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Abstract

The EZW (Embedded Zerotree Wavelet)-like image compression algorithms lack
the error-resilience ability in noisy transmission environments. We propose the
channel-optimized source coding scheme to improve the robustness of them. First,
a block-based method is adopted to localize the error effects. Then we assign bits to
each block by applying dynamic bit allocation to the block-based EZW algorithm
based on the rate-distortion functions computed from the channel noise models.
The performance of our method was evaluated on both the binary symmetric chan-

nel and burst noise channel models.
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1 Introduction

A modern communication system consists of the source coding and the channel cod-
ing. These two parts are usually designed separately because of Shannon’s separation
principle [1]. A design separating source coding from channel coding can potentially
be inefficient in practice. For example, the Embedded Zerotree Wavelet (EZW) coder
[2] is known to be a state-of-art image compression algorithm, but even a single bit
error occurring in the transmitted bitstream will drastically affect the overall decoded
image quality. In this case, channel coding has to be designed so as to guarantee almost
error-free performance, which will result in many redundant bits. Therefore, the joint
consideration of source and channel coding may be necessary and useful [3]. One class
of joint source-channel coding is channel-optimized source coding, which considers the
channel properties in the source coding design. Based on the idea of channel-optimized
source coding, we propose a channel-optimized source coding adaptation for EZW-like
progressive codec using the rate-distortion functions. Our innovation lies in considering

the statistics of the channel noise in rate-distortion analysis.

Recently, the best low bit-rate image compression method has been known to be the
Embedded Zerotree Wavelet (EZW) algorithm [2]. Although several improved methods
for EZW [4] have been proposed, their basic ideas are similar. Therefore, we have
concentrated on improving the robustness of the EZW algorithm. Our proposed method
can be extended to the other EZW-like progressive codec with minor modification. The
main problem with EZW over a noisy transmission channel is that once a single bit error
occurs in the encoded bitstream, the bits before the error can be correctly decoded,
but all the bits after the error are useless, which can drastically affect the overall image
quality if they are decoded. The other problem with EZW is that we do not know
whether errors have occurred. Compared to EZW, the block-based image compression
methods, like JPEG, have the advantage that one single error in the bitstream only

affects the quality of the block in which the error occurs. For the above reasons, block-



based EZW has been proposed [7].

The idea of block-based EZW is to divide the original image into groups of square
blocks, and each block is coded using the EZW method. Like JPEG, this block-based
EZW method limits error propagation to a single block and, hence, improves the ro-
bustness of the EZW algorithm. However, the PSNR(Peak Signal-to-Noise Ratio) per-
formance of the block-based EZW method in noiseless condition will be slightly less
than that of the original EZW method. Thus, an optimal bit allocation is usually
conducted to assign variable bits to each block and improves the performance of the
block-based codec. We will show that the performance of block-based EZW can be
further improved if channel noise statistics are used in bit allocation which assigns bits
to each block. In other words, the effects of channel errors are considered in our rate-
distortion analysis for all blocks, and these rate-distortion functions are used in the

dynamic bit allocation procedure.

One interesting question is whether the progressive property is still satisfied in each
block in our block-based scheme. That is, whether the number of bits allocated to each
block increases as the total number of bits assigned to the whole image increases. We

will show that the answer to this question is positive.

The performance of our proposed method was evaluated in the binary symmetric
channel and burst noise channel. Our method outperforms the original EZW method
in both noise models about 5 dB when the image is coded at 1bpp(bit per pixel) rate

and the average bit error rate of the transmission channel is 1072 and 1074.

In Section 2, we introduce the proposed block-based method for EZW-like progres-
sive codec and discuss the implementation of the block-based wavelet transform and
the dynamic bit allocation. In Section 3, we discuss the dynamic bit allocation with
rate-distortion constraints and analyze the rate-distortion functions with binary sym-
metric channel and burst noises. In Section 4, simulation and experiment results are

discussed. Finally, conclusions are given in the last section.



2 The Block-Based Channel-Optimized Source Coding

In this section, we will propose a framework of block-based channel-optimized source
coding based on EZW. Although we will mainly discuss EZW, our method is applicable
to other wavelet-based progressive codec with minor modifications. This framework is
designed to improve the robustness of the EZW algorithm in noisy channel environ-

ments.

2.1 A block-based EZW scheme

As we stated earlier, we will adopt the block-based modification for EZW to improve
the robustness of transmission against channel noises. This means that an image is
first divided into blocks, then the wavelet coefficients of each block are obtained and
organized into an individual EZW bitstream. One can obtain the wavelet coefficients of
an image block, by a similar ideal from [5] and [7], from relocation of the corresponding
wavelet coefficients of the image. See Fig. 1 for the correspondence between the
wavelet decomposition of an image and the block formation. By relocation the wavelet
coefficients of the image in Fig. 1(a), one will obtain the wavelet coefficients of the
block indicated in Fig. 1(b). In general, for a 2™ x 2™ image, one can divide it into
totally (2™~% . 2m=*) blocks by applying k wavelet decompositions of it and associate
each wavelet coefficient in the DC block with its children in the three orientations.
These relocated wavelet coefficients are equivalent to the wavelet coefficients of each

divided block of size 2F x 2* in the original image.

In [5], the authors assign equal bits to each block. However, it is more reasonable
to assign different bits to each block according to its rate-distortion function, which
is calculated based on the channel statistics, which will be discussed later. Therefore,
we have variable-length bitstreams for all blocks after conducting unequal bit alloca-
tion. Suppose we concatenate by cascading these variable-length blocks into a single

bitstream. One error bit in some block will affect all the bits in the bitstream after the



error bit because of the loss of synchronization information about the block lengths.
Therefore, we propose a scheme similar to EREC(Error-Resilient Entropy Code) [6]
which aligns these variable-length blocks into equal-length slots. These slots are then
interleaved to form a single bitstream. EREC has been shown to be effective when more
important information is transmitted near the beginning of each variable-length block
[6], which is similar to EZW compression. In addition, we must add an EOB(end of
block) symbol to the EZW coding of each block to signal the end of a block. The other
benefit of adding an EOB symbol is that an error can be detected earlier. In fact, EZW
has an additional ability of error detection in its significance map decoding process,
which is not mentioned in the original work of EZW. When we decode a POS or a
NEG symbol for a coefficient which was already found to be significant in the previous
pass, some errors will certainly occur. This knowledge can enable early detection of

errors.

2.2 The optimized bit allocation for block-based source coding

The block-based EZW method as stated in the previous subsection produces individual
bitstreams for all blocks. Then, these coded bitstreams are sent through noisy channels
with specific noisy properties. In our channel-optimized source coding framework, the
number of bits from a given bit budget allocated to each block will be assigned according
to the corresponding channel statistics to achieve the least overall distortion. We will
discuss the bit allocation considering the channel effects in the next section. For the
moment, we will have a brief discussion of the bit allocation formula without considering

of channel noises.

Let D;(n) denote the distortion in block 7 with n bits correctly decoded. D;(n) can
be calculated based on the MSE (mean square error) between the original and decoded

wavelet coefficients. The bit allocation problem involved in assigning b; bits to block i,



1 = 1...K, with a total bit budget R , can be formulated as follows:

K
i=1

K
subject to Z b; < R,

i=1
Many conventional dynamic programming skills can be used to solve the above

problem [10].

A desired property of the above bit allocation procedure is that, as the total bit
budget R increases, the number of bits allocated to each block also monotonically
increases. This property is especially important for a progressive coder since it preserves
the progressive property in each block after the bit allocation. To prove this fact, we
refer to two results in [9]. The first theorem is a known result of the Lagrange multiplier

method [9].

Theorem 1: For any A > 0, the solution bf(\),i = 1..K, to the unconstrained

problem

{bii=1...K} =

K K
min_ Y Di(bi) + XY _b; (2)
=1

is also the solution to the constrained problem (1), with the constraint R = Zfil b (A).

For a given A, the solution to (2) can be obtained by minimizing each term of the
sum in (2) separately. We also need the following lemma from [9] to complete our

theorem.

Lemma 1: Let D(b) be a real-valued function over some bounded and closed domain

Z in the real line. Let b; be a solution to
in{D(b) + A\1b
qgg{ ( ) 1 }a

and let by be a solution to
%z%z{D(b) + Aob};
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then,
(A1 —X2)(b1 —b2) <0

for any function D(b).
We prove our theorem in the following.

Theorem 2: For bit budgets R; and Ray, let their corresponding optimal solutions
to (1) be {bu,bm, blK} and {b21,b22, ...,bQK}. If R1 < RQ, then bli < bQi,i =1...K.

Proof: Let the solution A corresponding to Ry and Ry be A; and Ao, respectively.

Since Ry < Ry, there exists some block m, such that by, < byy,. From Lemma 1,
(A1 = A2) (bim — b2m) <0,
we derive A1 > Ag. Applying Lemma 1 and Ay > Ao to other blocks, we derive

by; < bgi,’i =1...K. A

The above theorem indicates that the number of bits allocated to each block will be
increased once the total bit budget is increased, and will be decreased if the amount of
bit budget is decreased. This theorem provides the progressive property for each block

after the bit allocation procedure is conducted.

2.3 An extension to the multi-channel framework

The block-based EZW scheme stated in the previous section can be extended to a
multi-channel framework, where multiple channels with different noise characteristics

are used to transmit the coded bitstreams.

In the block-based EZW scheme, the whole image is divided into small square blocks
and these blocks are coded with EZW method. We can further regroup these blocks
into partitions, producing separated bitstreams for the partitions and transmitting

them through channels with different noise characteristics. The block organization and



assignment to channels are also interesting issues. For example, blocks containing visual

significant features can be grouped and assigned to a more reliable channel.

The overall flow diagram of our block-based EZW method is depicted in Fig. 2.

The extension to the multi-channel framework is depicted in Fig. 3.

The dynamic bit allocation formula in (1) can be modified as follows:

K

=1

K
subject to Z b; <R,
i=1

where C;(b;) is the cost function for channel 4, and k; is used to balance the distortions
and the cost functions. Note that the cost function C;(b;) is the cost of sending b;
bits through the channel responsible for block i, where the cost can be money, time,
or other meaningful units. For example, a high quality transmission line usually costs
more money than a noisy channel. The multi-channel extension shows an application

of our proposed method.



3 Rate-Distortion Analysis Considering Channel Errors

In this section, we will analyze the rate-distortion functions of a bitstream generated
by a progressive coder when it is sent through a noisy channel. We will consider the
rate-distortion functions calculated in the noiseless channel, called the original rate-
distortion functions, and the rate-distortion functions calculated in the noisy channel,
called the expected rate-distortion functions. Since the channel is contaminated with
noise, the expected rate-distortion functions will be calculated statistically. Two kinds
of channel errors will be examined: the binary symmetric channel(BSC) noise and burst

noise.

Let D(n) be the distortion of an image block when n bits are assigned to encode the
image block by a progressive coder and decoded without any errors. Consider trans-
mitting these n bits through a noisy channel. The expected rate-distortion function is

formulated as follows:

n

D*(n) =E{D(n)} = ZP(Z)D(Z —1) + P°(n)D(n), (4)
i=1

where P(i) is the probability that the first error occurs at the i-th bit, and P%(n) is
the probability that all n bits are error free. P(i) and P°(n) are dependent on the
channel’s noise model. We will describe how to calculate P(i) and P°(n) for the BSC

and burst noise models in the following paragraphs.

3.1 BSC model

Assume that a bitstream is transmitted over a binary symmetric, memoryless channel
(BSC), and that the channel bit error rate (BER) is P,. The BSC noise can be modeled

as shown in Fig. 4.

If we allocate n bits for encoding and transmission over this noisy channel, then we



have the following rate-distortion function:

n

D*(n) =Y (1-P)""'PD(i — 1)+ (1 — P,)"D(n). (5)

i=1
Since ", (1—P,)" 1 Py+(1—P,)" = 1, the above equation calculates the expected
distortion when n bits are sent over a noisy channel with a BER of P,. Comparing (5)

with (4), we find that P(i) = (1 — P,)* ' P, and P°(n) = (1 — P,)".

Some properties of equation (5) should be discussed. First, if the original rate-
distortion function D(4) is monotonically decreasing, then it is obvious that D*(n) >
D(n). This implies that we will have more expected distortion while transmitting a
bitstream through a noisy channel. Second, by calculating the difference between the

expected distortion with n bits and n + 1 bits, we will obtain

AD* = D*(n)—D*(n+1) (6)
= (1-R)""[D(n) - D(n+1)].

= (1-P)""AD.

From (6), n — oo = AD* = 0, which means that the expected distortion converges
with large n. Moreover, AD* is smaller with a larger value of P,, which means that the
expected rate-distortion function converges faster as the BER increases. Fig. 5 shows
examples of the original rate-distortion function D(i) (with BER=0) and the expected
rate-distortion functions D*(i) with different BERs. One can observe that the rate-
distortion curves become flatter when the BERs increase. Also, one can observe from
the figure that for a fixed number of bits, the expected distortion increases when the

BER increases.

Based on the definition of the expected rate-distortion function D*(n), we can
denote D} (b;) as the expected distortion involved in allocating b; bits to block i under
a channel noise BER of P;. We now have a new formula for dynamic bit allocation as

follows:



K
miny" D; (bi) (7)
i=1

K
subject to Z b; < R.
i=1

3.2 Burst noise model

The other type of channel error is burst noise, which may cause errors to occur con-
tinuously in the bitstream. Let us use X to denote the random variable of the burst
noise. We adopt the Gilbert-Elliot(G-E) model [8] for burst noise simulation. The G-E
model depicted as Fig. 6 has two states: the G(Good) state is almost error free, and
has probability of error (1 — k); the B(Bad or Burst) state has burst errors, and has
probability of error (1 — h). The transition probabilities P(B|G) and P(B|G) are p
and ¢, respectively. Based on the properties of the Markov chain, we can derive the
steady-state probabilities in states G and B as
q p
P(G) = ZTq,P(B) = oyt (8)

Moreover, we can derive the average BER as
Pifp,a, k. h) = ——{a(1 — k) +p(1 — )} (9
b\P> 4, R, = q\l — pll = .
pP+q

The average BER measure provides us a concept about the randomness of the
created burst noise. As shown in Fig. 7, we plot the expected rate-distortion curves of
a block in BSC noise with BER = 0.01,0.005,0.001 and 0.0005, and that of the same
block in burst noise with average BER = 0.0025. The rate-distortion curve of the burst

noise just lies between the curves of the BSC noise with BER = 0.005 and 0.001.

We repeat the expected rate-distortion function in (4) here:

D*(n) =Y _ P(i)D(i — 1) + P°(n)D(n). (10)
i=1
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For the burst noise case, the P(i),i = 0..n — 1, and P%(n) terms can be derived
recursively. We introduce two intermediate terms, P2(i) and P3(i), which represent
the probabilities that the first ¢ generated bits of the burst noise X are correct, and
the random variable X enters the G state and the B state at the i-th bit, respectively.

The recursive formulas for P2 (i) and P3(i) are

PY(i) = P2(i — 1)P(G|G)k + P (i — 1)P(G|B)k, (11)

PY(i) = P2(i — 1)P(B|G)h + P5(i — 1)P(B|B)h.
We then have P(n) = P2(n) + P5(n) and

P(i) = {PG(i = 1)P(G|G) + Pg(i — 1)P(G|B)}(1 — k)

+{P2(i —1)P(B|G) + P%(i — 1)P(B|B)}(1 — h).

Once we know how to calculate P(i) and P°(n) for the G-E model, we can calculate
the expected rate-distortion function D*(n) in (10) and then apply it to the dynamic

bit allocation scheme in (7) for robust compression.
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4 Experiment Results

We will demonstrate the performance of our proposed block-based channel-optimized

source coding framework for BSC and burst noise separately.

4.1 BSC model

For BSC noise, we evaluated our proposed algorithms by encoding the 512 x 512 Lena
image using different target bit rates and block sizes. The resultant bitstreams were
then sent to the simulated channel with the desired BER and decoded to evaluate their
PSNRs(Peak Signal-to-Noise Ratios). The average performance was obtained from 32
random noise sequences for each BER. In Fig. 8, we compare the performance of our
method with that obtained using the method in [5] and with that obtained using the
original EZW method over noisy channels with the same BER. The encoded bit rate
was 1bpp, and we divided the original image into 32 x 32 blocks. It is obvious that our
method is better than the others. For very large BER, such as 1072, errors often occur
at the front of the encoded bitstream in each block. All the bits after that error are

useless, so there is no significant performance gain in this situation.

Fig. 9 shows the results obtained using our proposed dynamic bit allocation method
and the expected rate-distortion constraints, with the same 32 x 32 block division and
different BERs. We find also that in a transmission environment with very large BER,
the bit allocation is useless even under high bit rate conditions because of the high bit

error rate.

Fig. 10(a) and Fig. 10(b) show the sample images obtained when the coded 1bpp
images were transmitted through BSC noise with BER = 10~3. Fig. 10(a) shows the
result of coding with the original EZW method, and Fig. 10(b) shows the result of
coding with our block-based EZW method, where the image was divided into 32 x 32

blocks with the BER known in a priori. Both images were thresholded to pixel values

12



ranging from 0 to 255; otherwise, errors would affect the contrast in the images. We
can see clearly that the bit errors affected the overall image quality under the original

EZW method, but that only some blocks were blurred when our block-based EZW

method was used. Both images require post-processing for better visual quality.

4.2 Burst noise model

We also applied our method to a burst noise channel. We used the G-E model to
simulate burst noise as shown in Fig. 6 with 4 parameters. It was difficult and less
meaningful to control these 4 parameters and to describe the results obtained using

these parameters. We adopted the simplification of the G-E model given in [11].

In the simplified G-E model, the original 4 parameters were replaced with 3 more
meaningful parameters. The first parameter was € ,the average BER of the channel.

Note that  is just the same as the equivalent BER Py(p, ¢, k, h) stated in equation (9).

The second parameter was b, the average burst length, i.e., the average number of
times that the random variable of the burst noise staying in the B(Bad) state. Note
that

- 1
b= —.
q
The third parameter was p;, the duty cycle or the steady-state probability of being

in the B state. Note that

p

p1=—
P+q

These three parameters Z, b, and p; are more meaningful and are better to charac-
terize the burstiness of the channel than the original four parameters. Since we had one
less degree of freedom than the original G-E model, we had to introduce the following

relation:
1—Fk=¢p.
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This relation ensured that the simplified G-E model was able to describe dense(low duty
cycle and high intensity, i.e., high %), and diffuse(large duty cycle and low intensity)

conditions [11].

All the experiments below are conducted at 1bpp bit rate. In Fig. 11, we compare
the performance our method with that of the equal bit allocation method [5] and the
original EZW method over burst noise channels with fixed p; and b. Note that the
conditions p; = 0.5 and b = 2 represent a case with fast fading burst noise. It is
obvious that our method achieved better performance than the other two methods.
The difference in performance was insignificant at BER=10"2 because of the high bit

error rates.

In Fig. 12, we show the performance results obtained with fixed p; = 0.5 and
b = 12.5, which represent the slow fading burst noise. Our method still achieved better

performance than the others did.

In Fig. 13, the performance results obtained using our method are shown with fixed
p1 = 0.5. b was changed from 2 to 5 and to 12.5 to represent the change from slow
fading to fast fading. We can observe that our method achieved stable performance

under these different burst noise conditions.

As an example, we show in Fig. 14 the image samples decoded following transmis-
sion through the burst noise channel. It is obvious that transmission errors affected the
overall image when the original EZW method was used, while our method limited the

affected regions to local blocks.
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5 Conclusion

We have proposed a block-based channel-optimized source coding modification for
EZW-like progressive codec to enhance its error-resilience under channel noise. A block-
based scheme was adopted to localize the error effects. Then, we used the dynamic bit
allocation strategy to optimally allocate the bit budget to each block. The dynamic bit
allocation scheme employed rate-distortion functions, computed based on the channel
noise models, as constraints. Thus, the channel noise statistics were used to improve
the performance of the EZW-like image compression method in a noisy transmission

environment.

Experiment results show that our proposed method has better error-resilience ability
compared to the original EZW method and the other proposed method [5]. Both the

BSC and burst noise models were used to evaluate the performance.

We expect to add channel coding to our framework in the future.
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(b)

Figure 1: The correspondence between wavelet decomposition and block formation. (a)

Original wavelet decomposition, (b) the corresponding block.
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Figure 2: The block-based EZW flow diagram.
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Figure 3: The multi-channel channel-optimized source coding framework.
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Figure 4: The binary symmetric channel.
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Figure 5: The expected rate-distortion functions of a given block with different BERs.
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Figure 6: The Gilber-Elliot burst noise model.
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Figure 7: The expected rate-distortion functions of a given block in BSC noise with

different BERs and in burst noise with average BER = 0.0025.
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Figure 8: The PSNR performance of various compression schemes. Solid ‘-’ is the result
of our proposed block-based EZW using statistical rate-distortion constraints. ‘-.” is

the result of our proposed block-based EZW using original rate-distortion constraints.
‘- -7 is the result of equal length allocation to each block [5]. ‘..” is the result of original

EZW over noisy channels.
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Figure 9: The PSNR performance of our proposed block-based EZW scheme using

expected rate-distortion constraints. Different bit rates are given. ‘.., ‘-7, -’ and ‘- -’

lines denote the results of 1bpp, 0.75bpp, 0.5bpp and 0.25bpp, respectively.
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Figure 10: The reconstructed images through the BSC noise with BER = 1073.
(a) Original EZW method, (b) the proposed block-based EZW with expected rate-

distortion constrained bit allocation .
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Figure 11: The PSNR performance of various compression schemes in fast fading burst

noise channel.
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p1=0.5, b=12.5, slow fading burst noise
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Figure 12: The PSNR performance of various compression schemes in slow fading burst

noise channel.
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p1=0.5, PSNR performance of our method in burst noise
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Figure 13: The PSNR performance of our robust compression schemes in burst noise

channels with different fading characteristics.
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Figure 14: The reconstructed images through the G-E burst noise with average BER
= 1073. (a) Original EZW method, (b) the proposed block-based EZW with expected

rate-distortion constrained bit allocation .
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