Generic Validation of Structural Content
with Parametric Modules *

Tyng-Ruey Chuang
Institute of Information Science
Academia Sinica
Taipei 115, Taiwan

trc @iis.sinica.edu.tw

ABSTRACT

In this paper, we demonstrate a natural mapping from ele-
ment types of XML to module expressions of ML-like pro-
gramming languages. The mapping is inductive, and the
definitions of common XML operations can be derived as the
module expressions are constructed. We show how to derive,
in a generic way, the validation function, which checks an
XML document for conformance to the content model speci-
fied by its DTD (Document Type Definition). One can view
the validation function as giving types to XML elements,
and the validation procedure a pre-requirement for typeful
XML programming in ML.

Our mapping of XML element types to ML module expres-
sions uses the parametric module facility of ML in some con-
trived way. For example, in validating WML (WAP Markup
Language) documents, we need to use 36-ary type construc-
tors, as well as higher-order modules that take in as many
as 17 modules as input. That one can systematically model
XML DTD at the module level suggests ML-like languages
are suitable for type-safe prototyping of DTD-aware XML
applications.

1. INTRODUCTION & MOTIVATION

XML (eXtensible Markup Language) is language for tagging
documents for their structural content [2]. A XML docu-
ment is tagged into a tree of nested elements. XML is exten-
sible because each XML document can include a DTD (Doc-
ument Type Definition) which lists the tags of the elements
and specifies the tagging constraints. A central concept in
XML document processing is validation. A XML document
is walid if its content is tagged with the constraints specified

*Submitted to International Conference on Functional Pro-
gramming, 2001, and available as Technical Report TR-TIS—
001-005, Institute of Information Science, Academia Sinica,
Taipei, Taiwan (http://www.iis.sinica.edu.tw). Comments
and suggestions are most welcome.

by its DTD. A XML document is well-formed if each of its
element is enclosed with matching start-tag and end-tag. A
well-formed XML document is not necessarily valid.

The following XML document contains a DTD that defines
two element types folder and record. The document con-
tains as a root a folder element, which has an empty record
element as its only child. It is a valid XML document.

<?xml version="1.0"7>

<!DOCTYPE folder [

<!ELEMENT folder ((record, (folder|record)=) |
(folder, (folder|record)+))>

<!ELEMENT record EMPTY>

1>

<folder><record></record></folder>

The DTD in the above XML document models the structure
where a record must contain no other element, and no folder
is empty or contains just another folder. One may think of
it modeling a tidy bookmark file. Of the following three
elements, f3 is valid, but items f1 and f2 are not.

fl <folder></folder>

f2 <folder><folder><record></record></folder></folder>

f3 <folder><folder><record/></folder><record/></folder>

Note that <record/> is a shorthand for <record></record>.
The tag sequence <record><folder></record></folder> is
an example of not-well-formedness.

To simplify discussion, we may say that each element type
in the DTD is specified by its element content model (i.e.,
its tagging constraint) which is an unambiguous regular ex-
pression with element type names as symbols. The content
model of an element type specifies what element sequences
are allowed as the children of the element. Naturally, when
coding XML programs, one need to map the element types
in a DTD to the corresponding data types in the source pro-
gramming language. A further requirement of the mapping
is that content validation is translated into type correctness
in the programming language, so that well-typed programs
will always produce valid XML elements. Note that this
goes beyond what is required of the so-called “validating

XML processor”, which need only report violations of ele-
ment content models in the input XML document but need
not impose restrictions on the output.

There have been several directions in programming language
support for writing XML applications. We can classify them
into the following three categories.

ADT for well-formed elements. Abstract data types and
the accompanying library routines are designed to tra-
verse and transform well-formed XML elements. The
XML data is assumed to be validated in a separate
phase, or its validation is a separate issue and may not
even be required. Examples in this category include
standard XML API in C++, Java, or other languages
(e.g., Document Object Model, DOM [1]) and a combi-
nator approach to writing XML processing functional
programs [3, 18].

Type translation of DTD. A strongly typed language is
used for XML programming, and the type system of
the language is used to embed DTDs. The embed-
ding is complete (every element type has a correspond-
ing data type in the embedding language) and sound
(an expression of the embedding language evaluates to
a valid XML element if the expression is well-typed
in the language). Examples in this category include
HaXml [3, 18] and XMLambda [14]. If the strongly
typed language is statically typed, then the sound-
ness proof is done by the type checker at compile-
time. Hence no type-correct program will produce
invalid XML elements. One can also use constraint-
based languages or logic programming languages to en-
code XML content models in a similar way [19]. The
type translation approach is not completely satisfac-
tory for two reasons. One is that the type transla-
tion may not be systematic and can be tedious if done
manually. The other inconvenience is that code for
generic XML processing operations need to be rewrit-
ten for every DTD because they are translated into
different types. XML content validation, which check
well-formed XML documents for conformance to their
DTDs, is such a generic operation.

Native language support of DTD. New languages are
being designed with builtin XML support to help build
XML-related applications. XDuce is a functional lan-
guage with regular expression types, so as to allow
direct representations of DTDs and processing of valid
elements [10, 11]. Expressions in the language are eval-
uated to valid XML elements, but variables must be
annotated with their element types. The concept of
validation is built into the language as type correct-
ness, and programs are type-checked at compile-time.
XDuce also provides regular expression patterns which
further help write concise XML programs. XDuce,
however, is currently a first-order and monomorphic
language, and lacks some language features (e.g., a
module system).

In this paper, we show how to use parametric modules in
ML-like languages to write XML-supporting program mod-
ules that are both expressive and generic. It is expressive

because all XML DTDs can be constructed from the pro-
vided parametric modules. It is generic because common
operations, including the validation function, are automati-
cally generated. As such, our approach has the advantages
of both the type translation approach and the native DTD
support approach, but without their disadvantages. There is
no need to recode generic operations, and no need to design
new language.

2. ANILLUSTRATING EXAMPLE

For the tidy bookmark example described in Section 1, the
following is the actual code we write in Objective Caml to
specify the DTD, and to produce the validation functions
for the two element types in the DTD.

module BookmarkTag =

struct
type (’x0, ’x1) t = Folder of ’x0 | Record of ’x1
let map (£f0, f1) t = ...

end

module TidySys =

struct
module FO = Alt(Seq(P1) (Star(Alt(PO)(P1))))
(Seq(P0O) (P1lus (A1t (PO) (P1))))
module F1 = Empty
module Tag = BookmarkTag
end

module TidyDtd = Mu(TidySys)

In the above, module TidySys contains two modules FO
and F1, which are translations, word by word, in Objective
Caml module language the XML element type declarations
of folder and record. The higher-order module Alt is for
“|”, Seq for “,”, Star for “¥” and Plus for “+”. Ideally,
we would like to define the two XML element types as two
mutually recursive ML modules TO and T1 as the following.

module TO

A1t (Seq(T1) (Star (A1t (TO) (T1))))
(8eq(T0) (P1us (A1t (TO) (T1))))
and T1 = Empty

But Objective Caml, as most ML-like languages, does not
support recursive modules. Instead we use two “place holder”
modules PO and P1 as the two parameters to higher-order
modules (Alt, Seq, etc.), and use another higher-order mod-
ule Mu (pronounced as p) to derive the two simultaneous
fixed points.

Module TidyDtd contains

e module U, which defines the type for well-formed ele-
ments;

e module V, which contains modules T0O and T1 that each
defines the type for valid folder and record elements,
respectively;

e functions validate and forget, which provide map-
pings between well-formed elements and valid elements.

It also defines exception Invalid, which may be raised
by function validate. Note that the following equa-
tions always hold

forget ovalidate = 1id, (may raise exception)

validate o forget = id

The sample element f3 as shown in Section 1 can now be
defined and validated by the following Objective Caml code
(£3_u is well-formed and £3_v is valid):'

let £f3_u = folder [folder [record []1]; record []]
let £f3_v = TidyDtd.validate f3_u

In addition, the valid element returned by the validation
function is parsed and typed in the sense that all of its sub-
structures are given specific types and can be extracted by
using ML pattern-matching.

In this paper, we will use the above example to explain the
idea and describe the construction. However, the idea and
the construction can be systematically applied to DTDs with
n element types. One need just to define a n-ary fixed point
module Mu,, that will take a system of n n-ary higher-order
modules Fo, Fi, ..., Fp—1, and produce the simultaneous
fixed points. The definition of Mu,, is symmetric and is sim-
ilar to Mu. We will later use WML (a markup language for
wireless applications whose DTD defines 35 element types)
as a benchmarking example to show the effectiveness of our
approach.

3. GENERICPROGRAMMING WITH PARA-

METRIC MODULES

The XML element types in the folder example can be trans-
lated into Objective Caml using a series of type definitions
as shown below.

type (’a, ’b) alt =L of ’a | R of ’b

type (’a, ’b) seq = ’a * ’b

type ’a star = ’a list

type ’a plus = One of ’a | More of ’a * ’a plus

type folder = Folder of
((record, (folder, record) alt star) seq,
(folder, (folder, record) alt plus) seq) alt
and record = Record

One can abstract the right-hand-sides of the type equations
for folder and record into two binary type constructors
£0 and f1, and view folder and record as the least fixed
points of £0 and f1.

!Functions folder and record are syntactic sugars, and
can be defined by

let folder ulist = BookmarkTag.Folder
(TidyDtd.U.up ulist)

let record ulist = BookmarkTag.Record
(TidyDtd.U.up ulist)

type (’a, ’b) £0 (C’b, (’a, ’b) alt star) seq,
(’a, (’a, ’b) alt plus) seq) alt

type (’a, ’b) f1 = unit

type folder = Folder of (folder, record) fO
and record = Record of (folder, record) f1

One can further rewrite £0 and £1 using the two projection
functions p0 and p1, and the empty type constructor.

type (’a, ’b) p0 = ’a
type (’a, ’b) pl = ’b
type (‘a, ’b) empty = unit

type (’a,’b) 0 =
((C’a,’p)pl, ((’a,’b)p0, (’a,’b)pl) alt star) seq,

(C’a,’b)p0, ((’a,’b)p0, (’a,’b)pl) alt plus) seq) alt

type (’a,’b) f1 = (’a,’b) empty

At this point, it is clear that one can program in the module
level, and define £0 and £1 as two module expressions using
a predefined set of constant modules (for p0, p1, and empty),
unary parametric modules (for star and plus), and binary
parametric modules (for alt and seq). This is shown in
Figure 1 where we also define the map function, inductively.
All XML element types can be defined using a fixed set of
parametric modules.

We may say that modules FO and F1 are objects in a functor
category where each object has a type constructor t to map
types to types, and a function map to map typed functions to
typed functions. Parametric modules like Plus are arrows in
the functor category, i.e., natural transformations. We view
this definition of the map function a generic one, as each
map instance is inductively indexed by its governing type
expression. We will later show definitions of other generic
values that are used in the definition of the validation func-
tion (which itself is generic as well).

4. PARAMETRIC CONTENT MODELS AND
SIMULTANEOUS FIXED POINTS

In Figure 1, modules FO and F1 each defines a binary type
constructor t, and the the two type constructors are used
together to mutually define types folder and record. The
code is reproduced below.

module FO: FUN

Alt (Seq(P1) (Star (A1t (PO) (P1))))
(Seq(PO) (P1lus (A1t (PO) (P1))))
module F1: FUN = Empty

type folder = Folder of (folder, record) FO.t
and record = Record of (folder, record) Fi.t

The type constructors FO.t and F1.t are parametric con-
tent models in the sense that each maps a tuple of type
instances to a content model. For example, given type in-
stances folder and record, the type expression (folder,
record) FO.t expands to

((record, (folder, record) alt star) seq,

module type FUN =
sig
type (’a, ’b) t
val map: (’a -> ’x) * (b -> ’y) >
(’a, ’b) t > (Cx, ’y) t
end

functor (F: FUN) -> FUN
functor (FO: FUN) ->
functor (F1: FUN) -> FUN

module type F2F
module type F2F2F

module Empty: FUN
struct
type (Ca, ’b) t = ()
let map (£, g) t = O
end

module PO: FUN =
struct
type (’a, ’b) t = ’a
let map (f, g) t = £ ¢
end

module Plus: F2F = functor (F: FUN) ->
struct
type (Ca, ’b) t =
One of (’a, ’b) F.t
| More of (’a, ’b) F.t * (’a, ’b) t
let rec map (f, g) t =
match t with
One s -> One (F.map (f, g) s)
| More (v, w) —>
More (F.map (f, g) v, map (f, g) w)
end

module Seq: F2F2F = functor (FO: FUN) ->
functor (F1: FUN) ->
struct
type (’a, ’b) t = (’a, ’b) FO.t * (’a, ’b) Fl.t
let map (f, g) (u, v) = (FO.map (f, g) u,
Fl.map (f, g) v)
end

module P1: FUN = ...
module Star: F2F
module Alt: F2F2F

module FO: FUN = Alt(Seq(P1) (Star (A1t (PO) (P1))))
(Seq(P0) (P1us (A1t (PO) (P1))))

module F1: FUN = Empty

type folder = Folder of (folder, record) FO.t
and record = Record of (folder, record) Fi.t

Figure 1: Inductive definitions of XML element
types using parametric modules.

Note: Module type annotations can be, and often are, omit-
ted. W can take out the “: F2F” part in “module Plus:
F2F = ... 7, and at the same time expose the implementa-
tion of module Plus. The annotations are added for clarity
and type-checking purposes.

(folder, (folder, record) alt plus) seq) alt

which is exactly the XML content model for element type
folder.

The main idea is to use type constructors as parametric con-
tent models, and view XML element types as simultaneous
fixed points of a set of parametric content models. This
viewpoint helps us develop primitive functions that are ab-
stract and applicable to different content models (that is, the
primitives are polymorphic). One of these primitives is the
simultaneous induction operator — the fold function. We
will later show that the validation procedure can be defined
by using the fold function.

We then model two recursively defined XML element types
by two interdependent ML modules TO and T1. Their signa-
tures are the following.

module TO:

sig
type (’x0, ’x1) cm
type t

val up: (TO.t, T1.t) cm -> TO.t
val down TO.t -> (TO.t, Ti1.t) cm
end

and

module T1:

sig
type (°x0, ’x1) cm
type t

val up: (TO.t, T1.t) cm -> Tl.t
val down T1.t -> (TO.t, T1.t) cm
end

In the above, type constructor (’x0, ’x1) cm is for the
parametric content model, and type t is for the element
type. Functions up and down map between an element and
its content model, and together define their equivalence:

downoup = 1id

up odown = 1id

Note that the above mutually defined signatures are not al-
lowed in Objective Caml (as in most ML-like languages).
However, one can use both auxiliary type names and ad-
ditional type sharing constraints to overcome the problem.
We can define a higher-order module MuValid that derives
modules TO and T1, when given a module that specifies the
corresponding parametric content models and the tag set,
see Figure 2. In Figure 2, modules FO and FO of the in-
put module S specify the parametric content models, and
module Tag specifies the tag set.

Note that, in the module returned by MuValid, the type for
all valid elements is simply defined as the disjoint sum of
type TO.t and type T1.t:

type t = (t0, tl1) Tag.t

Also note that the simultaneous fold function has type

val fold: ((’a, ’b) TO.cm -> ’a) *
((’a, ’b) Ti.cm -> ’b) —->
(TO.t -> ’a) * (T1.t -> ’b)

Function fold returns with two reduction functions (whose
typesare T0O.t -> ’aand T1.t -> ’b) if given two properly
typed induction functions as bases (whose types are (’a,
’b) TO.cm -> ’a and (*a, ’b) Tl.cm -> ’b).

Similarly, a higher-order module MuWF can be defined to de-
rive a module for all well-formed elements; see Figure 3. In
module MuWF, type constructor (’x0, ’x1) cm — the para-
metric content model for well-formed elements — is defined
as a list of tagged values:

type (’x0, ’x1) cm = (’x0, ’x1) Tag.t list

and type u — the type for well-formed elements — is defined
as the fixed point of the parametric content model cm:

type u = U of (u, u) cm

Note as well that type of all well-formed elements, type t, is
defined as the disjoint sum of u and u, representing elements
with two distinct tags. The definition of the simultaneous
fold function is the same as that in module MuValid.

In Figure 3, there are several functions in module U2V and
V2U that are given their types but are left undefined. They
are used to specify functions validate and forget. Func-
tion validate maps a well-formed element to a valid ele-
ment, while forget is the inverse function. Let us look at
functions cm0 and cml in module U2V first. Their types are
the following

val cmO: (V.TO.t, V.T1.t) U.cm >
(V.TO.t, V.T1.t) V.TO.cm

val cml: (V.TO.t, V.T1.t) U.cm —>
(V.TO.t, V.T1.t) V.Tl.cm

Function cm0 maps a well-formed content, whose constitut-
ing parts are valid elements already, into a valid content. If
function cm0 is composed with function V.TO.up, one gets
a function that returns a valid element of type V.TO.t as
result (we use $ as the function composition operator):

V.TO.up $ cmO: (V.TO.t, V.T1.t) U.cm -> V.TO.t
V.Tl.up $ cml: (V.TO.t, V.T1.t) U.cm -> V.T1l.t

Given these two functions as the inductive bases to the si-
multaneous fold function, one derives the validation func-
tions for elements of types V.TO.t and V.T1.t.

module type TAG =
sig
type (°x0, ’x1) t
val map: (’x0 ->’y0) * (’x1 -> ’y1) ->
(’x0, ’x1) t -> (’y0, ’y1) t
end

module type SYS =
sig
module FO: FUN
module F1: FUN
module Tag: TAG
end

module MuValid = functor (S: SYS) ->
struct
module Tag = S.Tag

type t0 = VO of (tO, t1) S.FO.t
and t1 = V1 of (t0, tl1) S.Fl.t
type t = (t0, tl1) Tag.t

module TO =

struct

type (’x0, ’x1) cm = (’x0, ’x1) S.FO.t
let map = S.FO.map

type t = t0

let up cm

let down (VO cm)
end

VO cm
cm

module T1 =

struct
type (’x0, ’x1) cm = (°x0, ’x1) S.Fl.t
let map = S.F1l.map

type t = t1

let up cm = V0 cm

let down (VO cm) = cm
end

let fold (f0, f1)
let rec fold0 x

f0 (TO.map (fold0, foldl)
(TO.down x))

f1 (Tl.map (foldO, foldl)
(T1.down x))

and foldl

o]
1]

in
(fold0, foldi)
end

Figure 2: Module MuValid derives element types as
simultaneous fixed points of a set of parametric con-
tent models.

module MuWF = functor (T: TAG) ->
struct
module Tag = T

type (’x0, ’x1) cm = (°x0, ’x1) Tag.t list
let map fg = List.map (Tag.map fg)

type u = U of (u, u) cm
type t = (u, u) Tag.t

let up t =0t
let down (U t) t

let fold (f0, f1) =
let rec foldO x

f0 (map (foldO, foldl)
(down x))

f1 (map (foldO, foldl)
(down x))

and foldl x

in
(fold0O, foldil)
end

module Mu = functor (S: SYS) ->

struct
module Sys = S
module U = MuWF(Sys.Tag)
module V = MuValid(Sys)

exception Invalid
module U2V =
struct
let cmO: (V.TO.t, V.T1.t) U.cm ->
(V.TO.t, V.T1.t) V.TO.cm

let cmi: (V.TO.t, V.T1.t) U.cm —>
(V.TO.t, V.T1.t) V.Tl.cm

let (t0, t1): (U.u -> V.TO0.t) * (U.u -> V.T1.t) =

U.fold (V.TO.up $ cmO, V.Tl.up $ cml)

let t: U.t -> V.t = Sys.Tag.map (tO, t1)
end

module V2U =
struct
let cmO: (U.u, U.u) V.TO.cm ->
(U.u, U.u) U.cm = ...

let cml: (U.u, U.u) V.Tl.cm ->
(U.u, U.u) U.cm = ...

let (t0, t1): (V.TO.t -> U.u) * (V.T1.t -> U.u) =

V.fold (U.up $ cmO, U.up $ cml)

let t: V.t -> U.t = Sys.Tag.map (t0, t1)
end

let validate = U2V.t
let forget = V2U.t
end

Figure 3: Module MuWF derives the type for well-
formed elements. Module Mu uses simultaneous fold
to define the validation function.

Note: Type annotations for functions are added for clarity 6

purpose.

U.fold (V.TO.up $ cmO, V.Tl.up $ cml):
(U.u > V.TO.t) * (U.u -> V.T1.t)

Recall that the types for all well-formed elements and all
valid elements are defined by

let U.t
let V.t

(U.u, U.u) Tag.t
(V.TO.t, V.T1.t) Tag.t

It follows that the validation function is defined by

let validate = Tag.map $

U.fold (V.TO.up $ cmO, V.Tl.up $ cmil)

As shown in Figure 3, one can define function forget in a
similar way. It remains to be shown how functions like cm0
and cml are defined for all content models. This is shown
next.

S. GENERIC VALIDATION OF CONTENT
MODELS

Recall that, in Figure 1, a map function is defined in a
generic way for any module with signature FUN, as long as
the module is generated with the predefined set of paramet-
ric modules (Empty, PO, P1, Star, etc.). The vaildation and
forgetting functions can be defined in a generic way as well.
First we define the validation functions for the inductive
bases. The validation function for any other content model
can then be derived, automatically, as module expressions
for the content are built.

There are two remaining details. The first is that at the
time of building the content model, one does not have ac-
cess to the tag module. This tag module is of signature TAG,
and defines the variant data type for tagging elements (e.g.,
module BookmarkTag in Section 2). Therefore the valida-
tion and forgetting functions must reside in a higher-order
module that takes in a TAG module as input.

One need also to maintain a nullable condition and a first
set of element tags. A content model is nullable if it accepts
the empty element sequence. The first set contains all tags
that can appear at the first position of a valid sequence.
It can be used to check if a content model is ambiguous,
e.g., when the first sets of the two input modules to Alt
overlap. When combined with a lookahead tag, it is used to
implement a non-backtracking validation procedure as well.
(More on this in Section 8.) Both nullable and first are
generic values. The module signature FUN for parametric
content model now consists of the following components.

module type FUN =
sig
type (’x0, ’x1) t
val map: (’x0 -> ’y0) * (’x1 -> ’y1) ->
(’x0, ’y0) t -> (’y0, ’y1) t

val nullable: bool
val first: Natset.t

module Content: functor (T: TAG) —->
sig
val validate: (’x0, ’x1) T.t list —>
((’x0, ’x1) t * (°x0, ’x1) T.t list) Option.t
val forget: (’x0, ’x1) t -> (’°x0, ’x1) T.t list
end

end

Function validate takes a list of tagged values and turns
it into a value of content model followed with the remain-
ing list. Note that the type for the input, (°x0, ’x1) T.t
list, is the same as the content model of well-formed ele-
ment if the two share the same tag set. Figure 4 illustrates
the construction by showing the implementations of modules
PO and Star.

The validation and forgetting functions are wrapped in mod-
ule Content. The definition of Content is inductive: It de-
pends on the Content module in the input module F (see,
e.g., the module expression CM = F.Content(T) in module
Star). We can view this as constituting a generic definition
of the validation function, as each instance is systematically
generated by its module expression. As evident in module
Star, we adapt the longest prefix matching rule in validating
the input element sequence against the “*” content model.
This longest prefix matching rule is indeed required by XML.
Validation functions for other modules, i.e., Empty, PO, P1,
Plus, Seq, and Alt, can be similarly defined and are omitted
here.

Now we return to Figure 3 to complete the defintions of
functions cm0 and cml in modules U2V and V2U. They are
defined as the following.

module U2V =
struct
module CMO = Sys.FO.Content (Sys.Tag)
let cm0 ulist =
match CMO.validate ulist with

Some (v, [1) > v
| _ -> raise Invalid
end
module V2U =
struct
module CMO = Sys.FO0.Content (Sys.Tag)

let cmO = CMO.forget

end

Function cm0 in module U2V need to validate the input se-
quence of tagged value with the content model of element
type V.TO.t, using the current tag set. This can be accom-
plished by using the validation function in module
Sys.F0.Content (Sys.Tag). The only difference is that, if
there remains a non-empty sequence after a validated (longest)
prefix, the entire sequence is not valid with respect to the
content model V.TO.t.

module PO: FUN =
struct
type (’x0, ’x1) t = ’x0

let nullable = false
let first = Natset.of_list [0]

module Content = functor (T: TAG) ->
struct
let validate ulist =
match ulist with
[-> None
| h::t -> T.fold ((fun x -> Some (x, t)),
(fun x -> None)) h
(* if success, return the untagged
value along with the remaing
list; otherwise returns None. *)

[T.x0 al (% Tag with the first

variant of type T.t *)

let forget a

end
end

module Star: F2F = functor (F: FUN) ->
struct

type (’x0, ’x1) t = (°x0, ’x1) F.t List.t

let nullable true
let first = F.first

module Content = functor (T: TAG) ->
struct
module CM = F.Content(T)

let rec validate ulist =
match ulist with
0 -> Some ([], ulist)
| h::_ =
if ... h in first
then match CM.validate ulist with

Some (u, t) —>

(match validate t with
Some (us, s) -> Some (u::us, s)
| None -> Some ([ul, t))

| None -> None
else Some ([], ulist)

let rec forget t =
match t with
o ->10
| h::t -> (CM.forget h)@(forget t)
end
end

Figure 4: Generic definition of the content valida-
tion functions.

6. TYPEFUL XML PROGRAMMING INML

One of the purposes of validation is to assign a type to an
XML element. Programming with validated XML elements
is now programming with typed values. Using a statically
typed langauge for such programming allows one to detect
type errors, hence expressions for invalid elements, at com-
pile time.

Our generic validation procedure gives types to valid ele-
ments, and allows one to construct XML processors in a
typeful way. In the following illustrating diagram, let U be
the ML type for well-formed elements, and V and V' be the
ML types that correspond to specific XML element types.

9

U U

validate forget

\% v’

f

We may say that functions in U — U are untyped as they
may produce invalid elements. However, functions in V' —
V' are typed as they always output valid elements. When-
ever one is programming a function g : U — U, and expects
the output also to be valid, one can do so by programming
a function f : V — V' so that

g = forgeto f o validate

In Figure 5, we show some ML code fragment to illustrate
the approach. The code maps a well-formed tidy bookmark
to a well-formed flat bookmark (function tidy2flat_u). Be-
cause the the mapping is composed from a typed conversion
routine (function tidy2flat_v), it will always output a valid
element if the input element is valid. Note that the types
for the functions below will be inferred by ML. The func-
tions are annotated with their types in Figure 5 for clarity
purpose only.

7. COMBING GENERICITY WITH POLY-

MORPHISM

The generic modeling of XML DTDs can be combined with
ML type polymorphism for a better result. Indeed, we use
both genericity and polymorphism to model XML element
type declarations that are accompanied with attribute-list
declarations. We can extend the previous folder example
by requiring an optional subject attribute for each folder
element, and a pair of title and url attributes for each
record element. The following is a valid XML document
with the newly extended DTD.

<?xml version="1.0"7>
<!DOCTYPE folder [
<!ELEMENT folder ((record, (folder|record)=*) |
(folder, (folder|record)+))>
<!ELEMENT record EMPTY>
<!ATTLIST folder
subject CDATA #IMPLIED>
<!ATTLIST record

title CDATA #REQUIRED

module TidySys = ... (* See code in Section 2 *)
module FlatSys =
struct
module FO = Plus(P1)
module F1 = Empty
module Tag = Tag
end

module TidyDtd = Mu(TidySys)
module FlatDtd = Mu(FlatSys)

module TidyFolder = TidyDtd.V.TO
module TidyRecord = TidyDtd.V.T1
module FlatFolder FlatDtd.V.TO
module FlatRecord FlatDtd.V.T1

let t2f_folder:

(FlatFolder.t, FlatRecord.t) TidyFolder.cm ->

(FlatFolder.t, FlatRecord.t) FlatFolder.cm =

fun fd -> match fd with

L (r, t) -> ... (* the case of a flat
record r followed by a sequence
t of flat records or folders *)
| R (f, t) -> ... (* the case of a flat folder

f followed by a non-empty sequence
t of flat records or folders *)

let t2f_record:
(FlatFolder.t, FlatRecord.t) TidyRecord.cm ->
(FlatFolder.t, FlatRecord.t) FlatRecord.cm
fun () -> O

let flatten_v: (TidyFolder.t, TidyRecord.t) Tag.t ->
(FlatFolder.t, FlatRecord.t) Tag.t =
Tag.map (TidyDtd.V.fold (FlatFolder.up $ t2f_folder,
FlatRecord.up $ t2f_record))

let flatten_u: TidyDtd.U.t -> FlatDtd.U.t =

FlatDtd.forget $ flatten_v $ TidyDtd.validate
Figure 5: An example of typeful XML program-
ming.

Note: Type annotations for functions are added for clarity
purpose.

url CDATA #REQUIRED>
1>
<folder subject="Research Institutes'">
<record title="Academia Sinica"
url="http://wuw.sinica.edu.tw"/>
</folder>

The original definitions of folder and record (Figure 1, last
two lines),

type folder = Folder of (folder, record) FO.t
and record = Record of (folder, record) Fi.t

can now be replaced by the following

type (’u, ’v) folder = Folder of
u * ((’u, ’v)folder, (’u, ’v)record) FO.t

and (’u, ’v) record = Record of
’v * ((’u, ’v)folder, (’u, ’v)record) Fil.t

type att0 = { subject: string option}
type attl = { title: string; url: string }

type folder_with_att = (attO, attl) folder
type record_with_att = (attO, attl) record

In the above, attribute declarations are modeled at the type
level. It can be lifted to the model level if needed. Further-
more, the generic definition of the validation function can
be modified accordingly to accommodate validation check
for attribute formats and values.

8. MORE XML CONTENT VALIDATION

XML requires content models in element type declarations

be deterministic. Briiggemann-Klein and Wood further clar-

ified the requirement as meaning l-unambiguity [7, 8]. A
regular expression is 1-unambiguous if its sequence of sym-
bols can be recognized deterministically, with one-symbol
lookahead, by the corresponding nondeterministic finite-state
machine. For example, the content model ((b, <) | (b, d))

is not 1-unambiguous, because given an initial b, one cannot

know which b in the model is being matched without looking
further ahead to see what follows b. However, the equivalent
content model (b, (cld)) is 1-unambiguous [2]. We can use
the nullable predicate and the first set to check whether
the content model as specified by a module expression is
1-unambiguous. The check is performed at module elabora-

tion time so that an ambiguous content model is detected
and an exception is raised as soon as possible. A content

model may also contain epsilon ambiguity which is allowed
by XML but demands additional work during validation. An
example of epsilon ambiguity is (a*|b*), when the empty
sequence is derivable from both a* and b*.

Besides element content models (i.e., regular expressions on
element type names), an XML element type may use other
content specifications. For example, the element type may
have EMPTY or ANY specification, or mixed content specifi-
cation. These specifications impose no additional difficulty

in the definition of the generic validation function. The
ANY specification means that the sequence of child elements
may contain elements of any declared element types, includ-
ing text, in any order. The mixed content specification al-
lows text data to be interspersed with elements of some pre-
scribed types. One may think of ANY as a special case of
mixed content.

One can view text data, which is denoted as #PCDATA (“Parsed
Character Data”) in a mixed content specification, as ele-

ments enclosed within an pair of implicit <text> start-tag

and </text> end-tag. A Pcdata module, similar to the

Empty module we already have, can be defined to help in-

ductive definitions of mixed content specifications. For ex-

ample, for DTDs with 2 element types, one can define an

Any module as following by using a 3-ary alternative module

A1t3:

module Any: FUN = Star(A1t3(PO) (P1) (Pcdata))

9. EXPERIENCE WITH LARGER DTDS
WML is a markup language for WAP applications. Its DTD
consists of 35 element type definitions. We have applied the
generic approach to validate WML documents. In order to
do so, we need to produce ML modules that include and
operate upon 36-ary type constructors (35 element types
plus 1 for #PCDATA). We also need to construct higher-
order modules that take in as many as 17 modules as input
(one of the element type definitions needs a 17-ary A1t mod-
ule). Our experience has been quite satisfactory: Our code
is compiled without problem with Objective Caml, but the
compilation time is not negligible (about 1 min. at a desktop
Sparc workstation). The validation time is negligible how-
ever, at least for the smallish examples we have tried (around
100 elements). We are working on both larger DTDs and
documents, and are collecting more performance data.

The size of the ML source code is quite large, however. Take
the following ML module expression as an example.

module F10 = Seq10(PO) (P1) (P2) (P3) (P4)
(P5) (P6) (P7) (P8) (P9)

One need a 10-ary module Seq10 to construct the required
content model, which specifies a sequence of 10 elements,
each of a different element type. Code for module Seq10
looks like the following:

module Seql0 = functor (FO: FUN) ->
functor (F1: FUN) -> ... ->
functor (F9: FUN) ->

struct
type (’x0, ’x1, ... , ’x35) t
= (’x0, ’x1, ... , ’x35) FO.t
* (’x0, ’x1, ... , ’x35) Fi.t
*
* (’x0, ’x1, ... , ’x35) F9.t
end

It is clear from the above that, for a DTD with n ele-
ment types, the source for module Seq,, will have code size
O(mn). At the worst case, for a DTD of length n, our code
will need O(n) unique type variables, will contain type shar-
ing constraints of length O(n?), and will have a overall code
size of O(n?). The source code of all the necessary ML mod-
ules for the 35-element WML DTD has a size of about 0.5
MB. When compiled, it produces a binary of size 175 KB
(*.cmo file in Objective Caml), and an interface of size 2.3
MB (*.cmi file in Objective Caml). ML code for the WAP
examples is accessible at the following URL:

http://www.iis.sinica.edu.tw/"trc/x_dot_ml.html

One can do a connected component analysis on the DTD
so that the set of element types are partitioned into disjoint
subsets where there is no type-dependency between the sub-
sets. A subset with k element types need only use k-ary type
constructors, and the overall code size for the modules used
for the subset can be reduced.

10. RELATED WORK AND CONCLUSION

In Section 1, we have introduced previous work that uses
existing or new functional languages to model and program
with XML DTDs. There is a wealth of research and sys-
tem work that is related to XML content modeling but is
not necessarily from the perspective of (functional) program-
ming languages. We list just a few here.

Briiggemann-Klein and Wood addressed the problem of am-
biguous XML (and SGML) content models, based on theory
of regular languages and finite automata [7, 8]. In particu-
lar, they showed that linear time suffices to decide whether
a content model is ambiguous. It is showed that regular
expressions in both “star normal form” and “epsilon nor-
mal form” are always unambiguous [9]. The Glushkov au-
tomaton that corresponds to a regular expression is used
for checking ambiguity and, if not unambiguous, for valida-
tion as well. Murata has proposed a data model for XML
document transformation that is based on forest-regular lan-
guage theory [15, 16]. His model is a lightweight alternative
to XML Schema and provides a framework for schema trans-
formation. There is also work on type modeling for docu-
ment transformation in a structured editing systems using
data types [5]. However, none of the above work has used
specific programming language as a modeling language.

XML Schema is a maturing specification language for XML
content that is being developed at World Wide Web Con-
sortium [4]. XML Schema is more expressive than DTD
and the specification language itself uses XML syntax. The
key difference between XML Schema and DTD seems to
be XML Schema’s ability to derive new types by extending
or restricting the content models of existing types. XML
Schema also provides a “substitution groups” mechanism to
allow elements to be substituted for other elements. We are
investigating whether ML-like module languages are expres-
sive enough to model these mechanisms.

Backhouse, Jansson, and Jeuring, and Meertens have writ-
ten a detailed introduction to generic programming [6]. See
also the introduction to fold/unfold by Meijer, Fokkinga,

10

and Paterson [13], as well as work on using fold/unfold for
structuring and reasoning about program semantics by Hut-
ton [12]. Our extension of simple fold to simultaneous fold
seems new. Most work about generic programming in the
functional programming research community seems to rely
on the mechanism of type class to derive type-specific in-
stances of generic functions. The language of choice is often
Haskell. We have shown in this paper that the paramet-
ric module mechanism in ML-like languages is suitable for
generic programming as well. In fact, we think that para-
metric modules allow one to take finer control on the in-
ductive derivations of generic values. More powerful mod-
ule systems have been developed to allow mutually recursive
modules, as well as modules that depend on values and types
(see, e.g., Russo [17]). However, we showed here that the
lack of recursive modules need not be a problem as long as
the mutual dependency between the modules is only about
interdependent type definitions.

Viewed in the above context, our work can be thought to
use the ML module facility to generate a deterministic au-
tomata that is specialized for the validation of elements for
a specific DTD. Validation automata also gives types to the
elements (and its parts). In additional, the construction of
the validation automata is entirely generic and can be au-
tomated. Our work also serves as a usage case of ML para-
metric modules, and can be used to stress test current ML
implementations. It is a delight to see our contrived code of
36-ary type constructors and 17-ary higher-order modules
is compiled and executed with no problem under Objective
Caml.

11. REFERENCES
[1] Document Object Model (DOM) Level 1 Specification
(Second Edition).

<http://www.w3.org/TR/2000/WD-DOM-Level-1-20000929/>.

W3C Working Draft, 29 September, 2000.

[2] Extensible Markup Language (XML) 1.0 (Second
Edition).
<http://www.w3.org/TR/2000/REC-xm1-20001006>.
W3C Recommendation, 6 October 2000.

[3] HaXml. <http://www.cs.york.ac.uk/fp/HaXml/>.

[4] XML Schema Part 0: Primer.

<http://www.w3.org/TR/2000/WD-xmlschema-0-20000922/>.

W3C Working Draft, 22 September 2000.

[6] E. Akpotsui, V. Quint, and C. Roisin. Type modelling
for document transformation in structured editing
systems. Mathematical and Computer Modelling,
25(4):1-19, 1997.

[6] Roland Backhouse, Patrick Jansson, Johan Jeuring,
and Lambert Meertens. Generic programming: An
introduction. In Pedro R. Henriques and Jose N.
Oliveira, editors, Advanced Functional Programming,
pages 28-115, 1999. Lecture Notes in Computer
Science, Volume 1608, Springer—Verlag.

[7] A. Briigemann-Klein and D. Wood. The validation of
SGML content models. Mathematical and Computer
Modelling, 25(4):73-84, 1997.

[8] Anne Briigemann-Klein and Derick Wood.
One-unambiguous regular languages. Information and
Computation, 140(2):182-206, 1998.

[9] Anne Briiggemann-Klein. Regular expressions into
finite automata. Theoretical Computer Science,
120(2):197-213, 1993.

[10] Haruo Hosoya and Benjamin C. Pierce. XDuce: A
typed XML processing language. In Proceedings of
Third In-
ternational Workshop on the Web and Databases, 2000.
<http://www.cis.upenn.edu/hahosoya/papers/xduce-prelim.ps>.

[11] Haruo Hosoya, Jérome Vouillon, and Benjamin C.
Pierce. Regular expression types for XML. In
Proceedings of the International Conference on
Functional Programming, September 2000.
<http://www.cis.upenn.edu/hahosoya/papers/regsub.ps>.

[12] Graham Hutton. Fold and unfold for program
semantics. In Proceedings of the International
Conference on Functional Programming, pages
280-288, September 1998. ACM Press.

[13] Erik Meijer, Maarten Fokkinga, and Ross Paterson.
Functional programming with bananas, lenses,
envelopes and bared wire. In John Hughes, editor,
Functional Programming Languages and Computer
Architecture, pages 124-144, August 1991. Lecture
Notes in Computer Science, Volume 523,
Springer—Verlag.

[14] Erik Meijer and Mark Shields. XMA: A functional
language for constructing and manipulating XML
documents. Draft, 1999.

[15] Makoto Murata. Transformation of documents and
schemas by patterns and contextual conditions. In
Third International Workshop on Principles of
Document Processing, September 1996.

[16] Makoto Murata. Data models for document
transformation and assembly. In Workshop on
Principles of Digital Document Processing, March
1998.

[17] Claudio V. Russo. First-class structures for standard
ml.
<http://www.dcs.ed.ac.uk/home/cvr/icfp99.html>,
1999.

[18] Malcolm Wallace and Colin Runciman. Haskell and
XML: Generic combinators or type-based translation?
In Proceedings of the International Conference on
Functional Programming, pages 148-159, September
1999.

[19] Ching-Long Yeh. A logic programming approach to
supporting the entries of XML documents in an object
database. In Enrico Pontelli and Vitor Santos Costa,
editors, 2nd International Workshop on Practical
Aspects of Declarative Languages, pages 278-292.
Boston, Massachusetts, USA, Springer-Verlag,
January 2000. Lecture Notes in Computer Science,
vol. 1753.

11

