
Clock Restriction Diagram: Yet Another Data-Structure

for Fully Symbolic Veri�cation of Timed Automata�

Farn Wang

Institute of Information Science, Academia Sinica

Taipei, Taiwan 115, Republic of China

+886-2-27883799 ext. 1717; FAX +886-2-27824814; farn@iis.sinica.edu.tw

Tools available at: http://www.iis.sinica.edu.tw/~farn/red

Abstract

Modern model-checkers for real-time systems are usually built around symbolic manipulation pro-

cedures of zones, which mean behavior-equivalent dense-time state subspaces and are represented by

sets of clock di�erence constraints. We propose CRD (Clock Restriction Diagram), which is a BDD-like

data-structure for recording sets of zones, with related set-oriented operations for fully symbolic veri�ca-

tion of realt-time systems. CRD with zones in reduced form (or reduced CRD in short), which contains

minimal number of clock inequalities to characterize a zone, are de�ned and can be used as a canonical

representation for state space. Reduced CRD is more space-eÆcient than former proposal like DBM,

NDD, CDD, and RED. We develop an algorithm that converts given CRDs to reduced CRDs without

�rst computing its closure form (which records the shortest path distance between every pair of clocks)

in some representations. We implemented CRD in a new version of our veri�er red for timed automata

and compare its performance with Kronos's and UPPAAL's against several benchmarks.

1 Introduction

Fully symbolic veri�cation technologies using BDD-like structures[4, 8] can be eÆcient in both space and

time complexities with intense data-sharing in the manipulation of state space representations. For hardware

and untimed system vei�cation, BDD has shown great success. But for real-time system veri�cation, so far,

all BDD-like structures[1, 7, 16, 17] have not performed as well as the popular DBM (di�erence-bounded

matrix) [10] which is a 2-dimensional matrix and nothing BDD-like. For example, NDD[1] uses binary

encoding for clock readings and its performance is very sensitive to timing-constant magnitude. CDD[7] is a

decision diagram for state-space membership. To compute the unique representation of a state-space, CDD

has to be transformed to closure form[10, 7] which records the shortest-path distances between all pairs of

clocks and is very space-ineÆcient. RED[16, 17] encodes the ordering of fractional parts of clock readings

in the variable ordering and has achieved very high space-eÆciency for systems with large number of clocks

and small timing constants. RED is indeed a canonical representation of timed automaton state subspaces.

But for large timing constants, RED's performance degrades rapidly.

Most modern model-checkers are built around some symbolic manipulation procedures[13] of zones im-

plemented in data-structures like DBM, NDD, CDD, or RED. A zone means a behaviorally equivalent state

subspace of a timed automaton and is symbolically represented by a set of di�erence constraints between

clock pairs. At this moment, DBM is still the most popular and eÆcient data-structure. DBM-technology

generally handles the complexity of timing constant magnitude very well. But when the number of clocks

increases, its performance also degrades rapidly. Thus a new data-structure which can handle both the

�The work is partially supported by NSC, Taiwan, ROC under grant NSC 89-2213-E-001-002.

complexities of timing constant magnitude and clock number can still be of great practical value. Instead of

using those above-mentioned BDD-like structures, we here propose yet another one: CRD (Clock Restriction

Diagram) for the fully symbolic veri�caiton of timed automata. CRD is not a decision diagram for state

space membership. Instead it is like a database for zones. We devise the new data-structure CRD exactly

because CRD acts like a database (recording device) and is more suitable for comparison and manipulation

of sets of clock diference constraints.

Since many zones can represent the same subspace, like DBM and CDD, neither is CRD a canonical

representation of zone-characterized state spaces. One solution is to convert all zones to their closure form[10,

7] (called shortest-path closure in [15]), which is the set of all pairwise clock di�erence constraints derived

from the all-pair shortest-path distances, and only store their closure form. Such conversion is expensive

and, as we shall illustrate in section 4, incurs large space consumption with data-structures like CDD and

CRD.

An alternative solution for unique representation of state spaces is zones in their reduced form (called

shortest-path reduction in [15]) which contains minimal number of clock di�erence constraints chosen by a

policy. As shown in [15], DBM with zones in reduced form can be space-eÆcient. One of the main idea in

this paper is to use CRD with zones in reduced form (or reduced CRD in short) as unique representation

for state-spaces to enhance veri�cation eÆciency. However, in [15], reduced form is obtained from closure

form. If we naively follow the approach, we still have to make space for those intermediate representations

for sets of zones in their closure form and there will never be much reduction in space consumption. Another

contribution of this paper is in the design of a symbolic algorithm which computes the reduced CRD without

having to �rst compute some representations of their zones in closure form.

Here is our presentation plan. Section 2 brie
y de�nes timed automata as our model for discussion.

Section 3 discusses the concept of zones. Section 4 formally de�nes CRD and its manipulations. Especially,

subsection 4.1 illustrates how reduced CRD can be more space-eÆcient than the other technologies and sub-

section 4.4 explains our algorithm for computing reduced CRDs. Section 5 reports experiments and compares

the performance of our CRD-based veri�cation tools with those of Kronos[5, 11, 19] and UPPAAL[6].

2 Timed automata

We use the widely accepted model of timed automata[2] to explain idea. We assume familiarity with this

model and will not go into much detail due to the page-limit.

A timed automaton is a �nite-state automaton equipped with a �nite set of clocks which can hold nonneg-

ative real-values. It is structured as a directed graph whose nodes are modes (control locations) and whose

arcs are transitions. The modes are labeled with invariance conditions while the transitions are labeled with

triggering conditions and a set of clocks to be reset during the transitions. The invariance conditions and

triggering conditions are Boolean combinations of inequalities comparing a clock with an integer. At any

moment, the timed automaton can stay in only one mode. In its operation, one of the transitions can be

triggered when the corresponding triggering condition is satis�ed. Upon being triggered, the automaton

instantaneously transits from one mode to another and resets clocks in the corresponding transition clock

set label to zero. In between transitions, all clocks increase their readings at a uniform rate.

For convenience, given a set X of clocks, we use B(X) as the set of all Boolean combinations of inequalities

of the form x� x0 � c where x; x0 2 X [f0g, \�" is one of �; <;=; >;�, and c is an integer constant.

De�nition 1 automata A timed automaton A is given as a tuple hX;Q; q0; I; �; T; �; �i with the following

restrictions. X is the set of clocks. Q is the set of modes. q0 is the initial mode. I 2 B(X) is the initial

condition on clocks. � : Q 7! B(X) de�nes the invariance condition of each mode. T � Q�Q is the set of

transitions. � : T 7! B(X) and � : T 7! 2X respectively de�nes the triggering condition and the clock set to

reset of each transition. k

A valuation of a set is a mapping from the set to another set. Given an � 2 B(X) and a valuation � of X ,

we say � satis�es �, in symbols � j= �, i� it is the case that when the variables in � is interpreted according

to �, � will be evaluated true.

2

De�nition 2 states Given a timed automaton A = hX;Q; q0; I; �; T; �; �i, A state � of A is a valuation of

X [fmodeg such that

� �(mode) 2 Q is the mode of A in � with mode as a special auxiliary variable; and

� for each x 2 X , �(x) 2 R+ such that R+ is the set of nonnegative real numbers and � j= �(�(mode)).

k

For any t 2 R+, �+ t is a state identical to � except that for every clock x 2 X , �(x)+ t = (�+ t)(x). Given
�X � X , � �X is a new state identical to � except that for every x 2 �X, � �X(x) = 0.

De�nition 3 runs Given a timed automaton A = hX;Q; q0; I; �; T; �; �i, a �-run is an in�nite sequence

of state-time pair (�0; t0)(�1; t1) : : : (�k; tk) : : : : : : such that � = �0 and t0t1 : : : tk : : : : : : is a monotonically

increasing real-number (time) divergent sequence, and for all k � 0,

� for all t 2 [0; tk+1 � tk], �k + t j= �(�k(mode)); and

� either �k(mode) = �k+1(mode) and �k + (tk+1 � tk) = �k+1; or

� (�k(mode); �k+1(mode)) 2 T and

� �k + (tk+1 � tk) j= �(�k(mode); �k+1(mode)) and

� (�k + (tk+1 � tk))�(�k(mode); �k+1(mode)) = �k+1. k

A safety requirement on timed automaton A can be written as a Boolean combination of clock constraints

in B(X) and mode restrictions in the form of mode = q meaning that A is currently in mode q 2 Q. A run

� = (�0; t0)(�1; t1) : : : (�k; tk) : : : : : : of A satis�es safety requirement �, in symbols � j= �, i� for all k � 0

and tk � t � tk+1, �k + t j= �. We say A j= � i� for all �-runs �, � j= I ^ (mode = q0) implies � j= �. Our

veri�cation framework is safety analysis problem that when given A and �, asks whether A j= �.

3 Zones and its canonical forms

Let Z be the set of integers. Given c � 0 and c 2 Z , let Ic be f1g [fd j d 2 Z ;�c � d � cg. Also for any

d 2 Z , d+1 =1+ d =1.

Given a safety analysis problem for a timed automaton A with biggest timing constant CA used in A, a

zone is a convex subspace of RjXj constrained by half spaces represented by inequalities like x�x0 � d, with

x; x0 2 X [f0g, �2 f\�"; \<"g, and d 2 ICA , such that when d = 1, � must be \<". For convenience,

let Bc = f(�; d) j�2 f\�"; \<"g; d 2 Ic; d = 1)�= \<"g. With respect to given X and CA, the set of

all zones is �nite. Formally, a zone � can be de�ned as a mapping (X [f0g)2 7! BCA . Alternatively, we

may also de�ne a zone � as the set fx � x0 � d j �(x; x0) = (�; d)g. In the following, we shall use the two

equivalent de�nitions
exibly as we see �t.

There can be many zones representing the same convex subspace. A straightforward canonical form of a

zone-characterizable convex subspace is its zone in closure form (called shortest-path closure in [15]). A zone

� is in closure form if and only if for any sequence of elements x1; : : : ; xk 2 X[f0g, with x1�xk � d 2 � and

81 � i < k(xi � xi+1 �i di 2 �), either d <
P

1�i<k di or (d =
P

1�i<k di ^ (�= \�")
V

1�i<k �i= \�")).

Intuitively, this means that every half space constraint has to be tight. We can arti�cially designate the

closure form of each zone as the canonical form of the corresponding state subspace characterized by the

zone. For convenience, given a zone �, we let �C be the notation for its closure form.

A few terms to de�ne before we explain the second candidate for zone canonical form. Two clocks

x; x0 2 X[f0g are equivalent in a zone �, in symbols x �� x
0, i� 9d 2 Z(x�x0 � �d 2 �C ^x0�x � d 2 �C).

For convenience, assume that X = fx1; : : : ; xng and 0 is also named x0. If Y = fxi1 ; xi2 ; : : : ; xikg � X [f0g

is a maximal set of equivalent clocks in � such that i1 < i2 < : : : < ik, let min��(xij) = xi1 for all

1 � j � k. Given x � x0 � d 2 �C , (x; x0) is redundant in � i� x 6�� x
0 and there is a �x 2 X [f0g, with

x��x �1 d1; �x�x
0
�2 d2 2 �C , such that x 6�� �x 6�� x

0 and d = d1+d2^(�= \<") (�1= \<"_ �2= \<")).

Another candidate for the canonical form of zones is the reduced form (called shortest-path reduction in

[15]) which records only minimum number of constraints for each zone. In the following, we brie
y restate

from [15] how to convert a given zone � to its zone in reduced form, in symbols �R, in �ve steps.

step 1: Calculate �C (with all-pairs shortest-path algorihtm).

3

......

......
........
..........
.............

...........................
..

..............
..........
........
......
......
.

......

.......
........
..........
..............

.................................
..

..............
..........
........
......
......
.

......

......
........
..........
.............

...........................
..

..............
..........
........
......
......

......

......
........
..........
..............

............................
...

..............
..........
........
.......
......

...
..........................
.......
.....

...

...........................

........
...

..

.............................

.........

.........................
......
......
.

...

.........................
......
......
.

0� x1

x2 � x1

0� x2

x1 � x3

TRUE

< �4

< �1

< 6

� �3

<1

Figure 1: an example CRD

step 2: Partition X [f0g into equivalent classes according to �C .

step 3: Di�erence constraints between elements in the same equivalent class are recorded with the policy

to make a simple cycle. Suppose Y = fxi1 ; xi2 ; : : : ; xikg � X [f0g is a maximal set of equivalent

clocks in �C such that i1 < i2 < : : : < ik. Then �R(xik ; xi1) = �C(xik ; xi1) and for all 1 � j < k,

�R(xij ; xij+1) = �C(xij ; xij+1). In this way, elements xi1 ; xi2 ; : : : ; xik are connected in a simple cycle

by constraints with bounds 6=1.

step 4: For any two x; x0 2 X [f0g, if (min��(x);min��(x
0)) is not redundant in �C ,

then �R(min��(x);min��(x
0)) = �C(min��(x);min��(x

0)).

step 5: For every other pair of x; x0 not dealt with in steps (3) and (4), x� x0 <1 2 �R.

It is shown in [15] that �C = (�R)C and DBM with zones in reduced form can signi�cantly save space in

model-checking.

4 Clock Restriction Diagram

4.1 De�nition

CRD is a directed acyclic graph for representation of sets of zones. It has similar structure as BDD without

FALSE terminal. Each of the pairs (x; x0) 2 (X [f0g)2 is treated as an evaluation variable. By �xing an

evaluation order, we can construct a CRD just as BDD, CDD, or RED. For example, given CA = 10, the

CRD for a set ff0� x1 � �3; x1 � x3 < �4g; f0� x2 < �1; x2 � x1 < 6gg of two zones (constraints of the

form x� x0 <1 are omitted) is in �gure 1. In CRD, a missing constraints on di�erences of clock pairs, say

x; x0, is interpreted as x � x0 < 1. Thus in the root vertex, even no constraint is on 0 � x1 in the latter

zone, we still construct an arc with 0 � x1 < 1 from the root vertex. This is one major di�erence of our

CRD from decision diagrams like CDD which interprets a missing restriction on x; x0 as �1 < x� x0 <1

with an implied lowerbound of �1 on x� x0.

An evaluation index ! : (X [f0g)2 [ftrueg 7! f0; 1; : : : ; j(X [f0g)2jg is a mapping such that !(true) =

j(X [f0g)2j and for every two e; e0 2 (X [f0g)2 [ftrueg, !(e) 6= !(e0).

De�nition 4 Clock Restriction Diagram (CRD) A CRD is a labeled directed acyclic graphD = (V; �;E; �),

with single source and single sink, constructed under a given evaluation index ! such that

� V is the set of vertices;

4

......
.......
............

...
..........
.......
..........

.......
............

...
..........
.......
....

......
.......
............

...
..........
.......
....

......
.......
............

...
..........
.......
....

......
.......
............

...
..........
.......
....

......
.......
............

...
..........
.......
....

......
.......
............

...
..........
.......
....

......
.......
............

...
..........
.......
....

......
.......
............

...
..........
.......
....

......
.......
............

...
..........
.......
....

......
.......
............

...
..........
.......
....

......
.......
............

...
..........
.......
....

......
.......
............

...
..........
.......
....

......
.......
............

...
..........
.......
....

......
.......
............

...
..........
.......
....

..................
......

..................
......

..................
......

..................
......

..................
......

..................
......

..................
......

..................
......

..................
......

..................
......

..................
......

..................
......

..................
......

..................
......

..................
......

0� x10� x2

< �3

x1 � x3

x2 � x1

< �4

TRUE

� 1

0� x1

< �7

0� x2

< �3

0� x3

< �6

x1 � x3

� 1

x2 � x1

< �4

x2 � x3

< �3

TRUE

(�1;�7)

(�1;�3)

0� x2

0� x3

(�1;�6)

x1 � x3

(�1; 1]

x1 � x2

(4;1)

x2 � x3

(�1;�3)

TRUE

(a) CRD in

CRD in(b) (c)CDD in

reduced form

closure form closure form

Figure 2: comparison of space-eÆciency

� � : V 7! (X [f0g)2 [ftrueg de�nes the evaluation variable at each vertex;

� E � V � V is the set of arcs such that for every (v; v0) 2 E, !(�(v)) < !(�(v0)) (i.e., evaluation

ordering must be respected); and

� � : E 7! ICA such that for every (v; v0); (v; v00) 2 E, v0 6= v00) �(v; v0) 6= �(v; v00).

There is at most one v 2 V such that �(v) = true and this v is the single sink of the CRD. k

There are two simple reductions which can be performed on a CRD. First, a vertex with a single outgoing

arc with label (<;1) can be bypassed and discarded. Second, a zone �1 recorded in a CRD can be discarded

if there is another �2 in the same CRD such that �1 is identical to �2 except that for exactly one pair

x; x0 2 X [f0g, x� x0 �1 d1 2 �1, x� x0 �2 d2 2 �2, and either d1 < d2 or d1 = d2^ �1= \<"^ �2= \�".

The �rst reduction is sound because a constraint like x � x0 < 1 is in fact no constraint. The second

reduction is sound because �1 obviously means a subspace of �2. Both reductions can be performed locally

from each CRD vertex.

In average, CRD with zones in reduced form (reduced CRD in short) is much more space-eÆcient than

previous data-structures[1, 7, 16, 17]. For example, given X = fx1; x2; x3g and CA = 10, in �gure 2, we

have the representations of zone f0� x2 < �3; x1 � x3 � 1; x2 � x1 < �4g in reduced CRD (�gure 2(a)), in

CRD with zones in closure form (�gure 2(b)), and in CDD with zones in closure form (called tightened form

in [7]) without FALSE terminal vertex (�gure 2(c)). It is easy to see that as the number of clocks increases,

reduced CRD will perform better and better.

4.2 Basic manipulations on CRD

Since CRD is a recording device for zones rather than a decision device for state-space membership, its

operations are more set-oriented than proposition-oriented. For convenience of discussion, given a CRD,

we may just represent it as the set of zones recorded in it. Here we present the basic manipulations on

CRDs which will be useful in explaining our algorithm. Set-union ([), set-intersection (\), and set-exclusion

(�) of two zone sets respectively represented by two CRDs are straightforward. For example, given CRDs

D1 : f�1; �2g and D2 : f�2; �3g, D1\D2 is the CRD for f�2g; D1[D2 is the CRD for f�1; �2; �3g; and D1�D2

is the CRD for f�1g.

Set-extraction (j) selects zones satisfying certain features from a zone set. Suppose D is the CRD for

5

f�1; : : : ; �kg and D0 is the CRD for f� 01; : : : ; �
0
hg, then DjD0 = f�i j 1 � i � k; 91 � j � h8x � x0 � d 2

� 0j(d 6=1) x� x0 � d 2 �i)g.

Given two zones �1 and �2, �1 � �2 is a new zone representing the space-intersection of �1 and �2. Formally

speaking, for every x; x0 with �1(x; x
0) = (�1; d1) and �2(x; x

0) = (�2; d2), �1 � �2(x; x
0) = (�1; d1) if

d1 < d2 _ (d1 = d2^ �1= \<"); or �1 � �2(x; x
0) = (�2; d2) otherwise. Space-intersection (�) of two CRDs

D1 and D2, in symbols D1 �D2, is a new CRD for f�1 � �2 j �1 2 D1; �2 2 D2g.

4.3 CRD and BDD

It is possible to combine CRD and BDD into one data-structure for fully symbolic manipulation. Since CRD

only has one sink vertex: true, it is more compatible with BDD without FALSE terminal vertex which is

more space-eÆcient than ordinary BDD. There are two things we need to take care of in this combination.

The �rst is about the interpretation of default values of variables. In BDD, when we �nd a variable is missing

during valuating variables along a path, the variable's value can be interpreted as either TRUE or FALSE.

But in CRD, when we �nd a variable for constraint x � x0 is missing along a path, then the constraint is

interpreted as x� x0 <1.

The second is about the interpretation of CRD manipulations to BDD variables. Straightforwardly, \["

on Boolean variables is interpreted as _" on Boolean variables. \\" and \j" on Boolean variables are both

interpreted as \^" on Boolean variables. D1 � D2 on Boolean variables is interpreted as D1 ^ :D2 when

the root variable of either D1 or D2 is Boolean. For D1 � D2, the manipulation acts as \^" when either

of the root variables are Boolean. Due to page-limit, we shall omit the proof for the soundness of such

interpretation.

From now on, we shall call it CRD+BDD a combination structure of CRD and BDD.

4.4 Computing reduced CRD

In [15], the reduced form is derived from closure form of DBM. Following that approach, it is impossible to

cut down the space requirement since we still have to make space for the closure form of some intermediate

representations. We used a CRD+BDD to compute reduced CRD without having to �rst compute its closure

form. Remember in [15], clocks are classi�ed into equivalent classes. We introduce four auxiliary variables

START, STOP, BOUND, and EQUIVALENT encoded with BDD variables. START and STOP range in

X [f0g. BOUND ranges in BCA . EQUIVALENT is either true or false. Given a set Z of zones and a

particular valuation (x; x0; (�; d); e) of (START, STOP, BOUND, EQUIVALENT), we can de�ne a mapping

�Z from (x; x0; (�; d); e) to a maximal subset of Z such that for any � 2 �Z(x; x
0; (�; d); e), �C(x; x0) = (�; d)

and e , x �� x
0. Our idea is to add these four variables to a given CRD and change the diagram into a

mapping from valuations of the four variables to CRDs. With information in such mappings, we can decide

whether an existing constraint should be deleted or an absent constraint should be added in the reduced

CRD.

Table 1 gives a skeleton view of our algorithm to compute reduced CRD. Initially D is a pure CRD.

Line (1) adds the four auxiliary variables to D and make it a CRD+BDD. Lines (2) eliminates empty zones

represented by inconsistent sets of constraints. Line (3) should be obvious from its procedure name. Lines

(4) and (6) respectively add and eliminate constraints between elements in the same equivalent classes. Line

(5) adds constraints between the min�'s of di�erent equivalent classes. Line (7) deletes constraints between

inequivalent elements in X[f0g if one of them is not a min�. Line (8) deletes redundant constraints between

min�'s of di�erent equivalent classes. Line (9) gets rid of the auxiliary variables and makes D a pure and

reduced CRD.

Due to page-limit, we shall only describe details of two subprocedures in table 1. The algorithm in table 2

shows how we compute the values of variables START, STOP, and BOUND. The algorithm is in the style of

Kleene closure. Here we use a short Boolean expression like x� x0 � d ^ START = x ^ STOP = x0 to mean

a CRD+BDD for the expression. Especially atom x � x0 � d means that the constraint x � x0 � d is in

the zone. Line (11) initializes the BOUND variable for all pairs to value \(<;1)," meaning no constraint.

6

reduced(D) f

D := Kleene(D); (1)

D := eliminate negative self cycles(D); (2)

D := partition equivalent classes(D); (3)

D := add constraints in equivalent classes(D); (4)

D := add constraints between mins(D); (5)

D := eliminate constraints in equivalent classes(D); (6)

D := eliminate constraints between nonmins(D); (7)

D := eliminate redundancy between mins(D); (8)

D := eliminate variable(D; fSTART; STOP;BOUND;EQUIVALENTg); (9)

return D;

g /* reduced() */

Table 1: Symbolic procedure for calculating reduced CRD.

The loop starting at line (12) is to further initialize the BOUND variable values according to the constraints

present in the zones. The loop starting at line (13) is pretty much a Kleene-closure routine, which changes

the BOUND variable values by considering all path compositions. In line (15), D \ D1 \ D2 is the set of

zones � such that x� �x �1 d1; �x� x0 �2 d2 2 �C . The Boolean expression in the big parenthesis at the end

of line (15) serves to �lter in those zones in which (x; x0) is truly redundant.

Suppose we have a CRD+BDD D with the four auxiliary variables properly calculated. Procedure

eliminate redundancy between mins() in table 1 can be constructed with the procedure in table 3 nested

in a triple loop on x; �x; x0. After line (21) in table 3 is executed, D0 is the CRD+BDD for zones in which x; x0

are inequivalent. Similarly D1 (D2), after line (22) (line (23)) is executed, is the CRD+BDD for zones in

which x; �x (�x; x0) are inequivalent. After line (26) is executed, H0 is the pure CRD (without BDD variables)

for zones � such that x� x0 � d 2 �C and x 6�� x
0. Similar thing can be said after executing lines (27), (28)

for H1; H2 respectivley. Then after the intersection in line (29), H0 becomes the CRD for all zones � such

that x 6�� �x 6�� x
0
6�� x and (x; x0) is redundant due to �x in �.

We have to point out that the presentation of the procedures is for conciseness and not for execution

performance. For example, in our implementation, line (24) is replaced by search routines through CRD

while line (25) is replaced by ranges mapping of variable BOUND.

5 Implementation and experiments

5.1 Implementation

We have implemented our CRD-technology in version 3 of our tool red which was previously announced

in [16, 17] and supports the modelling and safety-analysis of real-time systems with multiprocesses, pointer

data-structures, and synchronizations (synchronous send and receive) from one process to another. The new

version, together with benchmarks, will soon be available at:

http://www.iis.sinica.edu.tw/~farn/red

after the submission. Each process can use global and local variables of type clock, discrete, and pointer.

Pointer variables either contain value NULL or the identi�ers of processes. Thus in the models input to red,

we allow complicate dynamic networks to be constructed with pointers.

Forward analysis is default in red while backward analysis is invoked by option \b." We have also

implemented two reduction techniques in red. The �rst is reduction by elimination of inactive variables[14,

18] which is always executed. A variable is inactive in a state i� it is not read in any computation from the

state before its content is overwritten. Contents of inactive variables can be omitted from state information

7

Kleene(D) f

D := D \

W
x;x02X[f0g (START = x ^ STOP = x0 ^ BOUND = (<;1)); (11)

for all x; x0 2 X [f0g, with x 6= x0, and (�; d) 2 BCA , f (12)

B := D

����
�

x� x0 � d ^ START = x ^ STOP = x0

^ BOUND 2 f(�0; d0) jd0 2 [d+ 1;1) _ (�0= \�" ^ d0 = d)g

�
;

D := (D �B) [set variable(B;BOUND; (�; d));

g

for all �x 2 X [f0g, do f (13)

for all x; x0 2 X [f0g such that x 6= x0 6= �x 6= x, do f

for all (�1; d1); (�2; d2) 2 BCA , f (14)

D1 := D \ (START = x ^ STOP = �x ^ BOUND = (�1; d1));

D1 := eliminate variable(D1; fSTART; STOP;BOUNDg);

D2 := D \ (START = �x ^ STOP = x0 ^ BOUND = (�2; d2));

D2 := eliminate variable(D2; fSTART; STOP;BOUNDg);

B := D\D1\D2\

0
@ START = x ^ STOP = x0

^BOUND 2

�
(�0; d0)

���� d0 2 [d1 + d2 + 1;1)

_(�0= \�" ^ d0 = d1 + d2)

�
1
A; (15)

if �1= \�" and �2= \�", then �� := \�"; else �� := \<";

D := (D �B) [set variable(B;BOUND; (��; d1 + d2));

g

g

g

return D;

g /* Kleene() */

Table 2: Symbolic procedure for classifying zones according to shortest path distances.

without any e�ect on the computations. The second reduction technique is reduction by process symmetry[12,

14, 18] and is invoked with option \s." Two states can become equivalent after some permutation of process

identi�ers in a symmetric system. The technique replaces a group of permutationally equivalent regions by

a single member in such a group.

5.2 Experiments

We choose to compare performance with Kronos[5, 11, 19] (version 2.4.4) and UPPAAL[6] (version 3.0.39)

which are perhaps the two best-known model-checkers for real-time systems. UPPAAL supports on-the-
y

forward analysis with various searching and reduction strategies. Kronos supports forward and backward

model-checking of TCTL[2].

Two experiments have been carried out. The �rst is for performance w.r.t. number of clocks while the

second is for performance w.r.t. magnitude of timing constants. Three benchmarks are used and brie
y

explained in the following. The �rst benchmark is a version of the famous Fischer's timed mutual exclusion

algorithm [3, 14, 16, 18]. The algorithm relies on a global lock and a local clock per process to control access

to the critical section. Two timing constants used are 10 and 19. The input �le of two processes to red is

in appendix A. The property to be safety-analyzed is that at any moment, no more than two processes are

in the critical section.

The second benchmark is a timed production line in which a production item is placed on the track in

every 20 or more seconds. In a system which can hold up to n items on the track, an item is expected

to receive processing after 20(n + 1) seconds on the track. After having being processed for less than 20

seconds, the processed item gets o� the track. The track is modelled by an automaton with 2 modes and

8

eliminate one redundancy between mins(D; x; �x; x0) f

D0 := D \ (START = x ^ STOP = x0 ^ :EQUIVALENT);

D0 := eliminate variable(D0; fSTART; STOP;EQUIVALENTg); (21)

D1 := D \ (START = x ^ STOP = �x ^ :EQUIVALENT);

D1 := eliminate variable(D1; fSTART; STOP;EQUIVALENTg); (22)

D2 := D \ (START = �x ^ STOP = x0 ^ :EQUIVALENT);

D2 := eliminate variable(D2; fSTART; STOP;EQUIVALENTg); (23)

for all (�; d); (�1; d1); (�2; d2) 2 BCA , (24)

if d > d1 + d2 _ (d = d1 + d2 ^ (�= \<") (�1= \<"^ �2= \<"))), then f (25)

H0 := eliminate variable(D0 ^ BOUND = (�; d); fBOUNDg); (26)

H1 := eliminate variable(D1 ^ BOUND = (�1; d1); fBOUNDg); (27)

H2 := eliminate variable(D2 ^ BOUND = (�2; d2); fBOUNDg); (28)

H0 := H0 \H1 \H2; (29)

D := (D �H0) [variable eliminate(H0; x� x0);

g

g

return D;

g /* eliminate one redundancy between mins() */

Table 3: Symbolic procedure for elimination of an redundancy instance.

a local clock while each production item is modelled by one with 4 modes and a local clock. The input �le

to red for systems with track capacity of two production items is in appendix B. We want to verify that at

any moment, at most one item is being processed.

The third benchmark is the FDDI token-passing protocol in a ring network from [5, 11]. We need one

process to model the ring network and the other processes to model the stations. The input to red for FDDI

with two station processes is given in appendix C. The number of modes of the network process is two times

the number of station processes. The number of modes of each station process is three. Each station process

uses two local clocks x and y and requests for the token to transmit message in mandatory synchronous mode

and optional asynchronous mode. The asynchronous mode is optional because a station process can do it

only when �rst, it has �nished with synchronous mode (detected with x = 20) transmission, and second,

in the last cycle of token-passing, all processes together have not used much network time (detected with

y <= 50n + 20 where n is the number of stations). The second local clock y is used to accumulate the

time used by all processes in one token-passing cycle of the network. The property to verify is that no two

processes can be sending messages (in either synchronous mode or asynchronous mode) at the same time.

5.2.1 Performance w.r.t. number of clocks

Table 4 shows performance data from Kronos, UPPAAL, and red w.r.t. implementations of the benchmarks

with various numbers of concurrent processes. red is executed both with and without symmetry reduction

option while UPPAAL and Kronos are invoked without symmetry reduction. UPPAAL is invoked with

options \a," \S," and \T." The performance data shows that even without symmetry reduction, CRD-

technology is still more space-eÆcient and scales better w.r.t. number of clocks. For the timed production line

benchmark, according to the trend of the space consumption, we expect that red can verify the benchmark

with up to six production items within 256 MB space. Also symmetry reduction very much alleviates the

factorial explosion in the many di�erent ordering among the clock values.

We remind the readers that compared to those well-established tools like Kronos and UPPAAL, our imple-

mentation does not employ too many reduction techniques, e.g., the global state-space reduction technique

used in [15]. In the future, when such techniques are incorporated with CRD-based technology, we believe

9

benchmarks concurrency Kronos UPPAAL red red w. symmetry

Fischer's 3 processes 0.03sy 0.05s� 5.73s/73k� 4.3s/21k

mutual 4 processes 0.14sy 2s� 126s/292k� 21s/40k

exclusion 5 processes 0.989sy 286s� 2147s/1543k� 73s/77k

6 processes O/My O/M� 19689s/8868k� 222s/136k

7 processes O/My O/M� 257235s/55056k� 556s/236k

8 processes O/My O/M� O/M
 1320s/353k

9 processes O/My O/M� O/M
 2607s/509k

10 processes O/My O/M� O/M
 4925s/674k

Timed 3 items 0.31sy 0.24s� 41.9s/160k� 4.32s/48k

production 4 items 67.51sy 55.6s� 1251s/830k� 19.6s/90k

line 5 items O/My
> 1252s O/M

> 8205s 20798s/5655k
 64.1s/141k

FDDI 11 stations 399sy 4057s
 725s/720k
 N/A

token-ring 12 stations O/My O/M
 1087s/864k
 N/A

passing 15 stations O/My O/M
 3482s/1394k
 N/A

20 stations O/My O/M
 16528s/2671k
 N/A

25 stations O/My O/M
 56791s/4514k
 N/A
�: data collected on a Pentium II 333MHz with 192MB memory running LINUX;

: data collected on a Pentium II 366MHz with 256MB memory running LINUX;
y: data collected on a Pentium III 800MHz with 256MB memory running LINUX;

s: seconds; k: kilobytes of memory in data-structure; O/M: Out of memory; N/A: not available;

Table 4: Performance data of scalability w.r.t. number of processes

Tools # proc CA = 38 CA = 76 CA = 152 CA = 304 CA = 608 CA = 1216

Kronos 3 0.023sy 0.023sy 0.013sy 0.034sy 0.026sy 0.032sy

4 0.134sy 0.124sy 0.124sy 0.124sy 0.114sy 0.120sy

UPPAAL 3 0.03s
 0.04s
 0.04s
 0.05s
 0.05s
 0.04s

4 1.43s
 1.43s
 1.46s
 1.46s
 1.45s
 1.44s

red 3 5.68s/65k
 5.68s/65k
 5.74s/65k
 5.73s/65k
 5.69s/65k
 5.69s/65k

4 85.8s/279k
 85.4s/279k
 85.4s/279k
 85.6s/279k
 85.5s/279k
 85.5s/279k

: data collected on a Pentium II 366MHz with 256MB memory running LINUX;
y: data collected on a Pentium III 800MHz with 256MB memory running LINUX;

s: seconds; k: kilobytes of memory in data-structure; O/M: Out of memory; N/A: not available;

Table 5: Performance data of scalability w.r.t. timing-constant magnitude

there will be much room for performance enhancement.

5.2.2 Performance w.r.t. timing constant magnitude complexity

The performance of some previous technologies, e.g. NDD and RED, does not scale very well to the mag-

nitude of timing constant. The data in table 5 is collected by runnning Kronos, UPPAAL, and red against

Fischers' mutual exclusion algorithm with various timing constant magnitudes. The table shows that CRD

is at least as good as DBM technology as long as performance scalability with respect to timing constant

complexity is concerned. In fact, the data may imply that the performance of CRD-technology can be

irrelevant to the timing constant complexity in average cases.

10

6 Conclusion

After many previous attempts[7, 16, 17] of BDD-like data-structures for fully symbolic veri�cation of real-

time systems, we here propose yet another new data-structure: CRD and carry out implementation to show

the possibility of performance enhancement through the data-sharing capability of BDD-like data-structures.

However, the space-eÆciency reported in the paper will not be possible without the design of our algorithm

to compute reduced CRD without having to �rst compute closure CRD.

CRD seems also very compatible with many reductions techniques in the literature, for example, partial-

order reduction[9] and global state-space reduction[15]. We plan to incorporate those techniques in our

implementation to further enhance the performance.

References

[1] Asaraain, Bozga, Kerbrat, Maler, Pnueli, Rasse. Data-Structures for the Veri�cation of Timed Au-

tomata. Proceedings, HART'97, LNCS 1201.

[2] R. Alur, C. Courcoubetis, D.L. Dill. Model Checking for Real-Time Systems, IEEE LICS, 1990.

[3] F. Balarin. Approximate Reachability Analysis of Timed Automata. IEEE RTSS, 1996.

[4] J.R. Burch, E.M. Clarke, K.L. McMillan, D.L.Dill, L.J. Hwang. Symbolic Model Checking: 1020 States

and Beyond, IEEE LICS, 1990.

[5] M. Bozga, C. Daws. O. Maler. Kronos: A model-checking tool for real-time systems. 10th CAV,

June/July 1998, LNCS 1427, Springer-Verlag.

[6] J. Bengtsson, K. Larsen, F. Larsson, P. Pettersson, Wang Yi. UPPAAL - a Tool Suite for Automatic

Veri�cation of Real-Time Systems. Hybrid Control System Symposium, 1996, LNCS, Springer-Verlag.

[7] G. Behrmann, K.G. Larsen, J. Pearson, C. Weise, Wang Yi. EÆcient Timed Reachability Analysis Using

Clock Di�erence Diagrams. CAV'99, July, Trento, Italy, LNCS 1633, Springer-Verlag.

[8] R.E. Bryant. Graph-based Algorithms for Boolean Function Manipulation, IEEE Trans. Comput., C-

35(8), 1986.

[9] E. Clarke, O. Grumberg, M. Minea, D. Peled. State-Space Reduction using Partial-Ordering Techniques,

STTT 2(3), 1999, pp.279-287.

[10] D.L. Dill. Timing Assumptions and Veri�cation of Finite-state Concurrent Systems. CAV'89, LNCS

407, Springer-Verlag.

[11] C. Daws, A. Olivero, S. Tripakis, S. Yovine. The tool KRONOS. The 3rd Hybrid Systems, 1996, LNCS

1066, Springer-Verlag.

[12] E.A. Emerson, A.P. Sistla. Utilizing Symmetry when Model-Checking under Fairness Assumptions: An

Automata-Theoretic Approach. ACM TOPLAS, Vol. 19, Nr. 4, July 1997, pp. 617-638.

[13] T.A. Henzinger, X. Nicollin, J. Sifakis, S. Yovine. Symbolic Model Checking for Real-Time Systems,

IEEE LICS 1992.

[14] P.-A. Hsiung, F. Wang. User-Friendly Veri�cation. Proceedings of 1999 FORTE/PSTV, October, 1999,

Beijing. Formal Methods for Protocol Engineering and Distributed Systems, editors: J. Wu, S.T. Chan-

son, Q. Gao; Kluwer Academic Publishers.

[15] K.G. Larsen, F. Larsson, P. Pettersson, Y. Wang. EÆcient Veri�cation of Real-Time Systems: Compact

Data-Structure and State-Space Reduction. IEEE RTSS, 1998.

11

[16] F. Wang. EÆcient Data-Structure for Fully Symbolic Veri�cation of Real-Time Software Systems.

TACAS'2000, March, Berlin, Germany. in LNCS, Springer-Verlag.

[17] F. Wang. Region Encoding Diagram for Fully Symbolic Veri�cation of Real-Time Systems. the 24th

COMPSAC, Oct. 2000, Taipei, Taiwan, ROC, IEEE press.

[18] F. Wang, P.-A. Hsiung. Automatic Veri�cation on the Large. Proceedings of the 3rd IEEE HASE,

November 1998.

[19] S. Yovine. Kronos: A Veri�cation Tool for Real-Time Systems. International Journal of Software Tools

for Technology Transfer, Vol. 1, Nr. 1/2, October 1997.

12

A Fischer's timed mutual exclusion protocol

/* Fischer's protocol with 2 processes */

process count = 2;

global pointer lock;

local clock x;

mode idle true { when lock = null may x:= 0; goto ready; }

mode ready true { when x <= 10 may x:= 0; lock:= P; goto waiting; }

mode waiting true {

when (x > 19 and lock = P) may goto critical;

when lock != P may goto idle;

}

mode critical true { when true may lock := null; goto idle; }

initially lock = null and idle[1] and x[1] = 0 and idle[2] and x[2] = 0;

risk critical[1] and critical[2];

B Timed production line with track capacity of two

#define WAIT_TIME 60 /* 20(n+1), n is the track capacity */

#define PROC_TIME 20

process count = 3;

local clock x;

global synchronizer request_on_track;

/*** track **/

mode track_open true { when ?request_on_track true may x:=0; goto track_closed; }

mode track_closed x <= PROC_TIME { when x >= PROC_TIME may goto track_open; }

/*** production item ***/

mode item_idle true { when true may goto item_request; }

mode item_request true { when !request_on_track true may x:= 0; goto item_on_track; }

mode item_on_track x <= WAIT_TIME { when x >= WAIT_TIME may x:= 0; goto item_processing; }

mode item_processing x < PROC_TIME { when true may goto item_idle; }

initially track_open[1] and item_idle[2] and item_idle[3];

risk item_processing[2] and item_processing[3];

C FDDI with two station processes

#define SA 20

#define td 0

#define TRTT 120 /* 50n+2, n is the number of stations. */

process count = 3; /* 3 is for ring, the others for stations. */

local clock x, y;

global synchronizer tt1, tt2, rt1, rt2;

/*** Ring network ***/

mode ring_to_1 x =< td { when !tt1 x = td may goto ring_1; }

mode ring_1 true { when ?rt1 true may x:= 0; goto ring_to_2; }

mode ring_to_2 x =< td { when !tt2 x = td may goto ring_2; }

mode ring_2 true { when ?rt2 true may x:= 0; goto ring_to_1; }

/*** Station 1 ***/

mode station_1_idle true {

when ?tt1 true may y:= x; x:= 0; goto station_1_sync;

}

mode station_1_sync x <= SA {

when !rt1 x = SA and y => TRTT may goto station_1_idle;

when x = SA and y < TRTT may goto station_1_async;

}

mode station_1_async y =< TRTT {

when !rt1 true may goto station_1_idle;

}

/*** Station 2 ***/

mode station_2_idle true {

when ?tt2 true may y:= x; x:= 0; goto station_2_sync;

}

mode station_2_sync x <= SA {

when !rt2 x = SA and y => TRTT may goto station_2_idle;

when x = SA and y < TRTT may goto station_2_async;

}

mode station_2_async y =< TRTT {

when !rt2 true may goto station_2_idle;

}

initially station_1_idle[1] and x[1] = 0 and station_2_idle[2] and x[2] = 0

and ring_to_1[3] and x[3] = 0;

risk (station_1_sync[1] or station_1_sync[1])

and (station_2_sync[2] or station_2_sync[2]);

ii

