speedup of the bit-reverse communication time reaches 6.43 for m=2'*. The overall execu-

tion time is about 41% faster after applying processor mapping.

7. Performing LCC on SCI Origin 2000

In this section, we shall introduce how the processor mapping approach can be ap-

plied for efficiently performing LCCs on SCI Origin 2000.

35

Fig. 9. An Origin system with 32 nodes.

7.1 SGI Origin 2000

The SGI Origin 2000 is a cache-coherent non-uniform memory access (ccNUMA)
multiprocessor designed and manufactured by Silicon Graphics, Inc. The Origin system
consists of up to 512 nodes interconnected by a scalable Craylink network. Each node
consists of one or two R10000 processors and up to 4 GB of coherent memory. For sys-
tems up to 32 nodes, the routers connect nodes in a bristled hypercubes. The network to-
pology is bristled in that two nodes are connected to a single router instead of one. Fig. 9
shows an example of the Origin system. Low latency wormhole routing and software pro-
grammable routing table are important features of the router. Therefore, the proposed ap-
proached for performing LCCs on hypercubes can possibly be applied to the Origin system.
The only problem to be solved is that there are two nodes connected to a single router. In
the following subsections, we shall show the method to modify the proposed approach for

performing LCCs on the Origin system.

7.2 LCC on an Origin 2000 system

36

An n-dimensional LCC, y = Ax + b, on an Origin 2000 can be specified as the

following formula.

Y, ao,o ao,l e aO,n—l X, bo
a a -~ a x b :
.Yl _ 1,0 1.1 La-1 ‘1 n ‘1 (1)
Yo an—l,o an—l,l e an—l,n—l X, bn—l

Suppose the source nodes in the LCC are separated into two sets by the address bit at di-

mension 0, we can have the following two formulas.

Y, ao,o ao,l T aO,n—l 0 bo

4 _ a, a, @y X, n bl , and
_yn—l] _an—l,o an—l,l an—l,n—l __X,H | _bn—l |

Y, a,, a,, a, ., 1 bo

) 4 _ a, a,; a,, X, n bl
RSN _an—l,o a, ., - a, i, __X,H | _bn—l

They can be rewritten to be

Y, = ao,l’_‘l ta,x, +--+a,, X, + bo

4 al,o al,l e al,n—l x, bl
YV, | | @ a,, - a,, X, + b, | and
Yoo _an—l,o an—l,l e an—l,n—l | _X,H bn—l
Y, = ao,o _+ ao,lxl + ao,zxz +eet aO,n_—lxn—l + bo
4 al,o al,l e al,n—l X, al,o bl
¥2 _ az,o az,l e az,n—l x‘z n a?,o n bz
Yoo _an—l,o an—l,l e an—l,n—l | _xn—l an—l,O bn—l

In an Origin system, two nodes whose addresses only differ at dimension O are directly

connected through the router. For the reason, the hypercube topology of Origin 2000 is of

37

(m-1) dimensions, from dimensions 1 to (m-1). Therefore, an m-dimensional LCC on an

Origin system can be viewed as two LCCs on the (n-1)-dimensional hypercube as shown

in the following two formulas.

Yo Ay Ay s, 0 b,
N a, a; a0 1 bl (11)
_ynfl B _anfl,O anfl,l anfl,nfl i _xn—l bnfl
Yo Ay as, s, Xy Q, b,
3% o a, Ay, X a b
‘1 _ . . ” Uy el (111)
| Vi | _an—l,o A, " 1,0 __xn—l] _an—l bn—l

In the above two formulas, n= n-1, x= X1y, Y= Y1), 0= @y, 0, b= By, and a, =
agy, ;1) for 0<7, j< n-1. For convenience, given a LCC, y= Ax + b, as specified in for-
mula (i), we shall use LCCy(A, b) and LCC,(A, b) to denote the two sub-LCCs as

specified in formulas (ii) and (ii1).

Lemma 1: For any LCC, y = Ax + B, on an Origin 2000, 7;:.1(A,,, b) < T{(4, b) + T{4,
otb) for 0<i<n-1, wheren=n-1,4= A, ., ., 0= A _ .andb= b, .

Proof: Consider LCCy(A, b) on an n-dimensional hypercube, if a channel / at dimension i
is used, then, from Theorem 1, the number of paths that contend for it is 7,(4, b). Similarly,
consider LCC;(A, b) on the n-dimensional hypercube, if / is used, the number of paths
that contend for it is 7(A, ot+b). Since / may be used by both of the two LCCs, by one of
them, or by none of them, it can be easily derived that 7;.1(A, B) < T{A4, b) + T(A, otb).

O

38

From the above lemma and Theorem 4, we can obtain the following corollary, which

gives an upper bound of the degree of channel contention by using reordering mapping on
n-dimensional LCP. For m-dimensional LCS and LCG, such an upper bound is given in

Corollary 4.

Corollary 3: For any n-dimensional LCP, y = Ax + B, on an Origin 2000, there exists a

permutation matrix Q,,.,, such that 7(QAQ’", @b) < 2 for 1< i< n-1. mi

Lemma 2: For any binary matrix A,,,, if rank(A)< n, then there exists a permutation ma-

trix @, such that rank(|QAQ™]Ln_ w11,)= rank(A).

Proof: If rank(A) < n, then there exists a row j which is a linear combination of the other
rows. Let Q,,.,, be the permutation matrix exchanging rows 0 and j. Accordingly, @ " must
be the permutation matrix exchanging columns 0 and j. Hence, in [QAQ '], row O is a

linear combination of the other rows. Therefore, rank([QAQ'1]Ln_{o}) 1,) = rank(A). O

Corollary 4: For any m-dimensional LCS/LCG, y = Ax + B, on an Origin 2000, there
exists a permutation matrix @Q,,, such that 7(QAQ", Qb) < 2" ™ for 1< i< n-1.
Proof: From Lemma 2, there exists a mxm permutation matrix @; such that
rank([QIIIQI_1]L"_ oy,) = rank(A).

Let B= QAQ',n=n-1,5-B, ,, . 0=B, . andb= [le]L"_{o}. From

Theorem 5, there exists a matrix Om, such that 7.,(OBQ”, Ob) < 20"V 5 and

39

0

1
T.1(OBO™, O(art+b)) < 2007 ®) for 1< i< p-1. Let @, = [o 0

} and Q,x, = Q. Q:.

Therefore, from Lemma 1, T,-(QAQ'I, Qb) < 27rankE) gor 1< i< m-1. Since n-rank(B)=

(n+1)-(1+rank(B))< (n+1)-rank(B)= m-rank(A), it can be derived that 7(QAQ", Qb)<

2n -rank(A)

The above lemmas and corollaries show that the proposed processor reorder map-
ping can be used for reducing channel contention when performing a LCC, y = Ax + b,
on an Origin system. It can be observed that, for each of LCC((A, b) and LCC,(A, b),

the proposed method can minimize the channel contention. However, since the two
sub-LCCs are performed simultaneously on an Origin system, a channel may be used by

both of them, and the degree of channel contention may be doubled.

In order to find an optimal processor mapping for a LCC, y = Ax + b, on an Origin

system, some lemmas and theorems are given in the following discussions.

Theorem 7: Consider an m-dimensional LCC, y = Ax + b, on an Origin 2000. Let B=

0 when X, =y,
A ., . forl<i<mn-1,T(A b)= 1 . ’ ST
Lp—{0}.L, () {2 o) , otherwise.

Proof: Let n=n-1, A= A, ., ., =A, _ ., and b=b, .. The proof includes

three parts, which are specified as follows. For 0<i <n-1,

1. Tl-Jrl(Aj b) = O, IfA(,-):](,-) and b,:OC,:O.

2. Toi(A,) = MAX(TA, b), T4, a+b)) = 27" as) i yamk(p, |) >

40

rank(4, ;).

3. Tii(A, B) = T(A, b) + T(A, aerb) = 27k Giherwise.
After the above three items are proved to be true, the theorem can be directly derived. The
detail of the proof'is given below.
1. IfAy= Iy and b=0=0, then T(A, b) = T{A4, o+b) = 0. Hence, T;.1(A, b)=0.

2. For any channel /= ([z0 z1 ... z; ... Zp1l' [20 21 ... Z, ... z,1]") at dimension i, suppose

1

that / is in the path of some source-destination pair in LCC,(A, B), then we can have

Yo Zy oo oy 0 Ao || X a,; 0,i+1 Ao, | Z bo
N _ Z‘1 _ do o o Ay x‘1 " a,; Ay o iy Zi‘+1 " b‘l (11')
Yi Z; Ao Ay 0 4 | X a,; diin Aipa | 24 bi

Similarly, suppose / is in the path of some source-destination pair in LCC;(A, b),

then we can have

Yo Zy 0.0 o1 0i-1 || *o 0,i 0,i+1 Ao | Z; a, bo
bgl _| &2 iy Gy Li-1 | % " a, Li+l A | Zip " 0‘51 " b, (i1t")
yl Zz ai,O al 1 al i-1 xi*l ai,i ai,i+1 ai,nfl Zn—l ai bt

Let p be a solution of formula (ii'), and ¢g be a solution of formula (iii'), then we can

have
2y oo doq 0 Aoa | Po dy;, doin Ay Z; bo
Z‘1 _ oy o o Ay p‘l " a; Ay o iy Zi‘+1 " b‘l (11")
Zi al 0 al 1 al i—1 pzfl ait ai,iH al -1 Zn—l bt

41

Zy oo oy 0 Qo | 4o Ao, Ao 0 Qo Z; a, bo
Z‘l Ao Qi o Gy q‘1 " Ay g 0 A Zi‘+l n O‘ll + b‘l (111")

Z; Ao iy 0 4 |9 d; Ay 0 A || 2,5 a; b,

Hence, subtracting (iii") from (ii"), we have

oo oy 0 Ay Po 9 a,

oy Ay ot Ay P q, a,
0= N el R et B

ai,O ai,l ai,i—l Pia 494 ai

If [on 04 ... o] is not a linear combination of the columns in 4, ;. thenp and g do
not exist. Hence, no / exists such that it is used in both LCCy(A, b) and LCC,(A, b).
Therefore, if rank(B, ,) > rank(A4,), then T..:(Ay, b) = MAX(T(4, b), T{(4,
o)) = 2 an)

If rank(B, ,)= rank(4,), then [an i ... o] is a linear combination of the

columns in 4; , . Therefore, these is at least one solution for r in the following

formula
a0,0 aO,l 0,i-1 rO aO

0= g Gy o Ay ’”1 _ Of1 (iv)
a,, 4d;, a0 || i Q;

Let 7' be a solution of formula (iv), and p is a solution of formula (ii") for some chan-

nel z. We can prove that g=p-r’ is also a solution of formula (iii") for the same chan-
nel z. Therefore, we can derive 7,.1(Ay B) = T(4, b) + T(A, or+b) = 2 g

From the above theorem, we can find that the degree of channel contention is deter-

mined only by the ranks of sub-matrices of the binary matrix A. For the similar reason

42

shown in Section 4, we may assume 7,(A, B)> 0 for 1< /< n-1 in the following discussion

without loss of generality. The following example shows the degree of channel contention

of reverse-flip communication on an Origin system according to Theorem 7.

Example 7. Consider the reverse-flip communication on an Origin system with 32 nodes,

[y,] [0 0 0 0 1[x,] 1
y.| [0 00 1 0f x 1
y.|= 10 01 0 ofx, + |1| According to Theorem 7, the degree of channel
y.| |01 00 offx, 1
\y,] [1 0 0 0 0]|x,]| 1]

contention at each dimension can be computed as follows: 71=2""=2, 7,=2"=4, T:=2""=2,

and 7,=2%*=1. O

In the following discussions, we shall show how to minimize the channel conten-

tion for performing an LCC on an Origin system.

Lemma 3: Consider an m-dimensional LCC, y = Ax + b, on an Origin 2000. If Q,,«, is a

non-singular matrix, then

1. T(QAQ', @b)>2"""" for rank(A) < n-2, and
2. T(QAQ', @Qb) > 1 for rank(A) > n-2.
Proof: Let B- |QAQ" JL" _w1.., - From Theorem 7, 7,.(QAQ", Qb)= 2k B)

Since MAX {i —mnk(BL_ .)}2 n —l—mnk(BLm1 .)2 MAX(0, (n -1-rank(A))), it can

1<isn-1 B ml

also be obtained that 7(QAQ", Qb) > 2™""*® for rank(A) < n-2, and 7(QAQ", Qb)

> 1 for rank(A) > Nn-2. mi

43

Lemma 3 gives a lower bound of the degree of channel contention for performing
an LCC on an Origin system. The following theorems and their proofs will show the algo-

rithms to achieve the lower bound.
Theorem 8: For any binary matrix A,,,, if rank(A) < N-2, then there exists a permutation
matrix @, such that i-rank(B, ;) < n-l-rank(A) for 1<i<m-1, where B=
@aa] ...
Proof: We shall prove by induction on i.
(1) Consider i= n-1.
a. From Lemma 2, we can find a permutation matrix @Q; such that
rank([QIIQ'1]L" o1,) = rank(A).
b. Let B= [QIAQI' ']. Since rank(B, ...)=rank(A) < n-2, there exists a column
J#0in B, ., such that column is a linear combination of the other columns.
If j = n-1, then let @, = I. Otherwise, Let @, be the permutation matrix exchang-
ing rows j and m-1. Accordingly, @, must be the permutation matrix exchanging
rank(A).

column j and n-1. Hence, rank(|Q,BQ;']L"_{O})L"_{"_l}) =

Let Q=Q.Q,, we can derive that m-1-rank(B, ,) = n-l-rank(A), where B=

l@aq'] . .

(2) Suppose the theorem is true for k<i<m-1. Therefore, there exists a permutation matrix

P such that i-rank(C, ;) < n-1-rank(A), where C= [PIIIPI'1 L_{O})Ln .

44

(3) Now we shall prove that the theorem is true for i=k-1. If k-1-rank(C, ,) >
n-1-rank(A), then

() k-l-rank(C, ,) > n-1-rank(A) = n-1-(n-2)= 1. Therefore, rank(C,

e-1-La

) <
k-2.

() k-1-rank(C,_,)> m-1-rank(R)> k-rank(C, ,). Hence, rank(C, ,)<
rank(C, ;)-1. Since rank(C, ,)= rank(C, ;)-2, it can be derived that
rank(C, ,)= rank(C, ;)-2. Therefore, rank(C, ,)= rank(C, ,)-1 =
rank(C, ;)-2.

For the above reasons, rank(C, ;) < k-1, and there exists a column j#0 i C,

such that column j is a linear combination of the other columns. Let P, be the permu-

tation matrix exchanging rows j and k-1 of P,AP;". Accordingly, P, must be the
permutation matrix exchanging columns j and k-1 of P,AP;". The effect of P, and

P, on C is that they exchange the rows (j-1) and (-2), and the columns j and 4-1 on

C. Hence, rank(C'; ;)= rank(C,,) for k<ism-1, and rank(C', ,)=

rank(C',)= rank(C', ,)-1, where C’= [le’llll’l'll’z'1]Ln—{o},Ln . Since,
k-1-rank(C', _,)= k-rank(C, ;) < m-1-rank(A), we can prove that there exists a
permutation matrix @=P,P; such that i-rank(B, ;) < m-1-rank(A) for k-1<i<n-1,
where B= lQIIQ'1 JL"_{O})L" .

By mathematic induction, we can prove that i-rank(B, ,) < m-1-rank(A) for 1<i<n-1.

45

This completes the proof. m|

Corollary 5: Consider an m-dimensional LCC, y = Ax + B, on an Origin 2000. If

rank(A) < N-2, there exists a reordering mapping such that the new communication has

minimum channel contention. O

From Theorem 8 and Corollary 5, we can design an optimal reordering mapping

for any m-dimensional LCC, y = Ax + b, on an Origin 2000, where rank(A) < n-2.

However, if rank(A) > n-2, there exists some LCCs, which can not be optimized to be

contention free by reordering mapping. Example 8 gives two examples of such LCCs.

Example 8. Two LCCs that can not be optimized to be contention free by reordering

mapping.
v -
4
y,
£
Y,

=]

—

w

1
1
+1|. 11=2"'=2, 7,=2%"=2, T5=2"=2, and T\=2""=2.
1
1

e

Il
S O o O O
S o o = O
S O = O O
S = O O O
—_ o o O O
X X X X X

o~

Y
\ 4
y,
£
Y,

=]

—

[

w

)
Il
S O o o

1
1
+| 1| 11=2""=2, 7=2%'=2, T5=2""=2, and T\=2""=2. O
1
1

o o o = o
o o - o o
o - o o o
- o o © ©
X X X X X

o~

For each LCC in the above example, the degree of channel contention is 2, and no
reordering mapping can reduce the channel contention. If further optimization is required,

the linear mapping approach can be used so that the new LCCs are contention free. In the

following discussions, we shall first consider that rank(A) = n-1 for an m-dimensional

46

LCC, y = Ax + b, on an Origin 2000. The method is given in Lemma 5. Then, the condi-

tion of rank(A) = N is discussed. Lemma 6 and Lemma 7 give the result for A=F and A=l

respectively

Lemma 4: For any binary matrix A,.,, if rank(4) < n, then there exists a non-singular ma-
trix Oy, such that [0AQO™6=0.
Proof: From Lemma 2, we can find a permutation matrix (J); such that

rank([QIAQI'1]Ln_{o} ;) = rank(4). Let B= [QIAQl'l], then row O of B is a linear combina-

tion of the other rows. Suppose Boy=c1Buyt c2B) ... + ¢r1Bgo1y, and O, be an nxn matrix,
where [O2)0) = [1 -¢1 -¢2 ... -cpa1] and [O2]¢y =[Lusnly for 1<i<n-1. We can derive that
[QZBQ;](OF 0. Form the above discussions, let O= (),0;, then O is non-singular and

[QAQ 0= 0. O

Lemma 5: For any binary matrix A, if rank(A) = n-1, then there exists a non-singular
matrix @, such that i-rank(B, ,)= 0 for 1<i<n-1, where B= lQIIQ'1 JL" (OhLy

Proof:

(1) From Lemma 4, we can find a non-singular matrix P such that [PAP"'],,=0.

(2) Let B=[PAP"], then rank(B, ..) = rank(A). We shall prove by induction that
there exists a non-singular matrix @ such that [@BQ =0 and i-rank(B, ,)= 0 for
1<i<n-1, where B= lQBQ'1 JL"_{O})L" :

a. Consider /= m-1. Let C=B, ., . If rank(C, ,) # rank(A), then there is a

47

column j # -1 in C such that column j is a linear combination of the other col-
umns, and column m-1 is linearly independent. Let @ be the non-singular matrix
subtracting rows j from row m-1. Accordingly, @' must be the non-singular ma-
trix adding column m-1 to column ;. Hence, [@BQ'],~0, and

rank(lQBQ—IJL"—{O},L"—{n—l}) = rank([[QBQ?I:IL,,—{O},L,,:IL'F .)= rank(B) =

1>Ln

rank(A). Therefore, n-l1-rank(B, ,) = 0 for 1<ism-1, where B=

eBa’], .,
Suppose there exists a non-singular mxm matrix @, such that [@BQ'],=0 and

i-rank(B, ,)= 0 for k<i<m-1, where B= [QIBQI_1]L"_{O})L" .
If k-1-rank(B, _,)# 0, then it must be true that k-1-rank(B, ,)> 0. Hence,
k-1-rank(B, ,)> k-rank(B, ,). That is, rank(B, ,)< rank(B, ;)-1.
Hence, rank(B, ,)= rank(B, ,)-1= rank(B, ;)-2. Therefore, there is a
columnj# kin B, , such that column jis a linear combination of other col-
umns. Let @, be the non-singular matrix subtracting rows j from row k. Accord-

ingly, @, must be the non-singular matrix adding column 4 to column j. Hence,

let @ = @,Q,, we can derive that [@BQ ']0=0, rank([[QBQ’1 :IL,,—{O},L,,]LH)LH) =
rank([@BQ™]L"_{O})L"]Lk)Lk)-1, and rank(|@BQ™]L"_{O})L"]L_)L_) = i for k<i<m-1.

Therefore, @ is a non-singular matrix, [QBQ'I](O)ZO, and l'-mnk(BLi)Li) =0 for

48

k-1<i<n-1, where B= |@BQ™'], .

From the above discussion, there exists a non-singular matrix (Q/P) such that this

theorem can be proved to be true. mi

Lemma 6: Consider an n-dimensional LCC, y = Ax + b, on an Origin 2000. If A= I,
then there exists a non-singular matrix @Q,,., such that [@Qx];=[QYy] ;, for 1<i< n-1.
Proof: If b= 0, then y = Ix + 0 = x_ If b= 0, obviously, we can find a mxm permutation
matrix P, such that [P:B]o# 0, i.e., [Pib]o= 1.

1 0

. We can derive that [P,P:B]o= 1 and
_[Plb]L,,—{O} ’(n—1)><(n—1)

Suppose P, =

[P,P:b]; = 0 for 1< i< m -1. Form the above discussion, let @= P,P 1, then @Q is
non-singular and Qy= @x + Qb. Since [@b]; = 0 for 1< i< M -1, we can derive [@X]; =

[Qy], for 1<i< n-1. mi

Lemma 7: For any binary matrix A, if rank(A) = n and A# I, then there exists a

non-singular matrix @Q,, such that i-rank(B, ,) = 0 for I<ism-1, where B=
@aa’], ..,
Proof:

(1) Since A=l there must exists an mxm permutation matrix @, such that [@:AQ; ']o1
=1.

2) Let B= Q,AQ,". If B, 0, j# n-1, then we can find an mxn matrix P, where P, =
N @

49

I, for 0<i<m-2 and P,,,=[00 ... P,.~=By; ... 0 1]. Therefore, P is a non-singular
matrix and can be used for adding rows j to row m-1. Accordingly, P"' must be the
non-singular matrix for subtracting column m-1 from column j. Hence, we can derive

[PBP'],,~0. By applying above process recursively, we can obtain a non-singular

. Ioyny O I
matrix sz _ [B:L 1 so that [QzBQz](0): [O 0...0 1]
0}>Ln71

(3) Let €= @Q,BQ,". Similar to (2) in the proof of Lemma 5, we can prove that there

exists a non-singular matrix @; such that [@:;:CQ5 0= [0 0 ... 0 1] and i-rank(C 1)
=0 for 1<i<m-1, where C= [Q_-,CQ;I]L"_{O})L" :

From the above discussions, let Q= Q:@.Q:, we can derive that i-rank(B, ,) =0

for 1<i<n-1, where B= |QAQ"| . . "

Corollary 6: Consider an m-dimensional LCC, y = Ax + B, on an Origin 2000. If
rank(A) > N-1, there exists a linear mapping such that the new communication has no

channel contention. O

Corollary 7: For any LCC on Origin 2000, there exists a linear mapping such that the new

communication has minimum channel contention. O

Example 9. Consider the reverse-flip communication on an Origin system with 32 nodes,

50

Y, 0000 1][x, 1
2 0001 0f|x 1
y.|= 1o o1 0 of|x, + |1|. According to Theorem 7, we can find a
v, 0100 0f|x, 1
|V, | 11 00 0 0f|x,] 1]
1 0 0 0 0] (1 0 0 0 0]
0 1 0 00 01 0 00
non-singular matrix @= 0 -1 10 0 and Q'= 01 1 o ol Hence, the new
-1 0 0 10 1 0010
1 0 0 0 0 1} 100 0 0 1]
v, 7 [0o0o0 o 1[x] [1]
vy, 0 0 1) & 1
communication is v o l-1 11 -1 oflx, + 1ol and the degree of channel
vy, 010 -1 x", 0
vl | 00 0 Offx",] 1]

contention at each dimension can be computed as follows: 71=2""=1, 7,=2"?=1, I3=2""=1

2

and 7,=2%*=1. O

In the above discussion, we proposed the linear mapping approach for an
n-dimensional LCC, y = Ax + b, on an Origin 2000, where rank(A) > n-1. It can be
observed that the new LCCs can be optimized to be contention free by linear mapping. All

the discussions in this section clearly show the applicability of the processor mapping ap-

proaches on existing machines.

8. Conclusions

In this report, we address the problem of minimizing the maximum number of paths
contending for the same channel when performing LCC on e-cube wormhole-routed hy-

percubes. A new approach called processor reordering mapping is proposed to solve this

51

problem. We have proved that, for any LCC, there exists a reordering mapping such that
the new communication after processor reordering has minimum channel contention. An
O(n’) algorithm is proposed to find such a mapping for an n-dimensional hypercube. As
for a set of LCCs, an algorithm based on dynamic programming is proposed to search for
an optimal reordering mapping. It can greatly reduce the search space and thus is feasible
even for a large hypercube computer. Simulation results clearly show significant perform-
ance improvement provided by the proposed approach when compared with partially
adaptive routing strategies. With these results, compiler techniques can be used to reduce

the message latency without the need of extra hardware costs.

References:
[11 nCUBE 2 Supercomputers Manual, NCUBE Company, 1990.

[2] Origin™ Servers Technical Report, Silicon Graphics, Inc., 1998.

[3] S. Abraham and K. Padmanabhan, “Performance of the Direct Binary n-Cube Net-
work for Multiprocessors,” IEEE Transactions on Computers, vol. 38, no. 7, pp.
1000-1011, Jul. 1989.

[4] R. Boppana and C. S. Raghavendra, “Optimal Self-Routing of Linear-Complement
Permutations in Hypercubes,” The Fifth Distributed Memory Computing Confer-
ence, pp. 800-808, Apr. 1990.

[5] H. L. Chen and H. S. Yihng, “Generalized Wormhole Routing Strategies in Hyper-
cubes,” Journal of Information Science and Engineering, vol. 10, pp. 387-341,

1994.

52

[6]

[7]

[8]

[9]

[10]

[11]

[12]

A. A Chien, “A Cost and Speed Model for k-ary n-cube Wormhole Routers,” IEEE
Transactions on Parallel and Distributed Systems. vol. 9, no. 2, pp. 150-162, Feb.
1998.

G. M. Chiu, S. Chalasani, and C. S. Raghavendra, “Flexible, Fault-Tolerant Routing
Criteria for Circuit-Switched Hypercubes,” Proc. IEEE 11th International Confer-
ence on Distributed Computing Systems, pp.582-589, 1991.

T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms, The
MIT Press, 1990.

W. J. Dally, “Performance Analysis of k-ary m-cube Interconnection Networks,”
IEEE Transactions on Computers, vol. 39, no. 6, pp. 775-785, Jun. 1990.

W. J. Dally and C. L. Seitz, “Deadlock-Free Message Routing in Multiprocessor In-
terconnection Networks,” IEEE Transactions on Computers, vol. C-36, no. 5, pp.
547-553, May. 1987.

C. J. Glass and L. M. Ni, “The Turn Model for Adaptive Routing,” Journal of the
Association for Computing Machinery, vol. 41, no. 5, pp. 874-902, Sep. 1994.

R. C. Gonzalez and R. E. Woods, Digital Image Processing, Addison-Wesley Pub-

lishing Company, Inc., 1992.

[13] F. T. Leighton, Introduction to Parallel Algorithm and Architectures: Arrays, Trees,

[14]

[15]

Hypercubes. Morgan Kaufmann Publishers, San Mateo, 1992.

Q. Li, “Minimum Deadlock-Free Message Routing Restrictions in Binary Hyper-
cubes,” Journal of Parallel and Distributed Computing, vol. 15, no. 2, pp. 153-159,
1992,

F. C. Lin and F. H. Wang “Minimum Deadlock-Free Message Routing Restrictions

53

[16]

[17]

[18]

[19]

[20]

[21]

[22]

in Binary Hypercubes,” Journal of Parallel and Distributed Computing, vol. 29, no.
2, pp. 27-42, 1995.

H. Masuyama, “Algorithms to realize an arbitrary BPC permutation in chordal ring
networks and mesh connected networks,” IELICE Trans. Inf. Syst. (Japan), vol.
E77-D, no. 10, pp. 1118-1129, Oct. 1994.

H. Masuyama, Y. Morita and E. Masuyama, “A realization of an arbitrary BPC
permutation in hypercube connected computer networks” IEICE Trans. Inf. Syst.
(Japan), vol. E78-D, no. 4, pp. 428-435, Apr. 1995.

R. J. McEliece, Finite Fields for Computer Scientists and Fngineers. Kluwer Aca-
demic Publishers, 1987.

D. Nassimi and S. Sahni, “An Optimal Routing Algorithm for Mesh-Connected Par-
allel Computers,” Journal of the Association for Computing Machinery, vol. 27, no.
1, pp. 6-29, Jan. 1980.

D. Nassimi and S. Sahni, “Optimal BPC Permutations on a Cube Connected SIMD
Computer,” IEEE Transaction on Computers, vol. C-31, no. 4, pp. 338-341, Apr.
1982.

L. M. Ni and L. M. McKinley, “A Survey of Wormhole Routing Techniques in Di-

rect Networks,” IEEE Computer, vol. 26, pp. 62-76, Feb. 1993,

Y. Saad and M. H. Schultz, “Topological Properties of Hypercubes,” /IEEE Trans-

action on Computers, vol. 37, no. 7, pp. 867-872, Jul. 1988.

54

