
1

Retrieving Information from Document
Images: Problems and Solutions

Fu Chang
Document Analysis and Recognition Laboratory

Institute of Information Science 20
Academia Sinica

128 Academia Road, Section 2
Nankang, Taipei 115

Taiwan R.O.C.
Email: fchang@iis.sinica.edu.tw

ABSTRACT

An information retrieval system that captures both visual and textual con-
tents from paper documents can derive maximal benefits out of DAR techniques
while demanding little human assistance for achieving its goals. This article dis-
cusses the technical problems, solution methods and integration of them into a
well-performing system. Focus of the discussion is on very hard applications, for
example, to Chinese and Japanese documents.

In addition to large group of potential readers, the latter types of documents
create many technical issues that deserve experts’ attention. The complicated
Chinese or Kanji characters, for example, impose serious problem for image bi-
narization. The coexistence of vertical and horizontal textlines on the same page
renders document segmentation difficult. The large number of characters also
challenges the way textual contents are recognized and retrieved.

Problems discussed in this article will be centered on these issues. Solution
methods will also be highlighted, with the emphasis placed upon some new ideas,
including window-based binarization using scale measures, document layout
analysis as solving multiple constraint problem, and full-text searching technique
capable of evading machine recognition errors.

1. Introduction

Faithful representations of paper documents need to take care of both visual and

symbolic information. The former includes icons, graphics, flow charts, tables, and

physical layout of documents, while the latter covers all the textual contents, includ-

mailto:fchang@iis.sinica.edu.tw

2

ing words, textlines, paragraphs and articles. To fetch both types of information at

fairly low expense is possible for today’s technology. For example, scanner can be

used to obtain visual contents (or images) of documents, while OCR software can be

used to transcribe their textual contents. But to obtain all the contents with the same

level of faithfulness as they stand in the original documents is not an easy task.

The requirement can be somewhat lessened if only the retrieval values of the

contents are honored. Thus, to prepare the retrievable contents out of paper docu-

ments, one can do the following.

(i) Use scanner, perhaps also image-processing software, to obtain visual repre-

sentation of the documents.

(ii) Use OCR software to obtain text transcription out of the same pages.

To retrieve the information thus obtained and also stored in the database, one can

further carry out the following operations.

(iii) Use search engine to find interested information out of the text contents.

(iv) Retrieve the corresponding images that contain the information.

The combination of the above operations takes advantage of the fact that images

are good for viewing purpose and textual contents are ideal for information search.

Admittedly, machine-transcribed texts can hardly be error-proof. But the machine

errors do not appear on the images and therefore do not have any impact to the view-

ing process. Their impact to the search process can also be minimized if certain error-

tolerance mechanism is inserted in the process. The net result would be the exemption

of human assistance in preparing retrievable information (except for feeding docu-

ments to scanners) and nearly no miss in fetching information from the visual con-

tents.

Balance of loads is thus the major idea in the above consideration. What is defi-

cient in one working component (machine transcription of textual contents) can be

3

compensated by other components (production of visual contents and fetch informa-

tion out of them). For sure, requirements become more stringent for the components

to which the burdens are shifted. First, the visual contents must be sufficiently good

for human eyes. Next, retrieving information requires correct reading of not only the

words, but also the word orders, out of the documents. Finally, text-searching capa-

bility also needs to be strengthened so as to bypass possible errors occurred in machi-

ne transcription.

While all these issues may already fall within the realm of DAR interests, we

want to address in this article some specific problems that are associated with Chinese

documents (or their similar types, for example, Japanese documents). With the last

five years of efforts, our laboratory has put together a system that is capable of trans-

forming paper documents into viewable and searchable contents. There are four major

components embedded in this system. (1) Image Processing: the core is an algorithm

that transforms gray-scaled images into binary images. (2) Document Analysis: works

covered by this component include skew calibration, segregation of pictures and

frames from textual contents, extraction of textual blocks, textlines, and individual

characters, etc. (3) OCR Engine: it conducts recognition over printed documents con-

sisting of Chinese, English and numeral characters. (4) Search Engine: the searching

capability of this component is enhanced by an OCR-error-tolerant function.

Undoubtedly, some of the methods used in other applications (for example, Eng-

lish documents) can readily lend solutions to the problems associated with Chinese

documents. Examples as such include skew calibration, segregation of non-textual

information, and some feature extraction methods. But the complicated nature of Chi-

nese documents create many new problems, or perhaps, harder problems. It has al-

ready been observed long time ago that Chinese character is probably the most diffi-

cult type among all others for machine recognition. The number of characters and

4

their complicated structures are major causes for the difficulty. The complication of

characters, moreover, requires the capability of telling apart the subtle distinctions

between foreground and background pixels. Chinese documents are also known to

allow two types of word orders—horizontal and vertical—to appear on the same

pages. This enlarges the degree of freedom for the possible document layout struc-

tures. The fact that many Chinese characters are themselves compositions of elemen-

tary entities also increases the complexity of algorithms designed for analyzing the

structures.

In this article, we will thus focus the discussions on the problems that are speci-

fic to Chinese document applications and, above all, the problems that are vital from

the information retrieval point of view. The rest of the paper proceeds in the following

order. A discussion of binarization of document images is put forth in the next section.

Section 3 covers the general issues in analyzing layout structures of Chinese docu-

ments. Section 4 discusses the textual search mechanism with machine-error tolerance.

Section 5 constitutes a brief summary for the whole article.

2. Binarization of Document Images

Scanners rely upon their internal mechanism to transform gray-scale images (in

which each pixel assumes one of 256 possible values) into binary images (in which

each pixel assumes either black or white value). However, when one applies them to

produce binary images for aged Chinese documents, many small but complicated

characters will become blurred.

Years ago, before we started to work out our own solution, we thought naively

that a good choice of threshold would solve the problem. Here, by threshold we mean

a value, say T, based on which each pixel can be classified as either black or white,

5

according to whether its gray value falls below or above T1. To test this hypothesis,

we conducted a very simple experiment. We picked an aged newspaper article and

produced a gray-scale image as the source image. Out of it, we then created a series of

binary images by using each possible level, ranging from 0 to 255, as the cutting

value (namely, T) for blacks and whites. To our surprise, we observed the following

outcomes.

For low values of T, simple characters appear broken while complicated charac-

ters look all right. As the value of T elevates to a higher value, simple characters be-

come intact but complicated characters turn into blurred (an example is now shown in

Figure 1). Furthermore, we could not find any value of T at which both simple and

complicated characters appeared okay at the same time.

As we scrutinized the source image, we found the reason as follows for this un-

happy finding. Like many other characters, Chinese characters are composed of

strokes. Within a small but complicated character, the background regions that are

surrounded by strokes become extremely small. Because of the point-spread function

that is used by scanners to calculate gray values, the pixels within these “tiny valleys”

appear darker (i.e., their gray values are lower) than the average background pixels.

Thus, when a low value of T is chosen as the cutting value for blacks and whites, the

1 By convention, low gray values represent dark grades.

(a) (b) (c)

Figure 1. The binary images of two Chinese characters, one simple and one complicated.
The three sets of images are obtained by setting (a) T = 65, (b) T = 80, and (c) T = 95. As the
threshold value increases, simple character becomes intact while complicated character be-
comes blurred.

6

tiny valleys are classified as white, but some weak pixels on the simple characters are

also classified as white, resulting in broken characters. When T elevates to certain

higher level, the small characters become intact, but the tiny valleys are classified as

black, resulting in blurred characters.

Our finding thus proves that a global threshold does not solve the binarization

problem well. It also suggests that making local comparison of gray values may be

necessary to take care of the subtle distinctions between background and foreground

pixels. Let us then consider the following method.

For each pixel p, let Wp(n) the collection of all neighboring pixels of p that falls

within a window of size n×n centered at p (figure 2). Let

Mini(p) = min{g(q): qεWp(n)},

Maxi(p) = max{g(q): qεWp(n)}.

We then consider the difference of g(p) from Mini(p) and from Maxi(p). If the former

difference is larger, then g(p) is closer to the highest gray value than the lowest value

in this window. Since a pixel with high gray value is most likely a background pixel,

we thus classify p as a background (i.e., white) pixel. Otherwise, we classify p as a

foreground pixel.

The merit of the above method is that it does not rely on any threshold value for

the classification. This method, however, does depend on the proper choice of win-

dow size, as we will see. For this reason, we call it window-based binarization method

or local binarization method. In Figure 3, a result of applying this method is displayed,

PPPP

Figure 2. Wp(3) gets all its members from a window of size 3×3 centered at pixel p.

7

where the window size is set as 3×3. It is seen that all the characters surface out

rather nicely. The clear drawback is the appearance of noises all over the background

area.

A moment’s reflection would immediately suggest a possible way to improve the

solution: perhaps we should restrict the application of window-based binarization only

to where it is really useful. But where is the method useful anyway? Presumably, it is

where the gray value fails to reflect the true status of a given pixel. Normally, when a

gray value is very high or very low, it is a sure evidence for the white or black. The

uncertain area is somewhere in between the extreme values.

This fact suggests that we can make a combined use of global threshold method

and local binarization method. When the gray value g(p) of pixel p is far away from

the global threshold T, we classify p as black or white according to whether g(p) lies

on the far left or far right of T. If, however, g(p) is in the near neighborhood of T, the

window-based binarization method will be used for determining the binary value of p.

The results of applying this hybrid method as described above are shown in Fig-

ure 4, where global threshold is calculated by Otsu’s method [1]. The window sizes

are set in three different values so that we can make comparisons. Obviously, all the

results look better than the previous one. Background noises now disappear. But a

Figure 3. The result of applying the window-based binarization method, where the win-
dow size is set as 3×3.

8

problem remains to be solved. What window size should we set for the local binariza-

tion method? In Figure 4, complicated characters become blurred as window size in-

creases. So, as far as this figure is concerned, it seems that we should choose the size

as 5×5 or smaller.

But if we look at Figure 5, we would conclude differently. It seems that a larger

size is more appropriate in this case. For as the window size decreases, foreground

noises (or white noises) also show up.

So what is going on? Why are different window sizes required for different cases?

But first of all, what is the difference between the two cases anyway? At the prelimi-

(a) (b) (c)

Figure 4. Outputs of the combined use of global threshold method and window-based
binarization method with window size set as (a) 5×5, (b) 15×15, and (c) 21×21.

(a) (b) (c)

Figure 5. Outputs of the hybrid method. The window size for the local binarization
method is set as (a) 5×5, (b) 9×9, and (c) 13×13.

9

nary scrutiny, we observe that the characters in Figure 4 are smaller than the character

in Figure 5, and therefore have thinner strokes than the latter. Next, we note that the

appropriate window size ought to be compatible with the average stroke width of the

characters to which the local binarization method is applied.

But why is this magnitude so crucial? When we use the local binarization

method, we compare a given pixel p with all the pixels falling within a window cen-

tered at p. If the size of this window has the right magnitude, there is a good mixture

of foreground and background pixels within this window. The window-based binari-

zation method would be able to gather all the relevant information and make the cor-

rect decision.

Let us see what would happen if we employ an inappropriate window size. Sup-

pose that the size is taken smaller than it should be, and p is a foreground pixel. Then

all the pixels falling within the window are themselves foreground pixels. We are then

comparing unfairly a foreground pixel with all foreground pixels! Wrong conclusion

can be drawn for p, if p happens to be not as dark as its neighboring fellows. This ac-

counts for the white noises in Figure 5a and 5b.

On the other hand, suppose that the window size is set larger than it should be,

and p is a pixel lying within a tiny valley. Then, the window centered at p may contain

some background pixels lying outside of the character. Since p lies within the valley,

it usually appears darker than the remote background pixels. We can thus misclassify

p as a black pixel. This accounts for the blurred characters in Figure 4b and 4c.

The above consideration suggests that a kind of magnitude, to be called “scale”

in this article, must be calculated before window-based binarization can proceed.

There can be many ways for obtaining this magnitude. One straightforward way

is to calculate the average run-length for each character. However, there is a serious

problem with this approach. The run-length measure is not defined until a binary im-

10

age is created. But once a binary image is initialized, it becomes a self-prophesying

process: if the character appears blurred in the image, its run-length estimate would

become large. Applying window-based binarization based on this estimate would still

result in a blurred character.

The second approach is to infer the stroke widths of characters based on the sizes

of textlines. Here the size of a textline L is defined as the height or the width of L,

depending whether L is a horizontal or a vertical line. This is a workable approach,

since the extraction of textline can be made independent of the binarization process.

The inference of stroke widths can also be reliable, since stroke widths usually grow

proportional to the sizes of textlines. But in this approach, the success of window-

based binarization must hinge upon a flawless pre-step for textline extraction. It is

rather burdensome.

The third approach is to obtain multi-scale measures on the source image. The

idea is the following. We can use a set of “yardsticks” for the measurements. Each of

them is suitable for a certain scale. We then select the best reading out of all the pos-

sible measurements.

A yardstick is actually a 2n-dimensional vector, where n is an even number.

When n = 2m, the general form of the vector is the following.

(1, . . . ,1, -1, . . . , -1, 1 . . . , 1)
m mn

The 2n-dimensional vector will be called yardstick of scale n, or in abbreviation,

Yn. Thus, in this terminology, Y2 = (1, -1, -1, 1), Y4 = (1, 1, -1, -1, -1, -1, 1, 1), etc.

There is no yardstick of scale 3, since we do not allow odd-numbered scale. The rea-

son will be give later.

To make the measurement, a yardstick must be applied at a specific point. Thus,

if a pixel p is given, we first gather its n neighboring pixels, all lying on the horizontal

11

line passing through p. We then form a vector Hn out of the n gray values. The hori-

zontal reading of Yn at p is then defined as Yn • Hn, where • is the sign for vector mul-

tiplication. To obtain the vertical reading of Yn at p, we can gather n vertical neigh-

bors of p and form a vector Vn out of their gray values. The vertical reading is then

defined as Yn • Vn. Finally, the total reading of Yn at p is defined as max(vertical

reading, 0) + max(horizontal reading, 0).

As an example, let us consider the effect of applying Y2 at pixel p, as shown in

Figure 6. The horizontal reading is (1, -1, -1, 1) • (205, 35, 38, 212) = 314. In this case,

since p locates on a vertical stroke of 2-pixel width, the reading is obtained by sum-

ming up two background values and subtracting two foreground values. The result is a

large positive number. The vertical reading, on the other hand, is obtained by sum-

ming up two foreground values and subtracting two foreground values also. Since all

the foreground values are close to each other, the resulting value (-10) is a number

close to zero.

If we apply a yardstick to all the pixels of the same stroke, sum up the readings

and then take the average, we get some information about this stroke. As a general

rule, a stroke reacts strongly to yardsticks of compatible scales. Moreover, if a stroke

gets highest average reading from a yardstick of scale n, its average width must be

p

Coefficients of Y2 1 -1 -1 1

Coefficients of H2 205 35 38 212

Coefficients of V2 30 34 35 29

Figure 6. Application of Y2 in both directions to pixel p. Pixels are indicated by dashes.

12

close to n. Strokes, however, are not easily identified from images. Instead, characters

or parts of characters can be found at relative ease. Based on these ideas, we come up

with a process for determining the window sizes as follows.

In order to apply window-based binarization method, we have to first come up

with a global threshold T. We can thus employ this T to create a binary image and find

all the connected components out of the image. Using some techniques not described

here, we can separate textual components (i.e., characters or parts of characters) from

non-textual ones (table lines, icons, graphics, etc.)

At reasonable level of resolution (200 or 300 dpi, for example), each textual

component is most likely a whole character or part of a character. Thus, for such a

component, say C, we can apply all the yardsticks as described above and find the one

that yields the highest average reading. The scale of this yardstick is defined as the

scale of C. The window size for C is then set as s+1, where s is the scale of C.

Two facts are worth mentioning here. First, window-based binarization method is

quite robust to slight variations of scale estimates. A deviation of one and sometimes

even two pixels is tolerable. This is why we are satisfied with even-numbered scales.

The nice thing about even-valued scales is that the corresponding windows become

symmetric with respect to their centers. Secondly, window-based binarization would

not add any utility for components whose scale is equal or higher than 8. This means

that, for computing window sizes, we only need 4 yardsticks, of scale 2, 4, 6, or 8

respectively. Those components reacting most strongly to the yardstick of scale 8 pre-

sumably have stroke width larger than 8.

In Figure 7, we display two binary images. One of them is obtained from global

threshold method, where the threshold value is calculated by way of Otsu’s method.

The other image is obtained by the hybrid method, that is, the combination of both

global and local binarization methods. Improvements over small and complicated

13

characters by the hybrid method should be clear as one compares the two output im-

ages. Note that the common input to both methods is a gray-scale image made out of a

clipped newspaper article, dated July 13, 1993.

Readers may also feel happy to know that the hybrid method not only improves

the visual quality of binary images but also helps to improve the performance of OCR

engines. For testing this assertion, we gathered three sets of samples: recent articles,

articles printed in 1996, and articles printed in 1969. Each set consists of 20 testing

samples, each sample containing a few hundreds of Chinese characters.

Two OCR engines were employed for the testing. Both are fetched from com-

mercial software so that there is no issue of possible bias. For each of the testing arti-

cles, we produced a gray-scale image and two binary images out of it, one by way of

global threshold method and the other by the hybrid method. When applied the OCR

Figure 7. Left panel: binary image obtained by global threshold method. Right panel:
binary image obtained by the hybrid method.

14

engines to one and then the other binary image, the increments in recognition rate are

recorded in table I. It is clear that the effects of hybrid method are more manifest on

aged articles than recent ones.

Table I. Testing Results

Increased OCR Performance

Recent Articles 0%~10%

1996 Articles 5%~23%

1969 Articles 20%~37%

3. Document Layout Analysis

Binarization captures the visual contents of documents but do not interpret them.

In the attempt of understanding printed documents, an advantage one can take is the

apparent physical layout structure, from which it is possible to infer the distinct loca-

tions of characters and also their reading orders. Well-segmented characters make the

job of machine recognition easier. Understanding the reading orders is a necessary

ingredient for understanding the meaning of textual contents, for it is the composi-

tions in certain orders that make characters to convey meanings. While all of these

may sound so easy to human readers, they can cause a lot of problems for people who

want to make machines do the same things. In this respect, Chinese documents are

certainly no short of problems.

Documents organize their textual contents in hierarchical order. Individual char-

acters are organized into textlines, which in turn are organized into paragraphs, etc. In

the past, many methods look for an entering point to the hierarchical system. For ex-

ample, the recursive X-Y cuts method [11] seeks to enter from the top of the hierarchy.

It searches for large horizontal or vertical gap and decomposes an image into two sub-

images. It then repeats the same operation to each of them. The maximal white-

rectangles method [12] also seeks to enter the hierarchy from a top position. But in-

15

stead of decomposing the image from the perspective of projection profiles, it looks

for all the maximal white rectangles that imbed in the layout structures. It then segre-

gates the image from the large white rectangles. The run-length smearing method [13],

on the other hand, seeks to enter from the lowest position of the hierarchy. It goes

along each scan line and blackens the small intervals between black pixels. The

smearing operation has thus the effect of gluing foreground pixels into connected

pieces, that can be textlines, paragraphs, or mixtures of things, depending the

parameter value being used. Textline construction method [14] may be said to enter

the hierarchy from a middle position. Taking the advantage that textlines, in printed

documents at least, are approximately aligned (from top and bottom for horizontal

textlines, or from right and left for vertical textlines), this method endeavors to find

them by means of a pair of rails (as in the railways).

All the methods are good in certain contexts but all have their limitations also.

The recursive X-Y cuts is a handy method in the context of a single article. But on a

full page of newspaper, there can be many articles and this method does not apply.

The maximal white-rectangles method is applicable to more complicated environ-

ments. However, the size of white rectangles may not be a reliable clue for segrega-

tion. In Chinese documents, textlines can go in either horizontal or vertical direction.

Textlines of different orientations are naturally segregated from each other, even

though the white rectangles that go between them are not very large. In Figure 8, for

example, white rectangle A is a natural region for segregation but its size is smaller

than some other white rectangles (B and C) that are not.

The run-length smearing method has the problem in the parameter setting. At the

level of 300 dpi, the inner spacing of small textlines are but 2 to 3 pixels wide, but

they can grow to 80 pixels wide in headlines. But even within the same textline, sizes

of gaps can vary wildly. For example, the gaps around punctuation marks can be 18

16

pixels wide, while those between characters remain 2 or 3 pixels wide. Thus, counting

on a constant size to bridge the gaps would loose all the flexibility that is desired.

Textline construction method takes more structural elements than other methods.

But two issues arise when it is applied to Chinese documents. First, stemming from

the same starting point it is possible to obtain two textlines, one going horizontally

and the other vertically. Only one of them is legitimate, but none of them could be

excluded a priori (Figure 9a). Secondly, a textline so constructed can overextend to

the site of another textline, resulting in conflicts that have to be resolved (Figure 9b).

Both issues are related with the fact that two possible orientations are allowed for tex-

tlines in Chinese documents. The higher degree of freedom lies in the heart of the

problems here.

In fact, all the methods reviewed in the above can be useful in certain contexts.

But it is important to first identify the contexts correctly before applying them. In our

view, all methods for layout analysis employ some split and merge operations. Run-

length smearing, for example, is a merge operation, while X-Y cut is a split operation.

B C

A

C

Figure 8. The layout structure of a Chinese article is displayed. Headlines (hashed
boxes) are horizontally oriented. The rest of textlines (half-toned boxes) are vertically ori-
ented. Dashed lines form the borders of the image. Dotted boxes are white rectangles.

17

To work out reasonable outcomes, these operations rely upon certain parameter values

to function. In the previous section, the value of scale needs to be computed before

the window-based binarization can proceed. But unlike the situation there, most of the

parameter values associated with the document layout problem can not be computed

independently. They are part of the problems that are being solved.

By nature, document layout analysis is a multiple constraint problem, where the

objects (paragraphs, textlines, and characters, etc.) to be constructed or identified are

the unknown variables built in the constraints. There are actually three sets of con-

straints that are met by most Chinese documents.

A. Composition Constraints: paragraphs are composed of contiguous textlines of

similar sizes, which in turn are composed of contiguous characters of similar

sizes; characters are composed of contiguous components, i.e., clusters of

connected foreground pixels.

B. Alignment Constraints: characters contained in horizontal (vertical) textlines

are properly aligned on their top (right) and bottom (left) edges; textlines

(a) (b)

Figure 9. All boxes represent characters. (a) Starting from the same character (half-toned
box), two textlines can be constructed, one going in horizontal direction, and the other vertical
direction. (b) A vertical textline overextends to the site of a horizontal textline (where all the
boxes are hashed).

18

contained in horizontal (vertical) paragraphs are properly aligned on their top

(right) and bottom (left) edges.

C. Spacing Constraints: the spacing within a textline is less than the spacing

between textlines; moreover, the spacing within a paragraph is less than the

spacing between paragraphs (Figure 10).

Each set of constraints involves more than one unknown variable and each un-

known variable also occurs in more than one set of constraints. The third set of con-

straints, moreover, incorporates some parameters (inner spacing and outer spacing)

whose values depend on other variables (textlines and paragraphs).

All the methods reviewed in the above attempt to solve the problem in a straight-

forward manner. They seek for a solution for some unknown variable, which in turn

would help to solve for another unknown variable, etc. Unfortunately, for most hard

constraint problems, straightforward solutions rarely exist. As an alternative, we pro-

pose the following method. We start with an approximate solution, that is, a solution

satisfying some but not all the constraints. We then base on this temporary solution to

A

B

II

I

C

p

q

Figure 10. Two paragraphs I and II are enclosed in dashed lines. Paragraph I contains
textline A, that is horizontally oriented. Paragraph II contains B, C and other vertical textlines.
Each labeled textline is identified by the same fill pattern. The spacing within B (= distance
between p and q) is less than that between B and C. The spacing within paragraph I (= dis-
tance between B and C) is less than that between I and II.

19

estimate the unknown parameter values appearing in some other constraints. We can

then derive a better solution (namely, a solution that meet more constraints) by taking

reference of the estimated values. The solution so reached can still be improved if

more or better knowledge is generated.

At the start, the choice of primitives is important. Foreground pixels can cer-

tainly be taken as primitives but they are not as handy as components. A component

can be represented by its enclosing box so that four numerical values (the x- and y-

coordinates of its upper left and lower right corners) are sufficient for determining its

location. The distance between two components can also be defined in terms of the

distance between their enclosing boxes.

When working on the components, run-length smearing and textline construction

become almost the same method. They both look for collections of contiguous com-

ponents that are properly aligned on the top and bottom edges, or on the right and left

edges. The textline construction method tolerates small amount of misalignment and

is thus more robust. Our solution method employs the same technique to find all the

textlines from document images.

Many Chinese characters are composed of more than one component. But it is

possible that two logical components of the same character actually join into one

physical component on the images (Figure 11a). On the other hand, even though some

of the components are physically separated, their enclosing boxes get in touch with

each other and can be joined into a single box (Figure 11b). Due to all these reasons, it

(a) (b)

Figure 11. (a) Two logical components join into one physical component. (b) The en-
closing boxes of three physically separated components come into contact with each other.

20

becomes a fact that almost every legitimate textline on the images contains at least a

single-box character.

To take advantage of this fact, we can pick out the component boxes whose

width-to-height ratio is close to 1. To ensure that they are not arbitrary boxes, we can

further check if there are any other boxes whose sizes are similar to theirs. We then

restrict textlines to grow only from those boxes whose sizes are common to some oth-

ers. If, after this stage, there are still component boxes uncovered by any textlines, we

go ahead to search in their neighborhood for any other components that can be put

together to form a box of larger size and better (closer to 1) width-to-height ratio. If so,

we proceed the textline construction for the newly formed boxes.

After the stage of textline construction, two more things need to be taken care.

First, those textlines growing in the wrong orientation must be eliminated. Next, those

textlines growing too far need to be pruned.

Eliminating textlines of incorrect orientations has the effect of adjusting the so-

lutions in line with the spacing constraint. According to this constraint, the inner

spacing2 of a textline is smaller than its outer spacing. Thus, if two textlines grow out

of the same component box, the one that has wider inner spacing than its counterpart

ought to be eliminated (Figure 12a).

For the purpose of textlines pruning, we first find all the white rectangles on the

document image. They serve as clues for possible segregation regions. So we want to

examine those textlines that cross some white rectangles. However, rather than simply

pruning them, we make a further comparison. For those textlines whose inner spacing

is much smaller than the spacing created by the white rectangle (Figure 12b), we go

2 The gaps within a textline may not be constant in size. So the inner spacing of a textline is de-

fined to be the gap whose size is close to most of the gaps within the textline.

21

ahead to make the pruning.

The pruning operation has the effect of forcing the solutions to comply with the

spacing constraints for both textlines and paragraphs, since the combination of the

two constraints implies that the inner spacing of a textline is smaller than the outer

spacing of the paragraph.

After the stage of textline consolidation, we proceed to paragraph construction.

This is rather a simple operation. It starts with any textline and proceeds to find, from

any of the four possible directions, textlines of similar sizes. The same operation is

then applied recursively to each of the textlines thus obtained.

Textlines and paragraphs are not simply end products of the process. They also

serve as inputs to other adjustment procedure. Thus, after the stage of textline con-

struction, those irregular boxes appearing within the same textline can be put together

to form regular boxes. In Figure 13, for example, boxes A and B can merge into one

character box, in reference to the alignment requirement for textlines. Boxes C and D

in the same figure can also merge into one box, conforming to the requirement that

(a) (b)

Figure 12. (a) Two textlines (enclosed by dashed lines) grow from the same (half-
toned) component box. The horizontal line has wider inner spacing than the vertical line. (b)
The vertical textline (enclosed by dashed lines) extends beyond a white rectangle (dotted box)
with relatively wide spacing.

22

each textline is composed of similar-sized characters.

Similar adjustment can be made within the paragraphs. During the stage of tex-

tline construction, some textlines may not be fully connected, due to some conserva-

tive parameter values being used there. After the stage of paragraph formation, those

properly aligned but disconnected pieces can join together to form a longer line (Fig-

ure 14a). However, there is a danger of joining textlines that really pertain to different

columns. As a remedy, the recursive X-Y cuts can be used to undo the ill effect (Fig-

ure 14b).

The solution path suggested in this section thus evolves as a self-adjustment pro-

cess. It starts to construct solutions complying with some easy constraints and then

gradually improves them by taking reference of the better knowledge gained along the

process. The goal of this process is to adjust the solutions to conform to more and

more hard constraints.

A
B

C D

Figure 13. A horizontal textline (enclosed in dashed lines) incorporates irregular com-
ponents A, B, C and D.

(a) (b)

Figure 14. (a) Broken pieces falling within the same paragraph can be connected to full
pieces. (b) Textlines belonging to different columns can be separated by recursive X-Y cuts.

23

The constraint conditions considered in this section can be met by many Chinese

documents, but certainly not by all of them. Some special documents (business cards,

for example) may require one or several of the conditions to remove or weaken, and a

few others to add in. But one nice thing about this approach is that it can easily adjust

the solution path according to the changes of constraint setting. The reason for the

ease of adjustment is that constraint conditions can be naturally classified into catego-

ries (we categorized them into three sets). Thus, when one category of constraints

remains unchanged, all the corresponding operations remain unchanged. The idea of

modularity thus naturally grows into this solution method.

4. Retrieving Information from Machine-Transcribed Contents

There are thousands of distinct commonly used characters in the Chinese lan-

guage. This means that for each of the characters to be recognized by a machine, it

has to be matched against at least thousands of template images. Machine recognition

is bound to make errors. Moreover, due to the time constraint that can be crucial to

many applications, a trade-off between the time spent by the recognizer and the accu-

racy attained by it must be observed. For this reason, the thousands of characters can

incur a significant loss to the recognition accuracy.

 The usual measure for the accuracy counts the percentage of first-placed candi-

dates that hit the targets. If more candidates are included in the count, however, the

hitting rate can go near to 1. For example, the hitting rate achieved by the first five

candidates generated from our recognizer can go way above 99% for most applica-

tions, even though the rate achieved by the first candidates varies from applications to

applications. Since the machine-transcribed contents are used for searching purpose

only, the first five candidates can be as useful as the first-placed candidates. The idea

is given as follows.

24

In the data prepared for searching usage, we store the first-placed candidate gen-

erated by the recognizer for each of the characters extracted from original documents.

Assuming users intend to look for a keyword string, say nKKK ...21 out of the original

documents. Our search engine searches for the information from the prepared data,

instead. Since the data is likely to contain errors, the string nKKK ...21 may appear as

nVVV ...21 on the prepared data, where iV is either iK or a character misidentified by

the recognizer for iK , for .,...,2,1 ni = To ensure that users get what they want, the

search engine should look for all the possible variants nVVV ...21 out of the prepared

data.

To do so, the search engine looks up a pre-stored table that keeps for each char-

acter entry those characters that can be misidentified for it. The misidentified charac-

ters for entry E are those that are expected to appear in the short-listed candidates for

E. So they can be prepared in the following way. For each training sample of E, we

collect the first N short-listed candidates generated by the recognizer. We then calcu-

late the accumulated rate for the candidates and sort them accordingly to obtain the

first M candidates, where M is a number close to N.

The success rate of the search engine is thus related to the hitting rate of the table

that lists out all the misidentified characters. Normally, the hitting rate can reach

above 99.5% when no more than 5 misidentified characters are stored for each entry.

Thus, if the keyword is a bi-gram (two-character string), the engine can to find

all occurrences of the keyword from the original images, at a probability higher than

99%. If the keyword consists of more than two characters, we can relax a little bit by

requiring the engine to find all the strings nUUU ...21 , where at least n-1 entries in

nUUU ...21 matches with the corresponding entries in nVVV ...21 . Then the engine can

find all occurrences of the keyword from the original images, at a probability higher

than 99.9%.

25

If textual contents are stored in the same order as they appear in the original

documents, to search for a keyword and all its variants through them would require

M×L×P many times of character comparison, where M is the number of misidentified

characters, L is the length of keyword string, and P is size of the textual contents. The

search time can be greatly reduced, if we use a pre-stored file to record for each char-

acter entry all the positions it occurs in the textual contents.

The way to use the pre-stored file is the following. When a search engine starts

to find nVVV ...21 , a variant of the keyword string, we start to construct a tableau. The

tableau is a matrix with n rows and P columns, where n is the length of the character

string and P is the size of contextual contents. To start with, all the entries in the ma-

trix are filled with 0’s. Now, if the pre-stored file tells us that an occurrence of iV is

at the m-th position in the textual contents, then we fill 1 at position (i, m-i+1) in the

matrix.

Thus, suppose that nVVV ...21 actually appears in the text and its first character

appear at the 37th position in the text. Then we fill 1 at (1, 37) in the matrix. Its second

character must then appear at the 38th position, so we fill 1 at (2, 37) in the same ma-

trix, etc. Finally, all the entries on column 37 in this matrix are filled with 1’s.

Having done all the fillings, we start to examine all the columns in the matrix. If

the keyword is a bi-gram, we pick up all the columns that have two 1’s as their entries.

If the keyword has more than two characters, then we pick up all the columns that

have either all 1’s or only one 0. At the end, we output the indices of all these columns.

They indicate the starting positions of all the occurrences of nVVV ...21 in the textual

contents.

The method as described in the above is essentially a fast-matching method. The

only difference is it has to ensure the matching of all possible variants of the given

keyword. The computational cost is then M times higher than what would be required

26

for an exact matching (i.e., matching of the keyword only), where M is maximal

number of misidentified characters listed for each character entry.

5. Summary

In previous sections, we describe the special problems that are encountered in

building a system that supports information retrieval from Chinese document images.

Two types of solutions are considered: capture of visual and textual contents from

paper documents and retrieving information out of the prepared data. In the introduc-

tory section, we discuss how to put together all these solutions to obtain a system with

the minimal demand for human interference. For the rest of the article, we focus on

some special technical problems and their solutions.

Context sensitivity lies the heart of all these problems considered here. In the bi-

narization problem, global threshold method paves the ground and sets the condition

for window-based binarization. For the latter to work properly, another process is

called forth to set the window sizes right. In the document layout problem, the solu-

tion path is not so straightforward any more. The grasp of contextual information is

part of the solution being sought for. The solution scheme thus evolves as a self-

improving process. While context sensitivity causes the two problems hard, it actually

makes the task of information retrieval easy. Advantage can be taken from the fact

that a keyword used for searching purpose normally consists of at least two characters.

The inaccurate and piecemeal information contained in the machine-transcribed con-

tents can synthesize into much more reliable and useful information, when used for

the purpose of information retrieval.

REFERENCES

1. N. Otsu, A threshold selection method from gray-scaled histogram, IEEE Trans.
Systems, Man, and Cybernetics, Vol. 8, pp. 62-66, 1978.

27

2. G. Johannsen and J. Bille, A threshold selection method using information measures,
Proc. Sixth Intern. Conf. Pattern Recognition, pp. 140-143, Munich, Germany,
1982.

3. J. M. White and G. D. Rohrer, "Image thresholding for optical character recognition
and other applications requiring character image extraction," IBM J. Res. Develop.
Vol. 27, No. 4, pp. 400-411, 1983.

4. W. Tsai, Moment-preserving thresholding: a new approach, Computer Vision,
Graphics, and Image Processing, Vol. 29, pp. 377-393, 1985.

5. J. N. Kapur, P. K. Saboo, and A. K. C. Wong, A new method for gray-level picture
thresholding using the entropy of the histogram, Computer Vision, Graphics, and
Image Processing, Vol. 29, pp. 273-285, 1985.

6. J. Kittler and J. Illingworth, On threshold selection using clustering criteria, IEEE
Trans. Systems, Man, and Cybernetics, Vol. 15, pp. 652-655, 1985.

7. Y. Liu and S. N. Srihari, "Document image binarization based on texture features,"
IEEE Trans. Pattern Analysis and Machine Intelligence, Vol. 19, pp. 540-544,
1997.

8. E. Giuliano, O. Paitra, and L. Stringa, Electronic character reading system, U.S.
Patent 4,047,15, 1977.

9. W. L. Hwang and F. Chang, Character Extraction from Documents Using Wavelet
Maxima, Image and Vision Computing, Vol. 16, pp. 307-315, 1998.

10. F. Chang, K. H. Liang, T. M. Tan, and W. L. Hwang, Binarization of document
images using Hadamard multiresolution analysis, Proceedings Intern. Confern.
Document Analysis and Recognition, Banglore, 1999.

11. G. Nagy, S. C. Seth, and S. D. Stoddard, Document analysis with an expert sys-
tem, Proceedings Pattern Recognition in Practice II, Amsterdam, 1985.

12. H. S. Baird, S. E. Jones, and S. J. Fortune, Image segmentation by shape-directed
covers, Proceedings 10th ICPR, Atlantic City, pp. 820-825, 1990.

13. F. M. Wahl, K. Y. Wong, and R. G. Casey, Block segmentation and text extraction
in mixed text/image documents, Comput. Vision Graphics Image Process, vol. 20,
pp. 375-390, 1982.

14. T. Pavlidis and J. Zhou, Page segmentation and classification, CVGIP: graphical
models and image processing, vol. 54, pp. 484-496, 1992.

15. A. Dengel, Initial learning of document structure, Proceedings Intern. Confern.
Document Analysis and Recognition, Tsukuba, 1993.

16. D. Wang and S. N. Srihari, Classification of newspaper image blocks using tex-
ture analysis, Comput. Vision Graphics Image Process, vol. 47, pp. 327-352, 1989.

17. A. K. Jain, B. Yu, Document representation and its application to page decompo-
sition, IEEE Trans. Pattern Analysis and Machine Intelligence, Vol. 20, pp. 294-

28

308, 1998.
18. L. O’Gorman and R. Kasturi eds., Document Image Analysis, Los Alamitos,

IEEE CS Press, 1995.
19. H. Fujisawa and Y. Nakano, A top-down approach for the analysis of documents,

Proceedings 10th Intern. Conf. Pattern Recognition, pp. 113-122, Atlantic City,
1990.

20. J. Fisher, S. Hinds, and K. D’Amato, A rule-based system for document image
segmentation, Proceedings 10th Intern. Conf. Pattern Recognition, pp. 567-572,
Atlantic City, 1990.

21. H. Baird, Anatomy of a versatile page reader, Proceedings IEEE, vol. 80, pp.
1059-1065, 1992.

22. F. Chang, et al., A Document Analysis and Recognition System, Inter. Conf.
Document Analysis and Recognition, Ulm, Germany, 1997.

