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Abstract- The computation task of a distributed processing system usually can be
partitioned into a set of modules and then modeled as a directed graph, called the task
digraph. In the task digraph, vertices represent modules and arcs represent message
passing links between two modules. Particularly, according to the logical structures and
precedence relationships among modules, a large class of task digraphs can be expressed
by the combination of three common types of subgraphs: sequential, And-Fork to And-
Join (AFAJ) and Or-Fork to Or-Join (OFOJ). This class of task digraphs has been
modeled as And-Or Series-Parallel (AOSP) digraphs. There is a certain probability,
called the task reliability, associated with the event that a task completes successfully.
This measure accurately models the reliability of a task running in the system. The
task reliability problem is known to be NP-hard for general digraphs. But for AOSP
digraphs, task reliability can be found in linear time. Moreover, we can also precisely
estimate task response time, which is the time from the invocation of a task to the
completion of its execution, in linear time for AOSP digraphs. Task response time is an
important design criterion for real-time computer systems. Hence, to examine if a task
digraph is an AOSP digraph becomes a useful work for evaluating computation tasks. In
this paper, we propose a polynomial time algorithm to recognize AOSP digraphs. The
logical structures among modules of an AOSP digraph will be formulated as Boolean
formulas, and such formulas own the defined fully factorable property. The main part
of our work is the factoring algorithm, which can fully factor a positive CNF.

Keywords: Task digraphs, Boolean formulas, graph recognition, distributed
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1. Introduction

Distributed processing involves cooperation among several loosely coupled computers
communicating over a subnetwork. In the past decade, distributed processing systems
have become increasingly popular because they provide cost-effective means for resource
sharing and extensibility, and obtain potential increases in performance, reliability, fault
tolerance and resource utilization [1] - [3]. Several issues of such systems, namely, process
management, load balancing, file management, access control, distributed algorithms,
etc., are under widespread investigation [2] - [7].

The computation task of a distributed processing system can usually be partitioned
into a set of software modules (or simply, modules) and then modeled as a directed graph,
called the task digraph. In such a digraph, vertices represent modules and arcs represent
message passing links between two modules. Particularly, since job decomposition and
mergence are two major operators in distributed programming, a large class of task
digraphs can be expressed by the combination of three common types of subgraphs based
on the logical structures and precedence relationships among modules [8, 9]: sequential,
And-Fork to And-Join (AFAJ) and Or-Fork to Or-Join (OFOJ), where AFAJ and OFOJ
subgraphs may consist of several sequential subgraphs in a parallel structure. These three
types of subgraphs are depicted in Figure 1. The sequential subgraph contains a sequence
of modules executed in series. Each module except the last has a single successor. This
type of subgraph indicates a thread of the computation task. As for the AFAJ subgraph,
it begins from a module which simultaneously enables several succeeding modules and
ends at a module which is enabled only when all of its preceding modules have completed
their executions. This type of subgraph may correspond to the case in which the modules
assigned to different computers require concurrent processing. On the contrary, the
beginning module of the OFOJ subgraph enables one of its succeeding modules, and
the ending module can be enabled by any one of its preceding modules. This type
of subgraph facilitates the system to process one of several threads based on certain
selection criteria. In [10], this large class of task digraphs has been modeled as And-
Or Series-Parallel (AOSP) digraphs. Such a graph model is acyclic. If a computation

contains a loop, it can be unrolled and different instances of the loop body can be
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Figure 1: (a)Sequential subgraph; (b)And-Fork to And-Join subgraph; (c)Or-Fork to
Or-Join subgraph.

represented by different modules. The same technique can also applied to recursive
structures by first determining the mean number of recursive calls, and then represent
different instances of the recursive routine by different modules. Using this technique
together with others in [11], cyclic graphs can be converted to acyclic graphs [9].
Modules and communication links may fail due to two main factors: software failures
and hardware failures. Software failures are caused by design faults or implementation
faults. Hardware failures are caused by transient failures or permanent failures. So
modules and communication links have a certain probability of being operational. Then
there is a certain probability, called the task reliability, associated with the event that
a task completes successfully. This measure accurately models the reliability of a task
running in the system. The task reliability problem is known to be NP-hard for general
digraphs. But for AOSP digraphs, task reliability can be found in linear time using the
technique proposed in [10]. Moreover, task response time is an important design criterion
for real-time computer systems. It is the time from an invocation of the application task
to the completion of its execution. Key parameters that affect task response time include
interprocessor communications, processor loading, module precedence relationships and
interconnection network delay. A new analytic model developed in [8] is able to precisely

estimate task response time of AOSP digraphs in linear time, instead of time-consuming



simulation methods. Hence, it becomes a useful work for evaluating computation tasks
to examine if a task digraph is an AOSP digraph.

Previously, the recognition for Edge Series-Parallel (ESP) digraphs (sometimes called
two-terminal series-parallel digraphs), which arise in the analysis of electrical networks
[12] - [14], was proposed in [15]. The ESP digraph is a special case of the AOSP digr-
pah, and contains only two types of subgraphs: sequential and Fork to Join. Namely,
ESP digraphs do not take the logic structures among modules into consideration. Obvi-
ously, ESP digraphs can not satisfy modern varieties of distributed computation tasks.
To make up this deficiency, we propose a polynomial algorithm to recognize AOSP di-
graphs in this paper. The logical structures among modules of an AOSP digraph will
be formulated as Boolean formulas, and such formulas own the defined fully factorable
property. Moreover, in order to achieve the goal of recognize AOSP digraphs, we will
also introduce factoring algorithms to see if a Boolean formula is fully factorable.

The rest of the paper is organized as follows. In Section 2, some definitions and
notations employed in the context are described. Then we will define factorable formulas
and factorable trees, and also give the formal definition of AOSP digraphs in the next
section. In Section 4, the recognition algorithm for AOSP digraphs, including factoring
algorithms for Boolean formulas, will be proposed. Finally, we conclude the paper in

Section 5.

2. Preliminaries

Our graph-theoretical terminology follows Bondy and Murty [16]. A graph G = (V, E)
consists of a finite set of vertices V' and a finite set of edges F. Each edge is a pair (u, v)
where u and v are distinct vertices. A subgraph of G is a graph having all of its vertices
and edges in GG. A graph is connected if there is a path joining each pair of vertices.
A connected component of a graph is a maximal connected subgraph. If the edges of
a graph G are unordered pairs, then G is an undirected graph; if the edges are ordered
pairs, called arcs, then G is a directed graph (abbreviated digraph). For each arc (v, w)
which leaves v and enters w, v is a predecessor of w and w is a successor of v. A vertex

v in a digraph is a source if no arc enters v and a sink if no arc leaves v.



Next, we give the logical terminology according to [17]. A Boolean variable is denoted
by x; to represent a Boolean value true or false but not both. Variables and negations
of variables will be spoken of collectively as literals. The conjunction of x; and o,
1 A g, is true if and only if both z; and x5 are true. Symmetrically, the disjunction
of 1 and x5, x1 V x», is false if and only if both x; and x4 are false. A Boolean formula
is made up of literals, conjunctions and disjunctions. A formula is said to be trivial if it
is made up of one single literal, opposite to a nontrivial formula. A positive formula is
a formula without negative variables. Two formulas F} and F, are said to be equivalent
provided that the formula F} is true (false) if and only if the formula F5 is true (false).

A disjunction of literals in that no variable appears twice is called a fundamental
disjunctive formula. Any conjunction of fundamental disjunctive formulas is called a
Conjunctive Normal Formula (abbreviated CNF) or a formula in the conjunctive nor-
mal form. The fundamental disjunctive formulas in a CNF F' are called the clauses
of F. A conjunctive normal formula with minimum number of literals and minimum
number of clauses is called irreducible. Symmetrically, a conjunction of literals in that
no variable appears twice is called a fundamental conjunctive formula. Any disjunction
of fundamental conjunctive formulas is called a Disjunctive Normal Formula (abbrevi-
ated DNF') or a formula in the disjunctive normal form. Since CNF and DNF are dual,
when we discuss properties of normal formulas in the context, we only consider CNF
for simplicity of presentation. However, it is easy to show that these properties can also
apply to DNF.

For a Boolean formula F', the literal set L(F') = {l | [ is a literal in F'}. The number
of literals in F' is thus denoted as |L(F')|. A clause C is said to be an induced clause of
another clause Cy provided that L(C}) is a subset of L(Cy), denoted by Cy o< Cs. Two
clauses C'; and C are said to be distinct if and only if C; ¢ Cy and Cy ¢ C4. If two
clauses Cy and Cy with L(Cy) = L(Cs), we say C; and Cy are isomorphic, denoted by

4 150 Cs. Furthermore, two CNFs F; and F; are isomorphic if and only if each clause

in F} is isomorphic to some clause in F, and vice versa, denoted by F} 150 F5. For any
two Boolean formulas Fy and F, if L(Fy) N L(Fy) = (0, we say F} and F, are disjoint.

There are three laws in Boolean algebra, which are useful to our algorithms. We



describe them in the following.
Idempotent Law:
1. PVP=P;
2. QANQ=0Q;
Absorption Law:
1. PAN(PVQ)=P;
2. PV(PAQ)=P;
Distributive Law:
1. PA(QVR)=(PAQ)V (P AR);
2. PV(QAR)=(PVQ)A(PVR), where P, Q and R are Boolean formulas.
In order to formulate the logical structures among modules of a computation task,
each arc of the corresponding task digraph is assigned with a distinct Boolean variable.
So without loss of generality, all variables can be assumed to be positive. Moreover,
for the sake of simplicity, every formula associated with the module is assumed to be
given as a positive formula. Thus, we assume that all literals and formulas are positive

throughout the remainder of the context.

3. AOSP Digraphs

Prior to the definition of AOSP digraphs, we will describe the definition of fully factorable
formulas first. If a Boolean formula F' can be expressed as F| @& F, where F| and F,
are two disjoint Boolean formulas, called the subformulas of F', and & is a Boolean
operation, i.e. A or V, F'is said to be factorable. The previous operation on F' to find
the conjunctive or disjunctive expression of subformulas is called factoring on F'. If the
Boolean operation is A, the factoring is called and-factoring. On the other hand, if the
Boolean operation is V, the factoring is called or-factoring. Formally, the class of fully
factorable formulas is defined as below.
Definition 1: The class of fully factorable formulas includes

1. A literal is an elementary fully factorable formula;

2. If F} and F, are two disjoint fully factorable formulas, so are the formulas con-

structed by each of the following operations:
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Figure 2: (a)A leaf node; (b)Conjunctive composition of two factoring trees;

(c)Disjunctive composition of two factoring trees.

Figure 3: The factoring tree corresponding to the Boolean formula (z1 Vo) A(x3VrsVas).

(a) Conjunctive composition: Fy = F} A Fy;
(b) Disjunctive composition: F\, = F} V Fy;
3. If Fis a fully factorable formula, so are the Boolean formulas equivalent to F'.
To record the factoring process on a Boolean formula F', we construct a binary tree
T using the rules in Figure 2. This binary tree is named the factoring tree corresponding
to F'. The internal node in Ty has a sort in {A,V} and the external leaf has a sort of
Boolean formula F;. If a factoring tree with all external leaves containing one single
literal, it is named a fully factoring tree. One example fully factoring tree is depicted in
Figure 3. Obviously, every two distinct external leaves of a fully factoring tree contain

distinct literals according to the definition of fully factorable formulas.



Remark that a factoring tree may not be unique since we may construct different fac-
toring trees corresponding to a given Boolean formula by different factoring algorithms.
Moreover, a formula F' can be obtained by traversing a factoring tree Tr according to
the inorder sequence. We call that F' is expanded from Tg. For example, the formula
F = (x; V) A(x3VryVes) is expanded from the fully factoring tree shown in Figure 3.

Now, we begin to give a formal definition for AOSP digraphs. AOSP digraphs are
the extensions of ESP digraphs. For an AOSP digraph, each vertex containing entering
arcs is assigned with a formula to represent the logical structures among modules. We
denote an AOSP digraph as G = (V(v), E, F(v)), where V' (v) is a finite set of vertices, E
is a finite set of arcs and F'(v) is a finite set of formulas attached to vertices. Specifically,
the class of AOSP digraphs is defined recursively as below [10].

Definition 2: The class of AOSP (And-Or Series-Parallel) digraphs includes

1. A single arc e = (s,t) with the source s and the sink ¢, and the Boolean formula
F; attached to the sink, which equals to a single literal z, is an elementary AOSP
digraph;

2. If Gy and G5 are AOSP digraphs with sources s; and ss and sinks ¢; and %5, and the
corresponding Boolean formulas attached to the sinks are F}, and F}, respectively,
so are the digraphs constructed by each of the following operations:

(a) Series composition (S): The digraph Hg is an AOSP digraph with terminals
s and t, where Hg is the disjoint union of G; and G5, with ¢; identified with
525

(b) Parallel-and composition (P,): The digraph Hp, is an AOSP digraph with
terminals s and ¢, where Hp, is the disjoint union of G; and G,, with s;
identified with s, and t; identified with ¢, and the Boolean formula F; attached
to tis Fy, A Fi,;

(c) Parallel-or composition (P,): The digraph Hp, is an AOSP digraph with
terminals s and ¢, where Hp, is the disjoint union of Gy and Ga, with s;
identified with sy and t; identified with ¢, and the Boolean formula F} attached
totis Fy, V F,.
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Figure 4: (a) Series composition; (b) Parallel-and composition; or Parallel-or composi-

tion if F} = xo V 24.

Figure 4(a) gives an example series composition, and Figure 4(b) depicts an example
parallel-and composition. Moreover, if we change the formula F; in Figure 4(b) to be
T V x4, it will become a parallel-or composition.

Similar to a Boolean formula, an AOSP digraph can be represented in a natural
way by a binary tree T, called the parsing tree. Each external leaf of T}, represents an
elementary AOSP subdigraph in the AOSP digraph, denoted as its corresponding arc;
whereas each internal node is labeled S, P, or P, to represent the series, parallel-and
or parallel-or composition of the AOSP digraphs corresponding to the subtrees rooted
at the children of the node. A parsing tree thus provides a concise description of the
structure of an AOSP digraph and facilitates the calculation of task reliability [10] and
task response time [8]. Figure 5 gives an example AOSP digraph and its corresponding
parsing tree.

According to Definition 2, we know that a Boolean formula attached to a vertex
must be able to be fully factored. Besides, if we ignore the Boolean formulas and just

consider the topology of an AOSP digraph, it is exactly an ESP digraph. Therefore, two



/eqﬁegn\

ﬂ el; ﬂ
4 % 4 9
i v

egu/ﬂ} el Mg, FY, €] g

? ey N/
. 1. e

eDzn\% /e%

=iV,
=) onad)
Fl= (4] yovnd) ) A5

(a)0 (b)0
Figure 5: (a) An AOSP digraph; (b) Its corresponding parsing tree.

main works needed by the recognition algorithm for AOSP digraphs are to recognize
whether this digraph is an ESP digraph and to examine whether attached formulas are

fully factorable. We will illustrate this algorithm in the next section.

4. Algorithms of Recognizing AOSP Digraphs

4.1 Overall Algorithms

Now we proceed to design algorithms needed for recognizing AOSP digraphs. For our
overall algorithm, the input is a task digraph with a set of Boolean formulas attached to
vertices. The flow chart of the overall recognition algorithm is depicted in Figure 6. This
algorithm is generalized from the recognition algorithm for ESP digraphs proposed in
[15]. The latter comprises the series reduction and the parallel reduction. By applying
series and parallel reductions until no more is applicable, an ESP digraph will be reduced

to a digraph with only one single arc, but other digraphs will not. We redesign the
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Figure 6: The flow chart of the overall recognition algorithm.

parallel reduction algorithm such that it can also recognize fully factorable formulas.
During the reduction process, the corresponding parsing tree can be constructed by
using the rules of Figure 7.

To perform series and parallel reductions on the digraph, it is necessary to identify
two specific types of vertices: relay vertices and confluent vertices. For a vertex contain-
ing only one entering arc and only one leaving arc, this type of vertex is called a relay
vertex. For a vertex containing more than one entering arcs but only one predecessor,
this type of vertex is called a confluent vertez. We maintain a list of vertices called
unsatisfied list, represented as UL. UL contains the vertices on which reductions still

need to be tried. Hence UL initially contains all vertices except the source. The overall
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algorithm RECOGNITION is described as below.
RECOGNITION(G(V (v), E, F(v)))
Begin

1 Add all vertices in V' (v) except the source into UL.

2 Remove some vertex v from UL and carry out the following steps until no vertex
remains in UL.

2.1 If v is a confluent vertex, i.e. having more than one entering arcs but only
one predecessor u, apply a revised parallel reduction. If the parallel reduction
fails, reply “G is not an AOSP digraph” and stop; else if u is not the source
and also not in UL, add it to UL.

2.2 If v is (or becomes) a relay vertex, i.e. only one arc (u,v) entering v and only
one arc leaving (v, w), apply a series reduction and replace (u,v) and (v, w)
by a new arc (u,w). If w is not in UL, add it to UL.

3 If G reduced to be a single arc, reply “G is an AOSP digraph” and the parsing
tree T); else reply “G is not an AOSP digraph”.

End

We continue to introduce the revised parallel reduction mentioned above. The input
for the corresponding algorithm PARALLEL REDUCTION is a Boolean formula
and a bunch of arcs. If the input formula is fully factorable, its corresponding factoring
tree will be constructed. For the sake of neatness, we assume that the input Boolean
formula is in its conjunctive normal form.
PARALLEL REDUCTION(E', F)
Begin

1 Recognize whether F'is a fully factorable formula by the factoring algorithm FAC-
TORING. If not, reply “Parallel reduction fails” and return.

2 Examine if the number of external leaves in the corresponding factoring tree 17
equals to the number of arcs in E'. If not, reply “Parallel reduction fails” and
return.

3 Keep only one arc in E' and delete all other arcs. Moreover, return 7.

End

11
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Figure 7: Rules to perform reductions and to construct the parsing tree.

In the next subsection, we will begin to design the factoring algorithm exploited in the
previous algorithm. This algorithm can fully factor a CNF and construct the corre-

sponding factoring tree.

4.2 Boolean Formula Factoring Algorithms

Figure 8 illustrates the flow chart of the factoring algorithm. According to Definition 1,
a formula is fully factorable if and only if its irreducible form is fully factorable. And we
found that an irreducible formula is easier to be factored. Hence, our factoring algorithm
reduces the input formula to be irreducible in advance. Reducing a general conjunctive
normal formula to be irreducible is known to be an NP-complete problem, but it is
not so hard to reduce a positive conjunctive normal formula. The following theorem
characterizes the property of irreducible positive CNFs.

Theorem 1: Given a positive CNF F', F'is irreducible if and only if every two clauses
of F' are distinct [18].

Thus, applying the previous theorem, the irreducible form of a positive CNF can be
obtained by a polynomial time algorithm shown below.

REDUCE(F)

12
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Figure 8: The flow chart of the factoring algorithm.

Begin
Eliminate redundant clauses by the idempotent law and the absorption law.

End

The next step is to fully factor the irreducible CNF. We factor the input formula into
a set of subformulas by the and-factoring or or-factoring algorithm and repeatedly apply
the same process to each subformula until no subformula can be factored any more. If
one subformula is not trivial, such a formula is not fully factorable. Particularly, the
following theorem demonstrates that a formula can be only factored by one of the and-
factoring and or-factoring algorithms, but not both.

Lemma 1: Given & CNFs Fy, Fy, ..., F}, where F; = Cj; ACip A ... A Cyp, and Cjj is

13



the clause of F, for 1 < i < kand 1 < j < mn;. Let F' = (C;y ACia... AN Cip,) A
(Coy ANCo... ANCoy) .. A (Ct A Cha.o. A Cry, )y 16 Fy NFy A ... A F, and F” =
(CliVCH V... VC)AN(C1yVCx V...V Cra) Ao . AN (C1y VO V...V Cry) A (Cpy V
CouV...VCi2)N...N(Cip, VCioy V...V Ciyp,), le. F1V F,V...V F; expanded by the
distributive law. If Fy, F5,..., F} are irreducible and pairwisely disjoint, both F’ and
F” are irreducible CNF's.
Proof: First, we prove F' = (C11 ACia... ACip) A (Cop A Cog. .. ACopy) ... A (Crr A
Cia ... A Ckp,) is an irreducible CNF. Since F; is irreducible, by Theorem 1, any two
clauses of F; are distinct, for 1 <7 < k. And F; and F} are disjoint, for < # j. Then we
have that Cj; is a clause of F” for 1 <i < k and 1 < j < n;, and that any two clauses
of F" are distinct. Therefore, from Theorem 1, F’ is an irreducible CNF.

Next we begin to demonstrate F” = (C; Vo V...V Cr) A(C11 VO V...V Cia) A
S AN(C VOV .. VO ) AN(C1VCo V.. NV Cia) Ao A (Cryy V Oy V.. .V Cly,,) s also
an irreducible CNF. Similarly, since Fj is irreducible, by Theorem 1, any two clauses of
F; are distinct, for 1 < ¢ < k. Moreover, F; and Fj are disjoint, for ¢ # j. Then we have
that (Cy;, V Ca, V...V Cy;, ) is a clause of F” for 1 <i; <n; and 1 < j <k, and that
any two clauses of F” are distinct. Therefore, from Theorem 1, F” is also an irreducible
CNF. O
Lemma 2: Given any two irreducible CNFs F| and F,, F| = Fy if and only if F} 0 F,.
Proof: There are two parts to be proved.
(a) Suppose Fy = Fy. Let F{ =C;3 ACia A... AChyp, and Fy = Coy ACop A ... A Cop,
where Cj; is the clause of Fj, for 1 <7 <2 and 1 < j <n,. Now suppose F; and F; are
not isomorphic. There are two possible cases.
(a.1) There exists one clause in F} in the sense that it is not isomorphic to any clause
in F5. Without loss of generality, C'; is assumed to be such a clause. First suppose
there is a clause Cs; in F, with the property that Cy; oc C'q. It is obvious that Cy; is
not isomorphic to C4;. Since Fj is irreducible, any two clauses of F; are distinct by
Theorem 1. Then C; ¢ Cy; due to Cy « Chq, for 2 < k < n;. This means that any
clause in Fj contains a variable foreign to Cy;. Hence let every variable in Cy; be false

but other variables be true. It will result in that F; = true but F; = false. Obviously,

14



it leads to a contradiction.

Therefore there does not exist a clause Cy; in Fy with Cy; o« Ci;. This means that
any clause in Fy contains a variable foreign to C4;. Likewise, we can let every variable
in C'1; be false but other variables be true. It will result in that F;, = false but F, =
true and also lead to a contradiction.

(a.2) There exists one clause in F, in the sense that it is not isomorphic to any clause
in ;. With the similar proof to the former case, we can show that this case is also

impossible.

150
So we can conclude F| = Fj.

(b) Now suppose F} Z F,. It is trivial that F} = Fy. O
Theorem 2: Given an irreducible CNF F', F' can be only factored by one of the and-
factoring and or-factoring algorithms, but not both.

Proof: Suppose that F' can be factored as F} A Fy where F} and F, are two disjoint
formulas and can also be factored as F3V F, where F3 and F); are two disjoint formulas.
Without loss of generality, we can assume that Fi, F5, F3 and Fj are all irreducible CNF's
since every Boolean formula can be transformed into its irreducible conjunctive normal
form. Let F; = Cj; A Cip A ... A Cyy,, where Cj; is the clause of Fj, for 1 <i<4and 1<
J < mni. Now let F' = (C;y AC1aA. . .AC1p )A(Coy ACoo A . .ACoy, ), ie. FYAF,. Since Fy
and F3 are irreducible and disjoint, from Lemma 1, F’ is an irreducible CNF. Moreover,
let F” = (C31VCy) A(C51VCi2) A . A(C31V Cliny) A(C32VCiyi) Ao o A (Cng V Cany),
i.e. F3V F; expanded by the distributive law. Likewise, from Lemma 1, F” is also an
irreducible CNF. Because F' and F” are equivalent irreducible CNF's, by Lemma 2, F’
and F” are isomorphic. However, it is obvious that we cannot divide clauses of F” into
two disjoint sets. On the contrary, the clauses of F’ can be divided into two disjoint sets
since it can be and-factored as F; A F,. This leads to a contradiction. O
The previous theorem states that the selection of factoring operations on a given formula
is unique. In addition, we want to remind readers that if a formula can be exactly and-
factored (or-factored) as k subformulas, it is the most effective to factor it into exactly
k subformulas. This is because a subformula which can be further and-factored (or-

factored) can not be or-factored (and-factored) subsequently. In the following, we give a

15



formal definition for this scenario. Note that F\, F5,. .., F} are pairwisely disjoint from
the definition of factoring operations.

Definition 3: A Boolean formula F' is thoroughly and-factored (thoroughly or-factored)
as F1, Fy, ..., Fy if and only if F' can be and-factored (or-factored) as Fi, Fs, ..., F} and
F; cannot be and-factored (or-factored) further, for 1 <i < k.

Therefore, the selection of factoring operations can be considered as and-factoring and
or-factoring alternately. Next, we characterize one property of thoroughly and-factoring
as below.

Theorem 3: If F' can be thoroughly and-factored as F, Fy, ..., Fyand as F|, F}, ..., F},
where F; and FJ’ are irreducible CNFs, for 1 <i < k and 1 < j < k', we have k = k'

is0

and for any Fj, there exists an F} such that F; = F and vice versa.
Proof: Suppose that F; = Cj; A Cip A ... A Cyy,, where Oy is the clause of Fj, for

1<i<kand 1l <[ <n; and F]’ = C’;-l A C’J’-2 Ao A C}n,_ where C]’-l is the clause

of F],, for 1 S j S k' and 1 S l S n; Let F' = (CIIACIZ---/\Clnl)/\ (021 A
022---/\0271,2)---/\ (Ckl/\ck2---/\cknk)7 i.e. Fl /\FQ/\ /\Fk Since Fl,Fz,...,Fk
are irreducible and pairwisely disjoint, by Lemma 1, F" is an irreducible CNF. Also, let
F” — ( 11/\0{2/\0{”/) /\( éIAOQZAOén’)/\(O]IC’I AC]Q’Q"'/\C],C’TL’ ), le
1 2 k!
FINFEy AN ... A Fj,. Similarly, by Lemma 1, we have that F” is an irreducible CNF.

Because F’ and F” are equivalent irreducible CNFs, by Lemma 2, we have F” 50

Hence, for any Cj,, 1 < i < k and 1 < p < n;, there exists a C,, 1 < j < k' and

Jq°

1 < ¢ < nj, such that Cj, £l

;> and vice versa. Now suppose there exists some F; with

that there is no F}, 1 < j < k', which is isomorphic to Fj. There are two possible cases
for every Fj.
(a) F} does not contain all the corresponding isomorphic clauses of Fj in F”. This

means that some corresponding isomorphic clauses of F; belong to some other F] where
j # 1. Therefore, the clauses of F; can be divided into disjoint sets. This leads to a
contradiction since F; cannot be and-factored further.

(b) Fj contains not only all the corresponding isomorphic clauses of F; in F” but also

some other clauses. This means that some corresponding isomorphic clauses of F} in F"
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belong to some other F; where i # [. Therefore, the clauses of F} can be divided into

disjoint sets. This leads to a contradiction since F}’ cannot be and-factored further.
So we can conclude that for any Fj, there exists an F} such that F; iso Fj. And since F)

and F are disjoint for p # ¢, there exists only one Fj such that F; iso Fj. Likewise, we

is0

can get that for any F}, there exists a unique F; such that F] = F;. Consequently, we

also have k = k'. O
Since the conjunctive normal form and the disjunctive normal form are dual, we can

easily get the following corollary on the property of thoroughly or-factoring, applying

the similar proof with the previous theorem.

Corollary 1: If F' can be thoroughly or-factored as Fi, Fy, ..., Fj, and as F|, F}, ..., F},

where F; and FJ’ are irreducible DNFs, for 1 < i < k and 1 < j < k', we have k = k'

is0

and for any Fj, there exists an F} such that F; = F and vice versa.

It is obvious that if two positive formulas are isomorphic in their irreducible disjunctive
forms, they are also isomorphic in their irreducible conjunctive forms. Therefore, we get
another corollary.

Corollary 2: If F' can be thoroughly or-factored as F, F,, ..., Fj, and as F|, F}, ..., F},
where F; and FJ’ are irreducible CNFs, for 1 <i < k and 1 < j < k', we have k = k'

and for any Fj, there exists an F} such that F; R } and vice versa.

Because every subformula can be transformed into its irreducible conjunctive normal
form, we can consider the result of thoroughly and-factoring (thoroughly or-factoring)
an irreducible formula as unique according to the previous results. For the sake of neat
presentation, we assume that the considered Boolean formula is an irreducible CNF F'
in the rest of this section. And F' = C1; ACy A ... AN C, where C; is the clause of F,
for 1 < i < n. Moreover, we assume that there are k irreducible and pairwisely disjoint
CNFs Fy, Fy,...,Fy and F; = Cj; A Cig A ... A Cyy,, where Cj; is the clause of Fj, for
1<i:<kand1<j<n,.

Prior to designing the and-factoring algorithm, one important property of the and-
factoring operation is demonstrated.

Theorem 4: F can be thoroughly and-factored as Fy, Fs, ..., Fy if and only if (Cy A
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Con...NCp) 2 (CuNCiaA.. .AC1py NCoy ACoa Ao . ACopy Ao .ACit ACia A .. AChp, ),
ie. E ANFy, AN N F.

Proof: There are two parts to be proved.

(a) Suppose F' can be thoroughly and-factored as Fy A Fo A ... A Fy. Here let F' =
(C11iNCig .. . AC1y )N (Coi ACo .. . ACopy) .. AN(CriACha .. . AChkp, ), 1.6. FiANFSA. . NFy.
Since Fi, F, ..., F} are irreducible and pairwisely disjoint, from Lemma 1, F’ is an

irreducible CNF. Because F' and F’ are equivalent irreducible CNFs, by Lemma 2, we

havng)F’. Hence, (Cl/\CQ/\.../\Cn)isZO(CIl/\ClQ/\.../\CInI/\021/\022/\.../\
an2/\.../\Ckl/\ckg/\.../\olmk).

(b) Suppose (C1 ACy A ... ACL) 2 (Ciy ACio Ao ACiny ACay A Cag Ao A Cany A
o ANCit A Cia A ... A Chp,). Tt is trivial that F' can be thoroughly and-factored as
FyLANFys N .. N\ F. O

Now we begin to implement the and-factoring algorithm. According to previous
theorem, we know that performing an and-factoring operation on an irreducible CNF
can directly divide its clauses into disjoint sets. Moreover, this CNF can be thoroughly
and-factored into k& subformulas if and only if its clauses can be divided into exactly &
disjoint sets. So if this formula cannot be and-factored, its clauses cannot be divided into
disjoint sets. In order to divide clauses into disjoint sets, we introduce the clause-joint
graph to exhibit joint relation among clauses, which is defined as below.

Definition 4: The graph G = (V, E) is a clause-joint graph corresponding to F if
and only if each vertex v; € V associates with a clause C; and each edge (v;,v;) € E
represents that L(C;) N L(C;) # 0, for 1 <4i,j <n and i # j.

Figure 9 depicts an example clause-joint graph.

Since a connected component of the clause-joint graph associates with a set of clauses
which are not disjoint, a property of the clause-joint graph utilized to design the algo-
rithm is given in the following, according to Theorem 4.

Property 1: F' can be thoroughly and-factored into k£ subformulas if and only if the
clause-joint graph constructed from F'is a graph with exactly k£ connected components.

According to the property of the clause-joint graph described above, the algorithm

AND-factoring is consequently implemented as the following procedures. Note that if
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Figure 9: The clause-joint graph corresponding to the formula F' = (z1 V x3) A (29 V
1‘3) VAN (.’L’4 V 1‘6) A (1‘5 V IL'G) where the clauses Cl =1V xrs3, CQ =29V Zs, Cg =x4V Tg

and C4 =x5 V Zg.

F' cannot be and-factored, F' will be returned intact.
AND-factoring(F')
Begin

1 If F is a single literal, reply F' and return.

2 Construct the clause-joint graph G¢ from F'.

3 Suppose there are k connected components in G¢. Find the connected components

b, of Go for 1 <i < k, by the Breadth-First Search (BFS) algorithm.
4 For 1 < i < k, generate a CNF F; containing the clauses corresponding to the
nodes in G%.

5 Reply Fi, Fs, ..., Fj.
End
The following argument shows that this algorithm is correct. If ' can be and-factored,
its corresponding clause-joint graph consists of two or more connected components ac-
cording to Property 1. And the nodes of each connected components associate with
the clauses of a subformula. Consequently, we can obtain subformulas by Step 4. On
the other hand, if F' cannot be and-factored, its corresponding clause-joint graph is a
connected graph. Then F' will be returned intact.

As for the or-factoring algorithm, we also characterize one property about or-factoring
operations first.

Theorem 5: F' can be thoroughly or-factored as Fy, Fy, ..., Fy if and only if (Cy ACyA

ANC)E(CHV Oy V. VCa)A(CHH VO V.o Vi) Ao A(C1iVCo V..V
Ckl)/\(CllVCQQV...VCkQ)A...A(CInIv02n2v...voknk)),i.e. FI\/FQ\/...\/Fk
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expanded by the distributive law.

Proof: There are two parts to be proved.

(a) Suppose F' can be thoroughly or-factored as F1VF, V...V Fy. Let F' = ((C;; VCy V
S NVC)NA(C VO V. . NCr2) Ao A (C11 VO V.. NVCr ) AN(C11 VO V.. N Cra) AL A
(C1ny VCopy V.. .V Ciyp,)), ie. F1VFyV ...V F, expanded by the distributive law. Since
Fi, Fy, ..., F} are irreducible and pairwisely disjoint, by Lemma 1, F’ is an irreducible

CNF. Because F' and F' are equivalent irreducible CNF's, according to Lemma 2, we

haveFigF’. Hence, (Cl/\CQ/\.../\Cn)is:O((011\/Cle...VOkl)/\(011V021\/...\/
Cra)N.. . N(C1 1 VC%V .. VO )N (C11VC% V...V Cia) Ao .A(Cryy VCay Vo .V Ciipy))-

(b) Suppose (C;y ACy A ... ACR) 2 ((Cry VO V...V Cia) A(Cii V Cor V...V Cra) A
A (Cri VOV ... VCi) AN(C11 VOV ...V Cia) Ao A(Cipy V Copy V...V Cpy))-
It is trivial that F' can be thoroughly or-factored as Fi, Fs, ..., F. O

Intuitively, performing an or-factoring operation on an irreducible CNF can directly
extract clauses of subformulas from its clauses according to the previous theorem. More-
over, if this formula cannot be or-factored, it is not isomorphic to any formula of disjoint
irreducible CNF's expanded by the distributive law. In the following, we will discuss how
to design the extracting procedure.

Since we need to or-factor a formula as many subformulas as possible, a subformula
with only one single clause is thus further or-factored into several subformulas with only
one literal. Therefore, there is no subformula containing only one single clause. We can
consequently conclude the following property.

Property 2: If F' can be thoroughly or-factored as Fi, Fy, ..., Fj, F; must be a single
literal or a formula with two or more clauses, for 1 <i < k.

From the distributive law, every two distinct clauses C;, and Cj, of F; are distributed
to different clauses of F'; whereas for any two clauses Cj, and Cj, of two distinct subfor-
mulas F; and F}, there exists a clause of F' containing these two clauses. Thus, we have
the following another two properties, in which F'is assumed to be thoroughly or-factored
as Fi, Fy, ..., F}.

Property 3: For every two literals z, € Cy, and x;, € Cj, of F; where Cj, and Cj, belong

to different disjoint sets of clauses, there is no clauses C; of F' such that both x, and
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Figure 10: The literal-disjoint graph corresponding to the formula (z1 V 25 V 24 V z5) A
(1'1 V i) V IL'G) A (.’L’g V Ty V 1'5) VAN (.’L’g V IL'G).

xy € C).

Remark that if C;, and Cj, are in a set of clauses which are not disjoint, perhaps both
x, and xp are in the same clause of F;. Thus there trivially exists a clauses Cj such that
both z, and z, € C;.

Property 4: For every two literal z, € Cj, of F; and z;, € Cj4 of Fj where i # j, there
exists a clauses C) of F' such that both z, and z, € C.

Hence, we construct the literal-disjoint graph to exhibit disjoint relation among lit-
erals, which are defined as follows.

Definition 5: The graph G = (V, E) is a literal-disjoint graph corresponding to F' if and
only if each vertex v; € V' associates with a literal z; for 1 < i < m where m = |L(F)|,
and each edge (v;,v;) € E represents that there is no clause C; in F' such that both z;
and z; € (.

Figure 10 gives an example literal-disjoint graph.

For a subformula with only one single literal, the corresponding node of its literal in
the literal-disjoint graph of F' is disconnected from other nodes according to Property 4.
For a subformula containing two or more clauses which can be divided into disjoint sets,
namely, it can be and-factored in the next step by Theorem 4, the corresponding nodes
of its literals form a connected component and are also disconnected from other nodes
applying Property 3 and 4. From the foregoing discussion, we obtain the following prop-
erty.

Property 5: If F' can be thoroughly or-factored into k subformulas and every sub-
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formula with two or more clauses can be and-factored, its corresponding literal-disjoint
graph has exactly k& connected components.

The algorithm OR-factoring is thus designed as below. Also, if F' cannot be or-
factored, F' will be returned intact.
OR-factoring(F')
Begin

1 If F is a single literal, reply F' and return.

2 Construct the literal-disjoint graph G from F'.

3 Suppose there are k connected components in GGr. Find the connected components

. of Gy, for 1 <i <k, by the Breadth-First Search (BFS) algorithm.
4 For 1 <1 <k, generate a set .S; containing the literals corresponding to the nodes
in GY.

5 Generate a fundamental disjunctive formula D;; with L(D;;) = S; N L(C}), for
1<i<kand1<j<n.
Generate a CNF H; = Djy ADip A ... AN Dy, for 1 <i<k.
F; = REDUCE(H;), for 1 <i <k.

If n#mny Xng X ...xng, reply F.

© oo N O

If F' is isomorphic to the formula of FyV Fy V...V F} expanded by the distributive
law, reply Fi, Fs, ..., Fy; else reply F.

End

The following argument shows that this algorithm is correct. If F' can be or-factored
and every subformula with two or more clauses can be and-factored, its corresponding
literal-disjoint graph consists of two or more connected components from Property 5.
And the nodes of each connected components associate with the literals of a subformula.
Consequently, we can obtain subformulas through Step 5 to 7 according to Theorem 5.
On the other hand, if F' cannot be or-factored and its corresponding literal-disjoint graph
is a connected component, F' will be returned intact. If the literal-disjoint graph is not a
connected component, F' will not pass Step 8 or 9 and then will also be returned intact
since F' is not isomorphic to any formula of disjoint irreducible CNFs expanded by the

distributive law by Theorem 5. Remark that for F', which can be or-factored but one of
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its subformulas with two or more clauses cannot be and-factored, if it can pass Step 9,
obviously it can be thoroughly or-factored as Fy V F» V ...V Fy; whereas if it can not
pass Step 8 or 9, it does not violate the correctness of our algorithm because F' is not
fully factorable and we do not need to factor it any more.

Last but not least, the overall factoring algorithm is proposed. We maintain two
lists of Boolean formulas called the AND [ist and OR list, represented as AL and OL
respectively. AL contains the Boolean formulas needed to be applied by the algorithm
AND-factoring; while OL contains the Boolean formulas needed to be applied by the
algorithm OR-factoring. Each formula F' is thus attached with two Boolean tags, A-
tag and O-tag, to indicate if F' can be factored by AND-factoring or OR-factoring.
Initially A-tag and O-tag are set to be true. If ' cannot be factored by AND-factoring
(OR-factoring), A-tag (O-tage) is consequently set to be false. The algorithm is shown
in the following.

FACTORING(F)
Begin

1 F'= REDUCE(F).

2 If F' is a single literal, reply “F' is fully factorable” and return.

3 Set F' — A-tag and F' — O-tag to be true and add F” into AL.

4 Repeat removing a formula P from AL to perform the following procedures until

AL = 0.
4.1 Call AND-factoring(P) to factor P into a set of subformulas S.
4.2 If |S| =1 and P is not a single literal
4.2.1 Set P — A-tag to be false.
422 If P — A-tag and P — O-tag are both false, reply “F is not fully
factorable” and return.
4.2.3 If P — O-tag is true, add the only one element in S to OL.
4.3 If |S| > 1, for each subformula P; in S
4.3.1 Set P; — O-tag to be true and P; — A-tag to be false.
4.3.2 Add P; to OL.

5 Repeat removing a formula ) from OL to perform the following procedures until
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OL = 0.
5.1 Call OR-factoring(Q) to factor @ into a set of subformulas 7.
5.2 If |T'| =1 and @ is not a single literal
5.2.1 Set ) — O-tag to be false.
5.2.2 If Q — A-tag and Q — O-tag are both false, reply “F' is not fully
factorable” and return.
5.2.3 If Q — A-tag is true, add the only one element in 7" to AL.
5.3 If |T'| > 1, for each subformula Q; in T
5.3.1 Set Q; — A-tag to be true and @); — O-tag to be false.
5.3.2 Add @; to AL.
6 Repeat Step 5 and 6 until AL = OL = ().
7 Reply “F'is factorable”.
End
Here we begin to evaluate the time complexity of the algorithm FACTORING. Let
m be the number of literals and n be the number of clauses in F'. It is easy to see that
the time complexity of the algorithm REDUCE is O(mn?) since we have to compare
every two clause of the n clauses with at most m literals. As for the algorithm AND-
factoring, the time complexity of Step 2 is also O(mn?), with the similar reason to the
algorithm REDUCE. Moreover, the time complexity of Step 3 is O(n?) for the reason
that there are n nodes in the clause-joint graph. Since the previous two steps are the
dominant steps, the time complexity of the algorithm AND-factoring is thus O(mn?).
Symmetrically, the time complexity of Step 2 and 3 in the algorithm OR-factoring
is O(nm?) and O(m?), respectively. Besides, Step 7 is another dominant step and its
time complexity is O(mn?) since the number of clauses in H; is n and the total number
of literals of Hy, Hs,...H} is m. As for Step 9, because there are n clauses with at
most m clauses in both two formulas, its time complexity is also O(mn?). So we can
conclude that the time complexity of the algorithm OR-factoring is O(mn%+m?n). Let
T(m,n) be the time complexity of the algorithm FACTORING. We can get T'(m,n)
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in the following recursive equations.

T(m,n) < O(mn?) +T(z,y)+T(m —z,n—y) if F' can be and-factored,;
T(m,n) < O(mn?+m?n) +T(z,y)+T(m —xz,n/y) if F can be or-factored,
where 1 <z <mand 1 <y <mn;
T(1,1) = 1.

Let [ = X ,|L(C;)|, i.e. the number of total literals in F. It is obvious that [ is the
upper bound of m and n. Then we can get the time complexity T'(m,n) = O(I*).
Since the time complexity of the ESP recognition algorithm is O(|V |+ |E|) [15] and our
AOSP recognition algortihm needs at most (|V'| — 1) fully factoring operation, the time
complexity of the algorithm RECOGNITION is then O(|V|L* + |E|), where L is the

maximum value of [ among all attached Boolean formulas.

5. Conclusions

The computation task of a distributed processing system can be usually modeled as a
task digraph, and many modern varieties of task digraphs belong to the class of AOSP
digraphs. For this type of digraph, we can calculate the task reliability in linear time;
whereas this problem is known to be NP-hard for general digraphs [10]. In addition, the
task response time of AOSP digraphs can also be precisely estimated in linear time by
a new analytic model developed in [8], instead of time-consuming simulation methods.
Therefore, it is crucial to recognize AOSP digraphs for evaluating computation tasks.
In this paper, we have proposed a polynomial time algorithm for recognizing AOSP
digraphs. Our results extend the previous work on the recognition of ESP digraphs,
which are a special case of AOSP digraphs. Moreover, the main part of our work is the
factoring algorithm. This algorithm can fully factor a positive CNF, and thus is not
only necessary for our problem but also useful for other problems, which need to factor

positive Boolean formulas.
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