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Abstract

The existing digital image editing tools have made the authentication of digital
images an important issue. The objective of this paper is to propose an image au-
thentication scheme, which is able to detect malicious tampering while tolerating some
incidental distortions. By modeling the magnitude changes caused by incidental distor-
tion and malicious tampering as Gaussian distributions with small and large variances,
respectively, we propose to embed a watermark by using a mean quantization tech-
nique in the wavelet domain. The proposed scheme is superior to the conventional
quantization-based approaches in terms of the credibility of authentication. Statisti-
cal analysis is conducted to show that the probabilities of watermark errors caused
by malicious tampering and incidental distortion will be, respectively, maximized and
minimized when our new scheme is applied. Experimental results demonstrate that
the credibility of our method is superior to that of the conventional quantization-based
methods under malicious attack followed by an incidental modification, such as JPEG
compression, sharpening or blurring.
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1 Introduction

The invention of the Internet provides a brilliant way of transmitting digital media. When
digital media contain important information, their credibility must be ensured. As a con-
sequence, a reliable media authentication system is indispensable when digital media are
transmitted over a network. In order to save bandwidth and storage space, digital media are
usually transmitted or stored in a compressed format. In addition, media like images may
be processed by blurring or sharpening for specific purposes. Under these circumstances,
an image authentication system should be able to tolerate some commonly used incidental
modifications, such as JPEG compression, sharpening, and/or blurring. In this paper, we
shall focus our discussion on image authentication.

In the literature, image authentication methods can be roughly classified as being either
digital signature-based or watermark-based. The digital signature-based approach [1, 2, 3, 4]
does not modify the content of an image. Instead, it extracts either global features or
relational features from media for authentication purposes. For example, Bhattacharjee and
Kutter [1] used the positions of a set of feature points as a digital signature. By examining
the existence of feature points, images can be authenticated. Lin and Chang [4] computed
the invariant relations between the coefficients of two randomly selected DCT blocks and
then used them as a digital signature. Their method is able to resist JPEG compression
with compression ratios (CR) up to 20:1. The major limitation of a digital signature-based
method is that it can only be used for the purpose of verification, not copyright protection.

The watermark-based image authentication approaches, on the other hand, detect po-
tential tampering based on the fragility of a hidden watermark [5, 6, 7, 8, 9, 10, 11, 12]. In
Kundur and Hatzinakos’ [5] quantization-based method, a watermark value is encoded by
modulating a selected wavelet coefficient into a quantized interval. Basically, the quantity
they used for modulation, which is monotonously increased from high resolution to low res-
olution, violates the capacity constraint of the human visual system [13]. They defined a
tamper assessment function (TAF), which is the ratio of the number of tampered coefficients
to the total number of coefficients in a specific subband, in order to measure the degree of

tampering. They also point out if the TAF values decrease monotonously from high reso-



lution to low resolution, then it is very likely that the manipulation is JPEG compression.
However, they did not address the situation in which an instance of malicious tampering and
an incidental manipulation are imposed simultaneously. Recently, Lu et al. [6, 7] proposed a
multipurpose watermarking technique for image/audio authentication and protection. They
combined a complementary modulation [14, 15] strategy and an image/audio dependent
quantization mechanism to hide watermarks. In addition, they proposed several detection
techniques to perform authentication and protection simultaneously.

In [2], Dittmann et al. mentioned that incidental distortions, such as JPEG compression,
blurring or sharpening should not be treated as malicious tampering. They also mentioned
that if a watermarked image is tampered with maliciously, then the portions where the
watermark errors emerge should be the manipulated areas. Their argument is only partially
true because incidental operations which are not malicious also cause watermark errors.
Under these circumstances, one cannot judge whether a modification is malicious or not
simply by looking at watermark errors. Therefore, the objective of this paper is to increase
the credibility of the embedded watermark by maximizing or minimizing, respectively, the
probabilities of watermark errors caused by malicious tampering and incidental distortion.
Under these circumstances, an instance of malicious tampering can be easily distinguished
from an incidental modification. In general, the probability of watermark error caused by an
incidental distortion can be reduced by either enlarging the quantization interval or reducing
the quantity of modifications on coefficients. However, it is well known that the maximum
quantization interval should be bounded by the human visual system [13] so that visual
quality can be maintained. As a consequence, the only methodology that we can adopt here
is to increase the robustness by decreasing the variance of coefficients. Owing to the fact
that the variance of the sub-block mean is smaller than that of an individual sample, we
know that a watermark value encoded by quantizing the mean of a set of coefficients is more
robust than one encoded by quantizing a single coefficient.

Under a reasonable assumption that the quantity of modifications caused by an incidental
distortion is smaller than that caused by a malicious distortion, the modifications caused by
an incidental distortion or an instance of malicious tampering can be, respectively, modeled
as a Gaussian distribution with smaller or larger variance. In a good image authentication
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system, it is expected that the embedded watermark should be robust enough to tolerate
incidental distortion and fragile enough to detect malicious tampering. However, it is also
well known that robustness and fragility are two factors that compete against each other.
Therefore, we need to seek a tradeoff between them that can lead to the best outcome. In
order to achieve the above mentioned goal, a mechanism which can be used to encode a
watermark such that the probabilities of watermark errors caused by malicious tampering
and incidental distortion are, respectively, maximized and minimized, is indispensable.

In this paper, we propose a mean quantization-based fragile watermarking approach
which can be used to judge the credibility of a suspect image. The mean quantization
approach embeds a watermark by taking the mean value of a set of wavelet coefficients.
Through theoretical analysis of the probabilities of watermark errors caused by malicious
tampering and incidental distortion, the best number of coefficients needed to embed a
watermark at each scale can be computed such that the tradeoff between robustness and
fragility can be optimized. Since the probability of watermark errors caused by incidental
distortion at each scale is different, the detection responses at all scales should be integrated
so as to obtain a global estimation of the maliciously attacked area. Then, we can use some
decision rules to judge whether a suspect image has been tampered with or not.

The remainder of this paper is organized as follows. The mean quantization-based fragile
watermarking approach will be described in Sec. 2. An information fusion technique which
can be used to integrate the detection results at multiple scales will be addressed in Sec. 3.

Experimental results and conclusions will be given in Sec. 4 and Sec. 5, respectively.

2 Mean Quantization: A New Mechanism to Achieve

better Authentication

In this section, we shall describe the proposed mean quantization-based fragile watermarking
approach. In order to protect the original source, our watermark extraction process will
be designed in a blind detection manner. Blind detection means the original source is

not required for watermark extraction. Among the existing blind watermarking schemes,



the quantization-based watermarking approach is the simplest one to achieve the above
mentioned goal. This is because in a quantization-based approach, a watermark is encoded
and decoded by the same quantization operation. In the following, we shall first introduce the
conventional quantization-based approach and point out its disadvantages. Then, a mean
quantization-based approach will be proposed to eliminate these disadvantages. Finally,
we will propose a systematic way to determine an optimal number of coefficients for mean

quantization.

2.1 Disadvantages of the Conventional Quantization-Based Scheme

The quantization-based fragile watermarking approach [5] divides a real number axis in the
wavelet domain into intervals with equal size at each scale and assigns watermark symbols
to each interval periodically. Assuming that x is a wavelet coefficient, and that ¢ is the size
of a quantization interval, the watermark symbol, which is either 0 or 1, is determined by a

quantization function (), where

0, ift¢<xz<(t+1)gfort=0,+2+4,...
Qz,q) = _ (1)
1, iftg<z<(t+1)gfort=+1,+3,45,....

Let w denote the target watermark value which is to be encoded for a wavelet coefficient
x. The encoding rule is as follows: If Q(x,q) = w, then no modification is necessary for x;

otherwise, x is updated to x* by

r+4+q, ifzx<0
r=d (2)
r—gq, ifxz>0.

Kundur and Hatzinakos’ approach [5] uses §2 as the size of a quantization interval, where §
is a pre-specified positive integer, [ = 1,..., L, and L is the number of scales used in wavelet
transform. In their approach, the size of a quantization interval increases monotonically from
high frequency to low frequency. However, this kind of design violates the characteristics
of the human visual system [13]. In our design, we take the limitations of the human
visual system into consideration. On the other hand, since any modification applied to an
image will change its wavelet coefficients, it is reasonable to expect that their corresponding

watermark symbols will be changed, too. By comparing the extracted watermark values with
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the original hidden ones, the maliciously attacked area can be located. Although the fragility
of the watermark proposed in [5] is able to reveal malicious tampering, their watermark is
not robust enough to tolerate incidental distortions. Therefore, we shall seriously address

this problem as well.

2.2 The Proposed Scheme

Watson et al. [13] investigated the sensitivity of the human eye and then proposed a wavelet-
based human visual system (HVS). According to HVS, the wavelet coefficients can be mod-
ified without causing visual artifacts. In order for a watermarked image to satisfy the trans-
parency requirement, the quantization interval will be defined as the maximally allowable
modification quantity based on their HVS [13]. Our basic concept is that if the modification
quantity of a wavelet coefficient does not exceed its corresponding masking threshold, then
this modification will not raise visual awareness. Otherwise, we can say the modification is
a malicious one.

Statistically, the mean value of a set of samples has variance smaller than that of a
single sample. We expect that if the watermark is embedded by modulating the mean value
rather than a single coefficient, the probability of watermark errors will be smaller. This is
because the mean value is more difficult to move beyond the quantization interval where it is
originally located. For a specific subband, let the size of a quantization interval be denoted
as ¢, and let a set of n wavelet coefficients be denoted as z;, : = 1,...,n. The mean value

of z;’s can be computed as follows:
n

- % o (3)
For the purpose of robustness, a watermark value should be encoded by moving its mean
Z to the middle of a corresponding quantization interval such that the modulated Z can
not be easily moved away from the current interval. The mean quantization-based fragile
watermarking approach operates as follows. Let w be the target watermark symbol to be
encoded, and let 7 be the quantization noise defined as

r:x—FJ-q, (4)

q
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where |-] is the floor operator. To encode w, the amount of update, 4, added to the mean

coefficient Z, can be determined as follows:

-7+ 0.5¢, ifQ(Z,q)=w
—7 4+ 1.5¢q, if Q(T,q) # w and 7 > 0.5¢ (5)
—7 —0.5¢q, if Q(Z,q) # w and 7 < 0.5¢.

N}
Il

As a consequence, the new mean coefficient becomes z* = Z + @. In Eq. (5), 0.5¢ and 1.5¢
are used to shift a mean coefficient = to the middle of a quantization interval, such that z*
is relatively difficult to move away from the current interval. However, updating the mean

coefficient implies that all the constituent coefficients need to be updated accordingly by
x; =x; + 1, (1 <i<n), (6)

where z} is an updated wavelet coefficient.

Let a modified wavelet coeflicient z be modeled as
T=a"+ A, (7)

where z* is the wavelet coefficient defined in Eq. (6) and A represents the amount of update
caused by tampering. In the case of incidental modification, A; can be modeled as a Gaussian

distribution with a smaller variance, that is
A~ N(0,07), (8)

where o; denotes the variance of the modification quantities due to an incidental distortion.
On the other hand, for an instance of malicious tampering, A, can be modeled as a Gaussian

distribution with a larger variance, that is,
App ~ N(Oa 0—%/[)7 (9)

where oj; denotes the variance of modification quantities caused by malicious tampering.
Usually, it is assumed that the variance of modification quantities caused by an incidental
distortion is smaller than that caused by an instance of malicious tampering, i.e., o; < ;.

Lin and Chang [4] have provided some reference values for o and o) in the spatial domain.
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Fig. 1 illustrates the statistical distributions of updates of wavelet coefficients corre-
sponding to incidental and malicious modifications. In Fig. 1, each quantization interval
has a corresponding binary watermark symbol, 0 or 1. The watermark symbol associated
with coefficient z changes when the amount of tampering A is greater than |0.5¢|. Based
on the above design, a wavelet coefficient is put at the middle of a quantization interval in
order to reduce the probability of watermark errors caused by tampering. Since the same
watermark symbol appears periodically, the watermark symbol may not be changed even
for A > |0.5¢|. For example, if A = 2.0q, the tampered coefficient & will fall into the inter-
val [(2t 4+ 2)q, (2t + 3)¢| with the watermark symbol “0”, which is the same as the original
watermark symbol carried by x. This is the common drawback of a quantization-based
watermarking approach. However, since the variance of modification quantities caused by
an instance of malicious tampering is larger than that caused by incidental distortion, we
can expect that an incidentally distorted coefficient has greater possibility of falling into the
interval [—0.5¢, 0.5¢]. Thus, we have the hypothesis that the probability of watermark errors
caused by an incidental distortion is smaller than that caused by an instance of malicious
tampering. In addition, we will conduct an analysis in the next paragraph to prove that our
scheme can improve the common drawback of the conventional quantization-based approach.

In order to ensure that an authentication system is incidental-distortion-tolerant, the
credibility of a fragile watermark should be increased so that an incidental modification won’t
be misunderstood as a malicious one. Because the sum of more than two random variables

with Gaussian distribution is still a Gaussian distribution but with smaller variance, we have

A~ N(O, %0—2) (10)

when A ~ N(0,0?). Thus, when mean quantization is applied, the distribution of modifica-

tion quantities caused by malicious or incidental distortions will become
< 1
Aj ~ N(0,=a7), (11)
n
or
_ 1 9
Ay~ N(0, —ayy), (12)
n

respectively. Eqs. (11) and (12) indicate that the proposed mean quantization-based ap-

proach can reduce the variance of modification quantities caused by incidental and malicious
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distortions, respectively. From Eqs. (11) and (12), it is obvious that when the number of
coefficients, n, used to encode a watermark value is increased, the probability of watermark
errors will be decreased. In order to increase the credibility of a fragile watermark for image
authentication, the watermark errors caused by an instance of malicious tampering should
be maximized, and those caused by an incidental distortion should be minimized. Under
these circumstances, if the above mentioned n is too small, then the embedded watermark
will be too fragile to tolerate incidental manipulation. On the other hand, if n is too large,
the embedded watermark will be too robust to detect malicious tampering. Therefore, the
number n used to encode a watermark value is a key factor in balancing the tradeoff between

robustness and fragility. We will conduct an analysis with regard to this tradeoff in Sec. 2.3.

2.3 Choosing an Optimal n for Mean Quantization

In this section, we shall provide a formal proof to show that the proposed mean quantization-
based fragile watermarking scheme is superior to the conventional quantization-based ap-
proach [5]. In [5], Kundur and Hatzinakos assumed that the distributions of modification
quantities caused by an instance of malicious tampering and an incidental distortion are
both Gaussian distributions. They also mentioned that the major difference between the
two distributions is that the variance of the distribution caused by an instance of malicious
tampering is larger than that caused by an incidental distortion. Since the operation of a
mean quantization will make the variance of all distributions smaller, in this section, we
shall devise a systematic way to determine an optimal number of coefficients that should be
adopted in the mean quantization process.

Given a distribution of tampering N (0, 0?), and a quantization interval size ¢, the prob-

ability of watermark errors computed using a quantization-based approach is

o ~(2j+3)g 1 .
E = 22/ ’ e 3P gy (13)
) (2j+13)q 2mo

= 22)5202 (14)

27r0 7”

Since Eq. (13) is not in a discrete format, we use the form shown in Eq. (14) instead to

compute the probability of watermark errors with respect to o and ¢ because o and ¢ are
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two important factors which will influence the results. Fig. 2 shows the relations between
the variance of tampering o, the size of a quantization interval ¢, and the probability of
watermark errors F. The X-axis and Y-axis in Fig. 2 represent % and FE, respectively.
However, owing to the fact that the maximum ¢ is bounded by the characteristics of the
human visual system [13], the probability of watermark errors cannot be arbitrarily reduced.
On the other hand, for a fixed ¢, a larger o value will lead to a larger F value. If the variance
o can be reduced, then the probability of watermark errors caused by a malicious distortion
or an incidental distortion will be reduced.

From Fig. 2, we know that the probability of watermark errors is a function of %.
Therefore, we can represent the probability by means of f(t), where ¢t = % denotes the ratio
between ¢ and ¢. In general, the range of ¢ can be divided into three zones. A robust zone
means the value of f(t) is very close to 0. On the other hand, a fragile zone means the value
of f(t) is close to 0.5. There is a transition zone in between, which we call a semi-fragile
zone. The value of f(¢) changes from 0 to 0.5 within the transition zone. Therefore, there are
two critical points that need to be determined. One is the point at which the value of f(t)
changes from zero to non-zero. The other is the point where f(t) starts to saturate at 0.5.
We call these points ¢; and %o, respectively. Furthermore, since the semi-fragile zone is an
ambiguous zone, we would like to make it as small as possible. As a consequence, the values
of t; and ¢, can be determined by solving the following constraint optimization problem:

gt ts) = a- [f(t)] + B | F(t2) — 0.5] +7- j— (15)

where g(+) is a cost function to be minimized. The first term and the second term on the
right hand side of Eq. (15) are the constraints that force the values of f(¢;) and f(t2) to be
as close as possible to 0 and 0.5, respectively. As to the i—f term, it is used to keep the size of
the transition zone as small as possible. In our experiments, we set the values of the leading
coefficients «a, 3, and ~ to be 1000, 1000, and 1, respectively. Based on the above setting, #;
and 75 can be determined. They are 0.15 and 1.15, respectively.

Let the distribution of an instance of malicious tampering and an incidental distortion
be denoted as N(0,0%) and N(0,03%,), respectively. From Lin and Chang’s [4] previous

experience, we know that o,; is larger than o7, and they have a relation o), = co; with
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¢ > 1. Let n denote the number of coefficients used in calculating a mean coefficient (Eq.
(3)); the new distributions of modification quantities caused by a malicious tampering and
an incidental distortion become N (0, (03)?) and N(0, (o},)?), respectively, where o} = ﬁa;
and o}, = ﬁUM = ﬁm. Let the size of a quantization interval, ¢, be determined according
to the human visual system [13]. This means that ¢ is fixed with respect to the human visual
system. The question is how to determine the best n such that the probability of watermark
errors caused by an instance of malicious tampering will be maximized and that caused by
an incidental distortion will be minimized. If the relation % > ty holds (as described in

the previous paragraph), then the probability of watermark errors caused by a malicious

tampering will definitely be maximized. Therefore, we have

U}kw cCor Cor
A G B N Y (16)
q Vng taq

Similarly, if the relation % < t; holds, then the probability of watermark errors caused by

an incidental distortion will be minimized. That is,

o

Tty L <ty =L < i (17)
q

Vg tig —
Combining Eqgs.(16) and (17), we obtain

or
— << —. 18
th_\/__tzq (18)

It is obvious that the minimum n that satisfies Eq. (18) is an ny which makes 7L = \/n;.

Therefore, we have
or

o (19)

n, will lead to the minimum probability of watermark errors caused by an incidental distor-

7’L1:(

tion. On the other hand, the maximum n that will satisfy Eq. (18) is an ny which makes
N2 = %. Thus, we have

cCor
laq
no will lead to the maximum probability of watermark errors caused by an instance of

)% (20)

7’L2:(

malicious tampering. In order to find the best n that will bypass an incidental distortion
while detecting an instance of malicious tampering, we should select an n which is bounded

by n1 and ng, i.e., n € [ng, ny.
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In what follows, we shall conduct a theoretical analysis to determine an ideal n. From
Fig. 2, we know that the probability of watermark errors is a function of %. Since ¢ is a
constant when a specific human visual model [13] is adopted, ¢ is proportional to the value
of 0. Let the probabilities of watermark errors caused by an incidental distortion and a
malicious tampering be f(f;) and f(f,), respectively, where #, = %’ and t, = UTM' Because
oy = cop, we have

.~ oy cop .

ly = — = — =cty. 21
e (21)

When a mean quantization operation covering n coefficients is applied, o; and o,; will be
updated to "; and ‘”‘2 , respectively. In order to obtain the best mean quantization result,
the difference between the watermark error caused by an instance of malicious tampering and
an incidental distortion should be maximized. That is, f(f,) — f(f1) should be maximized.
The physical meaning of maximizing f(f,) — f(#;) is to make the watermark errors caused
by an instance of malicious tampering as large as possible and those caused by an incidental
one as small as possible. Using the optimization scheme, one can decide on an optimal value

of n such that f(fy) — f(f;) is maximized. The simplest way to calculate the ideal n is to

compute the values of f(-ZL) — f(7A,) using various integers n € [n1, n2]. The integer that
leads to the largest outcome is the ideal n.

To obtain an ideal n in the interval [ny,ns], Eq. (18) should hold. However, if ¢ < i—f,
then Eq. (18) doesn’t hold. Under these circumstances, the relation between n; and ng

becomes

C t
(O < (292 _ (TLy2_ (22)
taq t 752(] 751(]

Given two values ny and npg, if ny > ny > npg, then
or

or or or or or
o v TG < m < m

Therefore, if we choose an n which is as close to n; as possible, its corresponding probability

Ng =

) < f( )- (23)

of watermark error will be smaller. Similarly, given two values n¢e and np, if ng > np > no,

then

©or o = f—L) < fl—2) < f(H

COr or
< < . 24
a\/Mc  4/NDp  G/N2 qa\/Mc VRVALI) q\/nz) (24)

Under these circumstances, if we choose an n which is as close to ny as possible, then its

corresponding probabilities of watermark error will be larger. The optimization problem
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now is that of finding an ideal n € [ny, n;] such that f(\;%q) — f(\/%q) is maximized. Once
the ideal n is determined, the watermark errors £ corresponding to a malicious tampering

and an incidental distortion are f(-ZL) and f(7£), respectively. Since making a comparison

between the mean-quantization approach and the conventional quantization-based approach

requires real data, we did this in an experiment.

3 Tampered Area Estimation using Information Fusion

For image authentication, the wavelet-based fragile watermarking method proposed in [5]
only shows the tampering detection results at multiple scales. In this section, we will present
an information fusion technique which can be used to integrate the results obtained at
multiple scales. In addition, the proposed technique has the merit of suppressing sparse
watermark errors spread out over the subimages at multiple scales.

In the following, we first define the function 7" as

1, if Q(z, w (watermark error
() = Q(z,q) # w ( ) (25)
0, if Q(z,q) = w (no watermark error) .

The T function is used to indicate whether or not a watermark error occurs on a wavelet
coefficient z, where ¢ is the size of a quantization interval and w is the target watermark
symbol. To quantitatively calculate the degree of tampering, the chessboard distance [16] is

used, where
Aeness (11, J1)5 (12, J2)) = max{|iy — iz, [j1 — J2|}- (26)
This metric can measure the spatial distance between two coefficients which have been tam-

pered with and are located at (i1, j;) and (i, j2). Next, the density of a coefficient (3, j)

at scale [ is defined as

min  {dopess((2,7), (7', 9)}, if T'(x(4,7)) =1
o ) | ol (sl (o3 @30, TGt ) -

0, if T'(z,(4,7)) =0,
where R, = {x(i*, 7*)|T(x,(4*,5%)) = 1 and (¢*,5*) # (i,7)}. The altered coefficient with
D(-) = 1 will form a dense region while the coefficient with D(-) > 1 will form a sparse region.

Let the probability of watermark errors for an altered coefficient # and all its neighboring
13



eight neighbors be denoted as p(z); the probability that x is dense will be (1.0 — (1.0 —
p(7))®). The relation between the probability of forming a dense region and the probability
of watermark errors is shown in Fig. 3. From Fig. 3, we observe that if the probability of
watermark errors is greater than 0.25, then the probability that this coefficient is dense is
90%. To make the probability that a coefficient is dense as small as 10%, the probability
of watermark errors should be as small as 0.02. For these reasons, an ideal n should be
chosen so as to minimize the probability of watermark errors caused by incidental distortion
and maximize the probability of watermark errors caused by malicious tampering. If the
above mentioned concept can be realized, then the watermark errors caused by a malicious
or incidental distortion should have high probability of being dense or sparse, respectively.
Thus, we can locate the area that has been maliciously tampered with by grouping those
areas with dense responses.

Let Njotel | Nj*™e" - Nfense and N;P*"*¢ denote the total number of coefficients, the total
number of altered coefficients, the number of altered coefficients which are dense and the
number of altered coefficients which are sparse at scale I, respectively, where N/*"P¢" =

Nfense + NPPO¢ - Furthermore, let the tampering ratio at scale [ be defined as
TR; — Nltamper/Nltotal‘ (28)

This ratio is used to measure the degree of tampering. During the process of information
fusion, the following rules are applied to judge whether a modification is malicious or inci-

dental:

Rule 1: I[f TTR; = 0 at every scale, then the target image was neither maliciously
tampered with nor incidentally distorted.

Rule 2: If TR; = 0 for some scale [, then the target image only encountered
incidental distortions.

Rule 3: Assume [* represents the scale where TR;- = min{TR;}. If TR;- > 0
and Nfense < o x N/*™" (0.5 < o < 1.0), then the target image only encountered
incidental distortions.

Rule 4: If Nferse = N/“™" at every scale [, then the target image was only

maliciously tampered with.
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Rule 5: If none of the above rules fits, then the target image was both mali-

ciously tampered with and incidentally distorted.

The above mentioned rules should be applied sequentially. For a target image, if one of the
first 3 rules is matched, then the image is considered to be free of tampering. Otherwise, the
image is regarded as having been tampered with and we have to further compute the size of
the affected area.

In order to retain the responses caused by malicious tampering (dense responses) and
remove those caused by incidental modifications (sparse responses) at scale [, the watermark

errors are transformed into a Tamper Response Map (TRM) as follows:
TRMZ Z ] Z TRF ZU[( 7] ) xl(iaj))7 (29)
’J

where TRF(-) is a tamper response function (TRF). The TRF of a wavelet coefficient,
x (1%, j*), is defined as

Genassl LI S s (%, 57), (1, 5)) < (D(a(i*,5%)) + 1)

0, otherwise,

TRF (z(7*,7%), 2:(¢, j)) =

(30)
where A;(i*, j*) = E,?_(l (@57 k2 ig a normalization factor and D(x;(i*, j*)) is the density
of the coefficient z;(i*, j*) as defined in Eq. (27). The TRF is used to point out where
the dense watermark errors are located. In order to distinguish the degree of importance of

watermark errors at each scale, a weighting factor associated with each scale [ is defined as
WGT’; — (Nldense/Nltamper)Q. (31)

The tamper response maps at all scales are then weighted by their corresponding WGT’s

and then integrated to form the final tamper response map, i.e.,
TRMT™ (4, 5) ZWGTZ x TRM,(i, j). (32)

Let NI and p! denote the number of coefficients and the probability of watermark errors,

respectively, in an area that has been maliciously tampered with at scale [. Because the
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watermark errors in such an area are dense, we have the relation N#"s¢ = NI' x pI'. Thus,

an estimation of the ratio of a tampered area (TA) with respect to the entire image is defined

as
TA _ Nll’: _ Nﬁense _ 1 . Nﬂenes
Nlt*otal plj’: . Nt*otal plj’: Nlt*otal
— B % (Nlayl‘ense/Nt*otal), (33)

where [I* = argmin{TR;} and 3 = 1712. From Fig. 3, it is clear that when the probability of
watermark errors is close to 0.5, the probability that the corresponding coefficient is dense
is large. Let pL = 0.5; then 3 is 2.0. Let the values of TRM/™(j j) be sorted into
TRM/™ (4., j,) in descending order; then the set of pixels, {TRM/™% (i}, j-)

1< k<
(TA x Np)}, will be marked as a set of maliciously attacked areas, where k, k* =1,... N;
and Ny is the size of the image.

Basically, the above mentioned decision rules can be used to detect most of the areas
that have been maliciously tampered with. However, when such an area is very small, it
is difficult to distinguish it from an area that has encountered incidental distortion. This
is because an instance of malicious tampering and an incidental distortion both generate
watermark errors of the sparse type. On the other hand, if the probability of watermark
errors caused by an incidental distortion is very small (zero is the ideal case), then one can
claim that the detected watermark errors were completely obtained from an area that was

maliciously tampered with.

4 Experimental Results

To demonstrate the power of our image authentication system, we will first introduce the ex-
perimental setup in Sec. 4.1 and give the detection results obtained under various incidental
distortions in Sec. 4.2. In Sec. 4.3, we will present some experimental results obtained by
applying both malicious tampering and incidental manipulation. A set of test images pro-
cessed by combining different incidental and malicious manipulations was used to estimate
the area that was maliciously tampered with. A comparison based on the performance of

the conventional quantization-based approach and our approach will be made in Sec. 4.4.
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4.1 Experimental Setup

The images used in the experiment were of size 512 x 512 with 256 graylevels. Fig. 4 is an
example showing how a watermarked image is tampered with, including the original image,
the watermarked image, the altered area, and the final altered image, respectively. The
PSNR of the watermarked image shown in Fig. 4(b) was 35.91 dB. Two peppers (Fig. 4(c))
were added as shown in Fig. 4(b) and formed an image that had been tampered with, as
shown in Fig. 4(d). This set of data was used to test the performance of our approach in
the subsequent experiments.

The set of incidental attacks used in the experiments included JPEG compression, blur-
ring, and sharpening. The mask sizes used in the blurring operation were 3 x 3, 5 x 5 and
7 x 7, respectively. The quality factors adopted for JPEG compression were from 10% to
90%, and the parameters used in the sharpening operation were from 10% to 50%. In the
experiments, the watermark sequence was embedded in the LH subband at each scale of a
wavelet transformed image. As to the determination of the best n at every scale of a wavelet
transform, this can be calculated by scanning the interval [n, ns] for large ¢ (¢ > 7.67) or
by scanning the interval [ny, n;] for small ¢ (1 < ¢ < 7.67), where n; and ny are computed
using Eqs. (19) and (20), respectively. We use n = (ny, ns, ..., ns) to represent the number
of coefficients used at every scale in the mean quantization process, where n; is the number
of coefficients used to derive a mean at scale ¢ and s is the total number of scales used. From
Egs. (19) and (20), the best set of n could be theoretically determined as (9, 16, 16, 11)
when the total number of scales was chosen to be 4. On the other hand, for the purpose of
easy implementation, 3 X 3,4 x 4,4 x 4 and 4 x 3 were used as the block sizes at scales 1, 2,

3, and 4, respectively.

4.2 Detection Results Obtained by Applying Incidental Distor-

tions Only

In this section, we shall check whether our approach could tolerate a number of incidental
operations with different degrees of alteration. Fig. 5 shows a set of test images which
was used in the experiments. The incidental operations which were applied to the set of
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test images included JPEG compression, blurring, and sharpening. Table 5 lists the results
obtained in this experiment. A “\/” symbol shown in a box indicates that our system
considered the operation to be an incidental one. On the other hand, an “x” symbol indicates
that our system mistakenly considered the operation to be a malicious one. From the table, it
is obvious that our system could successfully bypass almost all the JPEG compressed images
up to quality factor of 20%. As for the sharpening operation, our system could successfully
tolerate most of the sharpened images up to a 50% sharpening factor. However, in the case

of the blurring operation, our system only worked well when the window size was 3 x 3.

4.3 Detection Results Obtained by Applying Malicious Tamper-

ing and Incidental Manipulation Simultaneously

In this section, we shall give some experimental results obtained by applying malicious tam-
pering and an incidental manipulation simultaneously. The objective of these experiments
was to check whether our approach could successfully tolerate an incidental manipulation
while detecting a malicious attack. Fig. 6(a) is a pepper image that was tampered with by
performing 60% (quality factor) JPEG compression, followed by two-pepper replacement.
The detected watermark errors at scales 1 to 4 are shown in Figs. 6(b)-(e), respectively. It
can be seen that the watermark errors caused by the JPEG compression are much fewer than
those caused by malicious tampering. The detected watermark errors were then converted
into the tamper response maps shown in Figs. 6(g)-(j). It is obvious that the coefficients
having the sparse type all had weak responses in the tamper response map at each scale. On
the other hand, the areas that corresponded to the regions that were maliciously tampered
with all had strong responses in the tamper response maps. After performing information
fusion, the final detected altered areas were those shown in Fig. 6(f). It is apparent that the
maliciously modified regions were detected correctly.

Fig. 7 shows another 21 detection results obtained using the proposed mean quantization-
based fragile watermarking technique. The symbols “T,” “B,” “J,” and “S” denote malicious
tampering, blurring, JPEG compression and sharpening, respectively. The number following

each symbol is the parameter used in an incidental distortion. For example, “T+B 3 x 3”
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shown in Fig. 7(b) means an image was maliciously tampered with and then blurred with a
mask of size 3x 3. In the whole set of experiments, the resolution of the wavelet transform was
taken up to 4 scales. The optimal number of coefficients used to perform mean quantization
at each scale was 9, 16, 16, 12, respectively. That is, n = (9,16, 16,12). From Fig. 7, it is
apparent that our approach did work well in most cases, especially in tolerating incidental
manipulation like JPEG. Fig. 7(1) indicates that when the quality factor reached 20%, the
detection result was still good. In the case of a combined attack including 7 x 7 blurring
(Fig. 7(d)), the result was bad. But when the window size were 3 x 3 and 5 x 5, the detection
results were good. In the case of a combined attack involving sharpening, the results were
good when the sharpening factor was smaller than 50%. When the sharpening factor reached

or exceeded 70%, the detected results were completely wrong.

4.4 Comparison with the Conventional Quantization-based Ap-

proach

In this section we shall compare our approach with the conventional approach. The ma-
liciously attacked image shown in Fig. 4(d) subjected to JPEG compression with a qual-
ity factor 60% was used as the test image. The watermark errors (at scales 1 to 4) ob-
tained by applying the conventional quantization-based approach [5] and the proposed mean
quantization-based approach with n = (9,16, 16,12) are shown in Figs. 8(a) and 8(b), re-
spectively. It is obvious that the results obtained by applying our approach are better than
those obtained by applying the conventional approach.

5 Conclusion

In this paper, a mean quantization-based fragile watermarking approach has been proposed
for image authentication. Our system is able to maximize the probability of watermark errors
caused by an instance of malicious tampering and minimize the probability of watermark
errors caused by an incidental distortion. In addition, an information fusion procedure which

can integrate detection responses at each scale in the wavelet domain has been presented
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which can be used to estimate the area that has been maliciously tampered with.

Our future work will proceed in two directions. First, the capability of our image authen-
tication system in distinguishing malicious tampering and incidental distortion will be further
improved so that incidental distortion with large variance of modification, such as histogram
equalization, can also be tolerated. Secondly, we will extend the mean quantization-based
watermarking approach to multipurpose watermarking [6], so that an embedded watermark

can be used in multiple applications.
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Figure 1: The statistical distribution of incidental modification and malicious tampering on

wavelet coefficients (top) and an illustration of quantization-based watermarking (bottom).
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Figure 2: The relation between the variance of tampering o, the quantization interval’s size
¢ and the probability of watermark errors.
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Figure 4: An example showing malicious tampering by means of object replacement: (a)
original image; (b) watermarked image; (c) objects used for tampering; (d) modified water-

marked image.
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Figure 5: A set of test images.
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Table 1: Tampering detection for a set of incidentally manipulated test images. A “ /"

symbol indicates that our system treats the operation as an incidental distortion while an

x “symbol indicates that the operation is malicious tampering.

Image Image Label

Operation AO1 | A02 | AO3 | A04 | AO5 | A06 | AO7 | AO8 | A09 | A10 | A1l | A12
Blur (3 x 3 vIivivivivix]v]<lv]v]v]v
Blur (5 x 5) X X X V X X X X X X Vv Vv
Blur (7 x 7) X X X X X X X X X X X X

Sharpen (F=10%) | v | vV | V | V |V |V |V |V | IV |V |V |V
Sharpen (F=20%) | v | v | vV |V |V |V | V |V |V |V |V | V
Sharpen (F=30%) | v | v | V |V |V | V|V IV |V |V |V |V
sharpen (F=20%) | v | v | v | v [ v v v x| v]v]v]V
Sharpen (F=50%) | v | v | v | vV | V X vV X vV X X Vv
Sharpen (F=60%) | +/ X Vv X X X X X V X X V
Sharpen (F=70%) | x X X X X X X X V X X V
Sharpen (F=80%) | x X X X X X X X X X X Vv
Sharpen (F=90%) | x X X X X X X X X X X X

JPEG (QF=90%) | v | Vv |V |V | V|V |V |V |V |V |V |V
wra@F=s0%) | v | v | v | v v |v]v]v]iv]iv]v]v
JPEG (QF=70%) | v | Vv | V I V|V |V |V IV IV IV ]V |V
JPEG (QF=60%) | v | Vv | V |V | V|V |V |V |V |V |V |V
JPEG (QF=50%) | v | V |V |V |V | VIV I IV IV IV |V ]V
JPEG (QF=40%) | v | vV | V IV |V IV |V IV IV IV |V |V
JPEG (QF=30%) | v | Vv |V |V | X |V |V |V |V |V |V |V
JPEG (QF=20%) | v | Vv | V |V | X |V IV I IV IV |V |V |V
JPEG (QF=10%) | x X X Vv X Vv Vv X X X X X
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Figure 6: Tampering with object placement and JPEG compression: (a) is a tampered
image with two objects added; (b)-(e) are the detected watermark errors from scales 1 to 4,
respectively; (g)-(j) are the tamper response maps derived from scales 1 to 4, respectively;

(f) is the final result after performing information fusion.
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Figure 7: A set of detection results obtained by applying our mean quantization-based

method. (a) is the detection result when the attack is object placement only; (b)-(d) show

the detection results when the attack is object placement followed by blurring with mask

sizes of 3x 3, 5x 5, and 7 x 7, respectively; (e)-(m) show the detected results when the attack

is object placement followed by JPEG compression with a quality factor ranging from 90%

to 10%; (n)-(v) show the detection results when the attack is object placement followed by

sharpening with a sharpening factor ranging from 10% to 90%, respectively.
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(a) Kundur and Hatzinakos' approach.
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(b) Mean quantization approach with

Figure 8:
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n =(9, 16, 16, 12).

Comparison of detected watermark errors obtained using the conventional

quantization-based approach and the mean quantization-based approach with n

(9,16,16,12).
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