Learning Hybrid Poisson Aspect Model for

Personalized Shopping Recommendation

Advisor

Professor Chun-Nan Hsu

Student
Hao-Hsiang Chung

A Thesis Submitted to
Department of Computer Science
and Information Engineering
National Taiwan University
In Partial Fulfillment of the Requirements
for the Degree of
Master of Science
in Computer Science
June, 2002

Taipei, Taiwan, Republic of China

Acknowledgements

I would like to express my gratitude to my advisor, Prof. Chun-Nan Hsu,
for his patient guidance and technical advice during the preparation of this
thesis. 1 want to thank my committees, Prof. Shun-Chin Hsu and Prof.
Chih-Jen Lin, for their helpful comments. I also want to thank my senior
Han-Shen Huang whose instruction and recommendation directed me when
I was in trouble. Finally, I would like to thank my parents for their patience

and support as I was working on this thesis.

Abstract

Recommendations that really match customers’ needs can boost sales. Re-
searchers have proposed and evaluated many approaches for generating rec-
ommendations. In this thesis, we proposed a model-based collaborative ap-
proach, called Hybrid Poisson Aspect Model (HyPAM). HyPAM is a hybrid
system combining two probabilistic models, cluster and aspect, which model
the relationship between customer clusters and product types. Given a new
customer and his/her shopping record, HyPAM can estimate his/her degree
of preference of each product item accurately. We use the EM algorithm
to learn the parameters of HyPAM from customers’ shopping records. To
evaluate our approach, we apply HyPAM and two well-known recommender
systems, GroupLens and IBM, to a shopping-record data set provided by
a local supermarket. This data set contains 119,578 transactions of 32,266
distinguishable customers in a four-month period. We adopted two metrics,
rank score and lift index, with four protocols, Given 2, Given 5, Given 10, and
All but one. Under these evaluation metrics, experimental results show that
HyPAM performs much better compared to the other two recommendation

approaches for the given data set.

i

Contents

1 Introduction

1.1 Motivation
1.2 Related Works
1.3 Organization

2 Review of Well-Known Recommender Systems

2.1 Association Rules L.
2.2 GroupLens
2.3 Bayesian Clustering
24 1IBM Method

3 Hybrid Poisson Aspect Model
3.1 Model Specification
3.1.1 Cluster Model

il

3.2

3.1.2 Aspect Model 13

3.1.3 Hybrid Model oo 14
Training HyPAMo 16
3.2.1 Cluster Model Based on Poisson Distributions 16

3.2.2 Hybrid Poisson Aspect Model for Cluster /Product Re-

lationships oo 19

3.2.3 Model Fittingby EM 19

3.3 Using the Hybrid Poisson Aspect Model 24
3.3.1 Recommendation 24

3.3.2 Inferenceo 24

4 Experimental Evaluation 26
4.1 DataSet 26
4.2 Evaluation Methodology 29
4.2.1 Rank Score 30

422 LiftIndexo oo 31

4.2.3 Protocol 32

4.3 Comparison 32

5 Conclusion 37

v

List of Figures

2.1 Rating Matrix 6
3.1 Cluster Model o 12
3.2 Aspect Model 14
3.3 Hybrid Model oo 15
3.4 Poisson distributions with A=1and A=3 16
3.5 Product Taxonomy 17
3.6 Cluster Model Based on Poisson Distributions 18
3.7 HyPAM and its parameters 20
4.1 Dataskewness Lo 27
4.2 Example of Calculating Rank Score 30

List of Tables

4.1 Two-item sets sorted by confidence 28
4.2 Two-item sets sorted by support 29
4.3 Experimental Result—Rank Score 33
4.4 Experimental Result—Lift Index 33
4.5 Training and Testing Time 35
4.6 Example(1): Recommendation Result of an individual 35
4.7 Example(2): Recommendation Result of an individual 36
4.8 Example(3): Recommendation Result of an individual 36

vi

Chapter 1

Introduction

1.1 Motivation

People always have less time but more decisions to make. “What movie
should T see?” “What book should I read?” “What product should I buy?”
There are far too many choices and we do not have time to explore them
all. A recommender system can help people make such complex decisions.
Recommenders suggest the user items that he/she may like. A good recom-

mendation may save our time and money and boost sales for merchants.

A supermarket is a place where we have to make plenty of decisions.
Because there are a lot of choices, we need a lot of help too. In this thesis, we
develop a probability model called Hybrid Poisson Aspect Model (HyPAM) to
construct a recommender system for personalized shopping recommendation.
We use a set of four-month supermarket shopping data to train our model,
and have a better performance and less prediction time in comparison with

other recommender systems.

1.2 Related Works

One of the earliest and most successful recommender systems is collabora-
tive filtering. The GroupLens research system [7] provided a pseudonymous
collaborative filtering solution for Usenet news and movies. Ringo [8] made
personalized recommendations for music albums and artists. Other model-
based collaborative filtering algorithms are also exploited, such as Bayesian
networks and clustering. Breese et al. [2] proposed to use a specific Bayesian
network model based on a training set with a decision tree at each node and
the edges in the model representing user information. They also proposed
clustering techniques work by identifying groups of users who appear to have
similar preference. Finally, Breese et al. reported experiments to compare all
these work. Agrawal et al. [1] developed well-known association rule mining
algorithms to analysis shopping records in supermarkets. There are recom-
mender systems designed based on association rule mining. Lawrence et
al. [5] from IBM proposed a recommender system for supermarket products.
Their system which is a hybrid system of content-based and collaborative

filtering.

1.3 Organization

The remainder of this thesis is organized as follows: Chapter 2 reviews some
recommender systems we have studied. Chapter 3 discusses the detail of our
proposed model, HyPAM. Chapter 4 presents the experimental evaluations.

Finally, we give a conclusion in Chapter 5.

Chapter 2

Review of Well-Known

Recommender Systems

Recommender systems apply data analysis techniques to the problem of help-
ing customers find which products they would like to purchase. The under-
lying techniques used in today’s recommender systems fall into two filter-
ing methods: content-based filtering and collaborative filtering methods. In
content-based recommendation one tries to recommend items similar to those
a given user has liked in the past, whereas in collaborative recommendation
one identifies users whose preferences are similar to those of the given user

and recommends items they have liked.

In this chapter, we discuss several recommender systems that will be

compared with our algorithm, HyPAM, in our experimental studies.

2.1 Association Rules

One of the most commonly used data mining techniques for recommender
systems is to find association rules [1] within the transactional data set.
These techniques are concerned with discovering association between two
distinct sets of products. Formally, let Z = {i,4s,...,4,} be a collection
of m products. Let D be a set of transactions, where each transaction 7' is
a set of products such that T C Z. An association rule between two sets
of products X and Y, such that X, Y C Z and X NY = (), states that the
preference of products in the set X in the transaction 7" indicates a strong

likelihood that products from the set Y are also present in 7.

There are two measurements to evaluate the association rules, support
and confidence. The support s, of a rule measures the occurrence frequency
of the pattern in the rule while the confidence c is the measure of the strength
of implication. For a rule X = Y, the support is measured by the fraction
of transactions that contains both X and Y. More formally,

number of the transactions containing X UY

s = :
number of transactions

In other words, support indicates that s x 100% of transactions contain
XUY. Forarule X = Y, the confidence c states that ¢x100% of transactions
that contain X also contain Y. More formally,

number of the transactions containing X UY

c= . T
number of transactions containing X

With association rules, it is common to find rules having support and confi-

dence higher than a user-defined minimum.

Association rules can be applied to develop recommender systems in the

following way. For each customer, one creates a set of products that he/she

4

has purchased in the past. Then one uses an association rule discovery algo-
rithm to find all the rules that satisfy given minimum support and minimum
confidence constraints. Now, for each customer u one can generate his/her
recommendation list, or top-N recommended products as follows. First, one
finds all the rules that are supported by the customer (i.e. the customer has
purchased all the products that are in the left-hand-side of the rule). Let
P, be the set of products that are predicted by all these rules (i.e. in the
right-hand-side of these rules) and have not yet be purchased by customer
u. Next, one sorts these products according to the confidence of the rules
that were used to predicted them, so that the higher the confidence is, the
higher the ranked position is. Note that if a particular product is given from
multiple rules, one can use the rule that has the highest confidence. Finally,
one selects the first N highest ranked products as the recommendation list

of customer wu.

2.2 GroupLens

GroupLens [7] is a collaborative filtering system applied to Usenet news. The
aim of GroupLens is to help people find articles they will like in the huge
stream of available articles. News reader clients display predicted scores and
make it easy for users to rate articles after they read them. The prediction
algorithm is based on a simple intuition: predictions for a user should be
based on the similarity between the interest profile of that user and those
of other users. To implement this heuristics, the first step is to compute
similarities between user profiles. By assigning the similarities (or weights)

with others to the target user, the predicted score can be computed as the

article # Ken Lee Meg Nan

1 1 4 2 2
2 5 2 4 4
3 3

4 2 5 3
d 4 1 1

Figure 2.1: Rating Matrix
weighted sum of the ratings of other persons for current article.

The user database therefore consists of a set of ratings ; ; corresponding
to the rating for user 7 on article 5. Fig. 2.1 shows an example of these raings
data. Let I; be the set of articles on which user 7 has rated. The mean rating

for user 7 is
_ 1
r; = T Z Ti,j-
| 1| jeI;
The predicted rating of the active user (indicated with a subscript a) for

article j, p, ;, is a weighted sum of the ratings of the other users:

n
Paj = Ta + Ky wla,i)(ri; —7)
=1

where n is the number of users in the database, w(a,i) is the similarity
between user 7 and the active user, and « is a normalizing factor such that
the absolute values of the similarities sum to unity. The similarity w(a, j)
adopted in GroupLens is the Pearson correlation coefficient:
wla, j) = 2(ray — Ta)(rig —Ti)
V(g = Ta))? Xi(rij — 72))2

Other type of similarity is possible, like vector similarity:

Ta,j Ti,j

=2 ; ;
j \/Zkela Tak \/Zkeh ik

w(a, 1)

2.3 Bayesian Clustering

Breese et al. [2] identify two major classes of collaborative filtering algo-
rithms. Memory-based algorithms operate over the entire user database to
make predictions. In Model-based collaborative filtering, in contrast, uses the
user database to estimate or learn a model, which is then used for predic-
tions. While GourpLens is a type of memory-based collaborative filtering,
the Bayesian clustering that will be discussed in this section is a type of

model-based collaborative filtering.

The clustering model treats collaborative filtering as a classification prob-
lem [2] and works by clustering similar users in the same class and estimating
the probability that a particular user is in a particular class C, and from
there computes the conditional probability of ratings. The Bayesian cluster-
ing holds a naive Bayes assumption: given the class, the preferences (ratings)
regarding the various items (articles) are independent. Thus the probability

of class and ratings is given by

Pr(C=c¢ry,...,tn) =P(C=c¢) ﬁ P(r;|C = ¢).

=1

The prediction task can be viewed as calculating the expected value of a
rating, given what we know about the active user. If we assume the ratings

are integer valued range from 0 to m we have

Daj = E(Ta’j) = ZP(Ta,j = Z'|7Aa,k7 ke [a)i,

1=0

where P(rq; = i|rqx, k € I,) can be written as

P(Ta’j = Z'|7Aa,k7 k€ [a) = ZP(TGJ = Z|C = C)P(C = C|Ta,k; ke [a)
P(rox,k € 1,|C =c)P(C =

- ;P(r“’j =il =) 5. Prapm ki € 1]C =) P(C

¢)

c)’

2.4 1IBM Method

Lawrence et al. [5] proposed a recommender system for supermarket prod-
ucts. The recommender system has been implemented as part of the “Smart-
Pad” remote shopping system developed by IBM and Safeway Stores, a major

supermarket retailer in the U.K.

This method uses content-based filtering at its core, with the idea from
collaborative filtering to refine the content model and to make recommenda-
tion dependent on shared interests within customer clusters. Each customer
and product is represented by a feature vector. Products to be recommended
can then be determined by computing a measure of distance between vectors

representing personal preferences and vectors representing products.

The product taxonomy used by “Safeway Stores” has a three-level hier-
archy. Products are divided into 99 product classes. Each product class is
subdivided into fewer than 100 subclasses, generating a total of 2032 product

subclasses. The customer spending at each level of the hierarchy is available.

The major task of this recommender system is to construct customer
vector model and product vector model. In the following, we discussed the

procedures to construct customer and product models.

Customer Model

The absolute spending for customer m is represented as
C™ = [Cpiy...Crs ..., Cs]” m=1,..., M,

where C,,s denotes the absolute spending of customer m across all products
contained in subclass s, M is the total number of customers, and S is the

number of product subclasses. Two separate normalizations are applied to

this result to obtain the final customer vector.

1. Self-Normalizing

A C
Cs = . —ms
Es’:l,...,S Cm5’
2. Normalizing with other customers
A . Cms
ms A
ﬁ Zm’:l,...,M Cm’s

Product Model
Each product n = 1,..., N is represented by a S-dimensional vector P,

and hence has the same dimensionality with the customer vectors. The
individual entries Pg”), s=1,...,85, reflect the “affinity” the product has to
the subclass s. By using the association rules on both class and subclass levels
(e.g., bacon and eggs are associated classes; bacon/lowfat and eggs/medium
are associated subclasses), the product vector can be constructed by the

following rules:

(10 its= S(n)

1.0 if S(n) = s
P =< 05 if C(s) =C(n)
0.25 if C(n) = C(s)

(within the same subclass)

(within associated subclass)

(subclass within the same class) ;
(

within subclass of associated class)

\ 0 otherwise

where

=
2
I

the product subclass number for the product n

C(s) = the product class for the product subclass s

Q
2
I

C(5(n)).

Matching Algorithm After the customer and product vector models have

been constructed, the final step in the recommendation process is to score

9

each candidate product for a specific customer and select the best matches.
The score o,,, between customer m and product n is computed using a cosine

coefficient between the corresponding vectors, C™ and P™:

C(m) . pn)
M Te DI DI

where p,, is an identical characteristic factor for each product.

10

Chapter 3

Hybrid Poisson Aspect Model

We have discussed four well-known recommender systems in Chapter 2. In
this chapter, we propose an alternative method based on a probability model.
We call it “Hybrid Poisson Aspect Model (HyPAM),” which is a combination
of two probability models, cluster and aspect models. In Section 3.1, we give
the descriptions of the two models and how they are combined together.
In Section 3.2, we show how to construct HyPAM for supermarket shopping

data using the EM algorithm. In Section 3.3, we show how this model works.

3.1 Model Specification

The HyPAM uses a cluster model to classify customers into some predefined
clusters and an aspect model to encode the relationships between clusters

and products.

11

Figure 3.1: Cluster Model

3.1.1 Cluster Model

Assuming that each input data can be represented by some features. It is
plausible to apply a Bayesian classifier to the data where the probability
distributions of the features are conditionally independent given their mem-
bership in an unobserved class variable C' with some relatively small number
of values. This model is also known as a naive Bayes classifier. Fig. 3.1 gives

a graphical depiction.

Let X = {x3y,...,x)} be the data set. Each data instance x,, is a
f-dimension vector X,, = (1, Tm2;.-.,Tmy), for m = 1,... .M. C €
{c1,¢9,... ¢} is an unobserved class variable. Given the class label, the
probability distributions of the feature values are conditionally independent.
The probability of a data vector given its class is

f
P(x,|C = ¢g) = [[P(xmilC = ¢,)

=1

and the joint probability of class and features is

f
P(C =cy,21,....,07) = P(C =¢y) H P(z;|C = ¢y).

=1

The model parameters, P(C' = ¢,) and P(z;|C = ¢), are estimated from

the training data. Since the value of the class variables are not available in

12

the database, this is a problem of learning parameters for models with hidden
variables. We must employ methods that can deal with hidden variables, like
EM algorithm [3]. By summing all the possible values of the class variable
C, the complete data probability is given by

PX) = I:IIP(xm), where

G
P(xp) = ZP(CQ)P(Xm|Cg)
g=1
G f
= > P(cy) [] P(@milcy)-
g=1 i=1
After the learning process, we can get the posterior of an input data

vector
P(CQ)P(Xm |Cg)

P(eylxm) = — .
gélp(cg’)P(xm|Cg’)

This gives a “soft” classification, since we do not assign exactly one cluster to

each input data vector but a probability associated with each cluster instead.

3.1.2 Aspect Model

Hofmann [4] proposed an aspect model — a latent class statistical mixture
model — for co-occurrence data with a set of latent variables. Consider
two sets of objects, X = {x1,...,2;} and Y = {yi,...,ys}, and their co-
occurrence data set, S = (2", y")1<n<n. Each pair (2", y") is associated with
a latent variable A" over some finite set A = {ai,...,ax}. Observations
that share the same class are simply referred to as an aspect. The random
variables X" and Y are conditionally independent given the respective latent

class A". Fig. 3.2 shows the graphical representation of this model. The

13

Figure 3.2: Aspect Model
complete data probability is given by
P(S,a) = H P(z",y",a"), where
P@a",y",a") = P(a") (z"]a") P(y"|a").

By summing over all the possible values of the latent variables and grouping
identical co-occurrence data together, we obtain the mixture probability of

the data

PS) = II II P(z,y)"™* with

rEX yey
P(z,y) = %P)P(yla)
n(z,y) = H@"y") 2" =2 Ay" =y}

3.1.3 Hybrid Model

The cluster model partitions the input data represented by some features into
G groups while the aspect model partitions the co-occurrence data over X' x)/
into K groups. Consider the case of supermarket shopping data, where each
transaction contains a set of products and the customer who bought them.

We want to find the relationships between customers and products. Let

14

Figure 3.3: Hybrid Model

X = {x1,...,2;} denotes the customers and Y = {yi,...,y;} denotes the
products. Thus the information about which customer buy which product
can be represented by the pairs (z,y) that occur in the transactional data.
An aspect model fits the relationship. But there is a limitation. If we have
a new customer that does not appear in the data set X, using an aspect
model constructed by X, we cannot determine the preference of this new
customer. To alleviate this limitation, we assume that each customer is
represented by some features and belongs to his/her related clusters resulted
from the cluster model. This idea leads to the cluster/product pairs instead

of customer/product pairs in the aspect model.

The complete model is a hybrid model for the situation discussed above.
This model is a combination of a cluster model and an aspect model. Fig. 3.3
shows the graphical representation. The main idea is to substitute the clus-
ter/product pair (¢”, y™) for the original customer/product pair (z™, y"). Let
x" = (z7,...,7%). Each data vector x" has its own associated cluster ¢" and
the cluster/product (¢, y") relationships are encoded in the aspect model.
The input data is essentially the co-occurrence pairs (z7,...,2%,y") where

(z7,...,2%) represents customer x". By summing all the possible values of

15

Figure 3.4: Poisson distributions with A =1 and A =3

the two latent variables, C and A, we get the complete data probability
N
P(S) =]J P(s"), where

n=1
P(s") = Z Z P(z?,. .. Ty, e, a")

c a

= > > Platley) ... P(afleg) Pleglar) Par) P(y"|ax)-

k=1g=1

3.2 Training HyPAM

3.2.1 Cluster Model Based on Poisson Distributions

Customers can be clustered into groups with similar shopping preferences.
For example, young women like to buy cosmetics while young parents need
to buy infant products. Therefore, it seems plausible to cluster customers
to predict their shopping preferences. In our implementation, we choose the
historical shopping lists as customers’ features. Fach feature is the quantity

that a certain product is purchased by the customer during a given period

16

Class Level (201)
Subclass Level (2012)

Product Level (23812)

Pepsi 7-up Coca Cola

Figure 3.5: Product Taxonomy

of time. The value of such a feature is a random variable. We assume that

these random variables have Poisson distributions.

Poisson Distribution The Poisson Distribution is a discrete distribution
which takes on the values X = 0,1,2,3,.... It is most commonly used to
model the number of random occurrences of some phenomenon in a specified
unit of space or time. It can be thought as a limiting form of the binomial
distribution B(x;n,p) when n is very large, p is very small, and np = E(X)
is moderate. Applying to our shopping data modelling case, the Poisson
distribution is appropriate because the probability that one may buy a certain
product is very small (p is small), the number of transactions in the database
is very large (n is large), and one may buy a moderate amount of a product

(np is moderate).

The Poisson distribution is determined by one parameter, A\, and is given
by
WA

P(z;\) =e — =01, A>0
x!

The expectation value and variance of a random variable X with Poisson

17

ko A

Figure 3.6: Cluster Model Based on Poisson Distributions

distribution are given by

Fig. 3.4 shows the Poisson distribution with A =1 and A = 3.

Cluster Model The retail industry has adopted a standard product classi-
fication system that constitutes a hierarchical product taxonomy. For exam-
ple, “Pepsi six-pack” may be classified in the “soda” subclass while “soda” is
classified in the “beverage” class. Fig. 3.5 shows an example of such a hierar-
chy. As mentioned above, each customer is characterized by their shopping
records. We may use the purchases on any level of the hierarchical product
taxonomy as the features of a customer. For example, the value of the feature

“soda” is the sum of the purchases of “Pepsi six-pack” and “7-up six-pack”.

By assuming that each feature has a Poisson distribution, we can use a

Poisson parameter vector to represent a cluster, e.g.

~

Ag = (Ag1s A2, s Agp),

where), indicates that in cluster g the average purchase of product (class)

fis Agp. Fig. 3.6 is a graphical depiction.

18

3.2.2 Hybrid Poisson Aspect Model for Cluster /Product

Relationships

In order to make personalized recommendations, we want to find the relation-
ships between customers and products, i.e., the likelihood that a customer
will buy a certain product. To model these relationships, we use a hybrid
poisson aspect model (HyPAM) which models the cluster/product relation-

ships rather than the original customer/product ones.

In HyPAM, each customer, represented by his/her historical purchases,
will be assigned to a cluster with a probability as previously defined. By
using the cluster model, a customer data vector x” can be transformed into
a probability vector ¢” = (v],...,vg), where vy denotes the probability of
the customer belongs to cluster g. Fig. 3.7 is the graphical depiction of the

complete model and its parameters.

3.2.3 Model Fitting by EM

Expectation Maximization Algorithm The Expectation Maximization
(EM) algorithm [3] is a general method of finding the maximum-likelihood
estimate of the parameters of an underlying distribution from a given data

set when the data is incomplete with missing values.

Given some data X and a model parameterized by 6, the goal of EM is
to find # such that the likelihood P(X|f) is maximized. Often we maximize
log P(X|#) instead because it is analytically easier. In general, log P(X]|0)
has no analytic solution. However, if we introduce some unobserved variables

Y, the maximization of log P(X,Y|#) will be much more easier. We call

19

Figure 3.7: HyPAM and its parameters

X observed data, Y missing data, and Z = XUY complete data. EM is
an iterative optimization algorithm which defines a sequence of parameter
settings through a mapping 0; — 60,1 such that P(Z|0;.,) > P(Z|0;). Thus
EM is a hill-climbing algorithm which will converge to a stationary point of

log P(Z|6).

The algorithm is defined in two steps:

1. The Estimation step. Define p(Z) = p(X, Y|X, ;). Calculate
Q0',0) = Ellog P(Z|0') | 5(2)] = [5(2)log P(Z16)dZ

2. The Maximization step. Set 6,1 = arg max Q' 0,).

The intuition is as follows: if we had the complete data, we would simply
estimate 6 to maximize log P(Z|f). But with some of the data missing,
we maximize the expectation of log P(Z|f) given the observed data and the

current value of 6.

20

Fitting HyPAM Essentially, we use the co-occurrence customer/product
pairs (2", 4") to be the training data. As mentioned in the previous section,
we use the historical purchases to represent a customer x". Each instance
in our training data has the form (z7,...,2%,y"), where (z7,...,2%) is the
historical purchases of customer x” in the corresponding product classes. The

complete data log-likelihood is

N
log P(S) =) logP(x",y")
n=1

N
= > log P(a, T y")
n=1
N K G
= ZlOgZZP(I,EI, 7xf7yacgaak)
n=1 k:lg:l
N K G
= ZlogZZP(:ﬁﬂcy) P(xf|cg)P(cg|ak)P(ak)P(y la)
n=1 k:lg:l

In this case, the cluster and aspect label are the hidden variables Y in the
framework of the EM algorithm. If we could observe the cluster and as-
pect labels that each customer belongs to, the complete data Z should be
{(2t, .., 2% 9" " a") hicnan, Where ¢ and a” are the associated cluster
and aspect labels, respectively. The EM algorithm, when applied to train a
HyPAM model, is given as follows.

1. The Estimation step: define g7, = P(a" = ay,c" = ¢y|x",y"; 0), i.e.,
the probability of the n’th instance being in cluster g and in aspect
k given the current parameters. To simplify the notation, let ¢} =
Yo Qry = Plaglxn,y™0) and §; = X4 Gn, = Plcglxn, y™;0). Applying
Baye’s rule, we have

~n P(Xnaynaakacg)
kg = P(Xn’ yn)

21

n n n
P(at, ... 2% y", ag, ¢g)

K G
S 2 P(Tnty .oy Tpp, Y™ g, Cyr)
k'=1g¢'=1

P(x7cy) - .P(aﬂ}|cg)P(cg|ak)P(ak)P(y"|ak) .
5 S Palley) .. Paley) Pleylaw) Plaw) Py ay)

k'=1¢'=1
(3.2)
Now we can derive Q(¢', 6;) by
QY',0,) = EllogP(Z|¢') | p(Z)]
N
= Y Ellog P(2,|0') | p(2)]
n=1
N K G
= Z Z Zq log P(z"]|c,) - ..P(x?|cg)P(cg|ak)P(ak)P(y"|ak)
n=1k=1g9=1

N K G f
= 2.2 3 Giyld Tog Platley) +log Plcolax) +log Plax) +log Py
n=lk=1g=1 i=
2. The Maximization step:

e To obtain Ay :

Recall that P(z;|c,) = Aglig— , solving the equation:

oQ(d,8,) _ gjfy,gg(—ux”f):o

a)‘gi n=1k=1)‘91
N i~
> g

= N\ = —. (3.3)
ngl g

e To obtain P(ay) :
Add a Lagrange multiplier o

0 , K B
aP(ak) Q(g,gt) +Oé(klz::1P(akl) — 1) = 0
ZquQP +a=0 — a=-N
n=1g=1

n=1
e To obtain P(cy|ay) :
Add a Lagrange multiplier 3
__9 [Q(H' 0;) + B(XG: P(cylay) — 1)-| =0
OP(cylar) [= |
N
— O = — q"
Sy A0 = 8= L
N ~
H
= P(cylar) = "5 (3.5)
> G
n=1
e To obtain P(ylay) :
Add a Lagrange multiplier ~
s Q.00+ 4(X Pl) ~ 1)| =0
oP(ylan |47 T2
N
2 qugp g t1=0 = 1=-X &
ny"=y g=1 n=1
n:yr= qg
— P(yla) = "0 (36)
21 N}C—L

Note that the value of some features of a customer may be missing when
this customer never buy any item in the corresponding class. In these cases,
just skip the missing features while computing the probability:

P(xp|cg) = H P(znilcg),
i€l
where I, is the set of items that customer n bought before. While comput-
ing Ay, skip the terms ¢gzi and ¢y in both denominator and numerator in

Equation (3.4), if customer n never buy anything in class i.

23

3.3 Using the Hybrid Poisson Aspect Model

3.3.1 Recommendation

One way to solve the recommendation problem is by estimating the pref-
erences of the items for a customer. We can make the recommendation list
according to the probability P(y|x) that customer x will buy product y. This
quantity can also be considered as a score of the tendency or preference of
customer x toward product y. A customer x can be represented by his/her

historical purchases (zy,...,z,). Then we can easily estimate P(y|x) from

HyPAM

M =

P(ylx) = 2 P(ylag) P(ax|x)
= EIP(?JI k) P(x)
= 3 a Play) ¢ x|c cola
= kgw k) PX) QZZIP(|cq) P(cylar)
o P(x|cy)P(cqylar)P(ag)P(y|ak), (3.7)

S I

M =
& M=
=

where P(x|c) = P(xq]c)---

3.3.2 Inference

In addition to estimating P(y|x), we may ask a few queries to HyPAM to

support marketing decision making. Here are some examples:

e What is the distribution of the clusters?

P(c,) =]; P(eglax) P(ay)

24

e What is the most popular product?

K
arg g P(y) = angmax 3 Plylas) Plax)

e What are the most popular products in each cluster?

arg max P(ylcy)

arg max

arg max "=

25

Y

P(y, Cg)

P(cy)

S P(ylag) P(cylar) Plax)

K

kglP(cg|ak)P(ak)

Chapter 4

Experimental Evaluation

In this chapter, we present our experimental evaluations on a set of real-
world shopping data. First, we give some description and statistics of the
data set in 4.1. Then in 4.2, we show two measurements to evaluate differ-
ent recommendation systems. Finally, we compare HyPAM with two other
approaches, GroupLens and IBM, described in Chapter 2. As we will see,

HyPAM outperforms these approaches in this experimental evaluation.

4.1 Data Set

The data used in our experiments is the courtesy of a local retail supermarket
for our research. This data set contains customer shopping records collected
in a time span of four months, from November, 2000 to February, 2001. Each
record in the data set consists of four attributes: the shopping date, customer
ID, product number, and the amount of purchase. Shopping records with the

same customer ID and the same shopping date are considered as a transac-

26

I tem Sal es
10000

9000 |
8000
7000
6000

5000

Sal es

4000

3000

2000

1000

© o © 4 © 4 © 4 © o4 © d © oA © -
N ON W NONILWNONRNILWLONO N L
O o O 4 NN MSST WO O~ 00 D
L B B s T T D B B I B |

I'tem No

Figure 4.1: Data skewness

tion. There are 119,578 transactions and 32,266 distinguishable customers
appear in this data set. The average purchase of items in each transaction
is 17.76 with a 19.08 standard deviation. The sale figure is skew and con-
centrated on a very small portion of items. This is an example of “the 80-20
rule” known in business management. The 80-20 rule originally came from an
Italian economist called Vilfredo Pareto (1848-1923) who, in 1906, observed
that 20% people owned 80% of accumulated wealth in Italy. The 80-20 rule
has been applied in many management problems and in this case, predicts
that 80% of sales come from 20% of items. Fig. 4.1 shows this phenomenon.
As a result, association rules may not be predictive because items appear
in high support association rules may only come from the small portion of

popular items while most items will be neglected by association rule mining

27

(a) Subclass Level (b) Class Level

Iteml | Item2 | Support | Confidence| |Iteml |Item2 | Support | Confidence
500117 | 500102 11 0.92 7311 | 7307 11 0.65
470609 | 470202 41 0.89 3212 | 3213 10 0.59
760576 | 760577 23 0.85 3009 | 5002 10 0.56
120111 | 130305 10 0.83 4706 | 4702 129 0.55

Table 4.1: Two-item sets sorted by confidence

algorithms. Table 4.1 (a) and (b) show the the top four highest confidence
association rules of two-item sets with support > 10 at the subclass and class
levels, respectively. Table 4.2 (a) and (b) show the top four highest support
association rules of two item sets with confidence > 0.4 at the subclass and

class levels, respectively.

In addition to the data set, we also exploit a three-level hierarchical prod-
uct taxonomy. Products are divided into 201 product classes. Each product
class is subdivided into less than 100 subclasses, generating a total 2,012
product subclasses. Absolute customer spending is available from the data
at any level in this hierarchy. Fig. 3.5 illustrates a portion of the hierarchical

product taxonomy.

We randomly chose 15,000 customers’ shopping records to be the training
data and 1,000 customers from the remainder for testing. The purchases that
we deal with are on the subclass level. To learn the model parameters, we
converted the records in the training data into the form {x", y" }1<,<n, where
N is the total number of these customer/product co-occurrence data and 3™ is
the subclass ID of this product. The first element x" = (27, ..., 2}) indicates

that customer n bought products in subclass 1 to subclass p during the four

28

(a) Subclass Level

(b) Class Level

Iteml |Item2 |Support|Confidence| |Iteml |Item2 | Support | Confidence
100312100205 | 3026 0.45 1003 | 1002 | 12398 0.46
530103 | 530101 | 1360 0.43 1002 | 1003 | 12398 0.44
100217100205 | 912 0.44 1104 | 1101 9594 0.42
100218 100205| 889 0.47 5301 5002 | 9052 0.41

Table 4.2: Two-item sets sorted by support

months period, and the value of z] represents the amount of purchase.

this case, N = 119,578 and P = 2,012.

4.2 Evaluation Methodology

In order to evaluate our approach, we adopt two metrics, rank score and lift

In

index. These two metrics return a score that measures the quantity of a given

ranked list generated by a recommender system with regard to a customer

and a list of items that the customer actually purchased. We use the Given n

and All but one protocol to divide a shopping list into training and test items

while evaluating different approaches with the two metrics. while calculating

the values of the two metrics.

29

Ra
300206 | Hit a =10
Rmax
300203 | Hit
300206 | Hit) .)
300210 Ry= 1+~ + —r 4 .-
300203 | Hit 21057 20T 2T0eT
300207
300208 | Hit
300208 | Hit Rypy = —or 4 e + — L ...
210-1 2T0—1 2T0—1
300209

Figure 4.2: Example of Calculating Rank Score

4.2.1 Rank Score

Breese et al. [2], originally for a Web page recommendation task, defined the

expect utility of a ranked list of items as

R,
R = 4.1
R;nam’ ()
_ d(a, j)
Fa = 2]: 2(i-1)/(a-1)’ (4.2)

where j is the rank of an item in the full list of suggestions proposed by
a recommender, 0(a, j) is 1 if user a accessed item j in the test set and 0
otherwise, and « is the viewing half-life, which is the place of an item in the
list such that it has a 50% chance of being viewed. We use o = 10 in our
experiments. The expected utility R is normalized by R]'**, which is the
maximum possible utility obtained when all items that user a has accessed
appear at the top of the ranked list. Fig. 4.2 is an example of how to calculate
rank score. Note that if the recommender considers that the customer has
the same preference of more than one items, then these items will have the

same rank in the suggestion list.

30

4.2.2 Lift Index

Another evaluation metric is lift index [6]. After the recommender generates
the ranked list, we divide the list into 10 equal deciles, and see how the items
accessed by the user in the test set distribute in the 10 deciles. Clearly, the
more items appear in the top deciles, the better this ranked list is. The lift
index is defined as the weighted sum of the number of accessed items appear
in the 10 deciles. Assuming the number of the accessed items in each decile
(ordered) are Sy, S, ..., Sho, the lift index is defined as

1X51+0.9X52+...+0.1X510
> Si .

Stifr =

Here is an example distribution of the accessed items in the deciles:

S1 | S2 | S5 | Sy | S5 | S| S| Ss|Se| S0
10(7(3(0]2[0]0[0]|0]0

Then the lift index is

1I0x1+7%x09+3x084+2x0.6
Sy = = 0.90.
tift 104+7+3+2

In the best situation, when S} = 37, S;, Siise = 1. In the random case, the

items distributed uniformly in all deciles, Sj;z, = 0.55.

1xS5,+09xS,+...4+0.1 x5,

Slift(random) = S S
S x(14+094...+0.1)
B 10 x S,

= 0.95.

As mentioned above, two items will have the same ranks if the recommender

considers that the customer has the same preference of these two items.

31

4.2.3 Protocol

In our experiments, we adopted different protocols to divide the shopping
list into training and test sets to simulate situations with differing numbers
of purchases available to the recommenders [2]. In the first protocol, we
withheld a single randomly selected purchase for each user, and the remainder
purchases are treated as the observed purchases to be checked in the ranked
list. This protocol is called All but one. Other protocols is to randomly select
2, 5, or 10 purchases from each test customer as the observed purchases, and
check the remainder in the ranked list. They are referred to as Given n

protocols.

The All but one protocol measures the algorithms’ performance when
given as much data as possible for each test customer. The various Given n
protocols examine the performance of the algorithms when there is relatively
little known purchases about an active customer. Note that in the experiment
applying Given n protocol, only those customers with more than n purchases

will be selected in the test set of 1000 customers.

4.3 Comparison

In this section, we present the experimental results of the three approaches,
GroupLens, IBM, and HyPAM. In order to conduct the experiments, we
transformed the original data into the form (Customer ID, Subclass No.,
Amount). This data preprocessing step was accomplished using some simple
SQL commands. For each approach, we randomly selected data of 15,000

customers to train the model, and used the data of another 1,000 customers

32

Table 4.3: Experimental Result—Rank Score
Algorithm | Given 2 | Given 5 | Given 10 | All but 1

GroupLens | 0.0276 | 0.0285 | 0.0324 0.0298
IBM 0.0976 | 0.0944 | 0.0715 0.132
C10-A10 | 0.279 0.275 0.281 0.280
C10-A20 | 0.275 0.274 0.276 0.277
C20-A10 | 0.279 0.271 0.286 0.278

C20_A20 | 0.275 0.274 0.276 0.278
Training set size: 15000 Test set size: 1000

to test the accuracy of the recommendation generated by the trained model.
The accuracy is then measured by the combinations of the two metrics under
the Given n and All but one protocols, as described in Section 4.2. Table
4.3 and Table 4.4 show the experimental results of rank scores and lift in-
dex, respectively. In each talk, C10_A10 represents the result of HyPAM
using 10 clusters and 10 aspects, and so on. The results show that HyPAM
outperforms the other two approaches significantly in all combinations of

experimental setting.

Table 4.4: Experimental Result—Lift Index
Algorithm | Given 2 | Given 5 | Given 10 | All but 1

GroupLens | 0.877 0.870 0.866 0.886
IBM 0.809 0.824 0.826 0.804
C10-A10 | 0.954 0.953 0.953 0.953
C10-A20 | 0.954 0.953 0.953 0.953
C20-A10 | 0.953 0.953 0.953 0.953

C20_A20 | 0.954 0.953 0.953 0.953
Training set size: 15000 Test set size: 1000

33

We also compared the computation time of these approaches. For Grou-
pLens, there is no training time required. For IBM method, the training
time is the sum of the time spent for constructing customer and product
models [5]. To construct the product model, we have to generate the as-
sociation rules of two-item sets. It took about 30 minutes to compute the
algorithm of the association rule mining. The association mining algorithm
we used is taken from [1]. By using some SQL commands, we construct the
customer model in another 3 minutes. So the training time of IBM method
is about 33 minutes. For HyPAM, the training time is spent on learning
the model parameters. It ranges from 5 hours to 11 hours depending on the
number of clusters and aspects. Table 4.5 shows the training and testing
time of these three algorithms. The testing time is the time of generating

one ranked list for a customer.

From Table 4.3, we can see that the rank score of HyPAM is about three
times as good as IBM and ten times as good as GrouplLens. The lift index
of HyPAM is also better than the others. We also observed that both rank
score and lift index are not sensitive to the number of clusters and aspects
of HyPAM. The results of the combinations of 10 or 20 clusters and aspects
are almost the same. Using 10 clusters and 10 aspects is good enough (with
less training time). Although the training time of HyPAM is quite long, the
testing time of HyPAM is much shorter than the others. For applications
where on-line generation of recommendation for a new customer is required,
and the model can be constructed off-line, such as those in Web-based B2C

merchants, HyPAM clearly holds the advantages.

Table 4.6 to 4.8 give the experimental results of three individuals who

purchased items from a total of 9 product subclasses. The numbers listed on

34

GroupLens | IBM | HyPAM

training time 0 33 min | 5 ~11 hr

testing time 2.5 sec 10 sec 0.4 sec

Table 4.5: Training and Testing Time

the table are the positions of purchased products on the ranked list. These
experimental results are all generated using Given 5 protocol and thus there

are four product subclasses in each table.

Table 4.6: Example(1): Recommendation Result of an individual
GroupLens IBM C10_.A10

42 43 1
76 88 17
Hit Position in the list
230 151 28
349 229 251
Rank Score 0.018 0.015 0.410
Lift Index 0.95 0.975 0.975

Customer: 00001069 Total Buy: 9 Protocol: Given 5

35

Table 4.7: Example(2): Recommendation Result of an individual
GroupLens IBM C10_A10

129 27 14
176 33 45
Hit Position in the list
235 55 108
694 1537 270
Rank Score 4.3e-5 0.08 0.13
Lift Index 0.93 0.975 0.975

Customer: 00009218 Total Buy: 9 Protocol: Given 5

Table 4.8: Example(3): Recommendation Result of an individual
GroupLens IBM C10_.A10

13 42 6
297 85 34
Hit Position in the list
341 1352 155
701 1479 608
Rank Score 0.129 0.017 0.240
Lift Index 0.900 0.925 0.975

Customer: 00019484 Total Buy: 9 Protocol: Given 5

36

Chapter 5

Conclusion

In this thesis, we propose a probability model called Hybrid Poisson Aspect
Model (HyPAM), which is a combination of cluster and aspect models. This
model is constructed for personalized shopping recommendations. By com-
bining a cluster model with an aspect model, we can alleviate the limitation
of most collaborative filtering approaches that the active user must be in the
training set. We can give recommendations to a customer easily by provid-
ing the system the customer’s historical purchases. As we saw in Chapter 4,
HyPAM outperforms the two well-known recommender systems, GroupLens
and IBM method. The prediction time is quite short that we can apply Hy-
PAM to the real time use, such as an e-commerce Web merchant where a

large amount of requests may arrive in a very short period of time.

However, HyPAM takes much time to complete training. To alleviate
this problem, two approaches can be taken. First, we can parallelize the EM
algorithm and execute the training algorithm on a PC cluster. Second, our

colleagues are developing a novel convergence test based on the maximum

37

free storage principle, which combines maximum likelihood and maximum
entropy principles to speed up the convergence and avoid overfitting for the

EM algorithm.

38

Bibliography

[

2]

Rakesh Agrawal and Ramakrishnan Srikant. Fast algorithms for mining
association rules. In Jorge B. Bocca, Matthias Jarke, and Carlo Zaniolo,
editors, Proceedings of the 20th International Conference on Very Large

Data Bases (VLDB °94), pages 487-499. Morgan Kaufmann, 12-15 1994.

John S. Breese, David Heckerman, and Carl Kadie. Empirical analysis
of predictive algorithms for collaborative filtering. In Proceedings of the
14th Conference on Uncertainty in Artificial Intelligence (UAI "98), pages
43-52, 1998.

A.P. Dempster, N.M. Laird, and D.B. Rubin. Maximum likelihood from
incomplete data via the em algorithm. Journal of the Royal statistical

Society, B39:1-37, 1977.

Thomas Hofmann and Jan Puzicha. Latent class models for collaborative
filtering. In Proceedings of the International Joint Conference in Artificial

Intelligence, pages 688-693, 1999.

Richard D. Lawrence, George S. Almasi, Vladimir Kotlyar, Marisa S.
Viveros, and Sastry Duri. Personalization of supermarket product rec-

ommendations. Data Mining and Knowledge Discovery, 5:11-32, 2001.

39

[6]

7]

C.X. Ling and C.Li. Data mining for direct marketing: Problems and so-
lutions. In Proceedings of the Fourth International Conference on Knowl-

edge Discovery and Data Mining, pages 73-79. AAAT Press., 1995.

P. Resnick, N. Iacovou, M. Suchak, P. Bergstorm, and J. Riedl. Grou-
pLens: An Open Architecture for Collaborative Filtering of Netnews. In

Proceedings of ACM 1994 Conference on Computer Supported Coopera-
tive Work, pages 175-186, Chapel Hill, North Carolina, 1994.

Upendra Shardanand and Patti Maes. Social information filtering: Algo-
rithms for automating “word of mouth”. In Proceedings of ACM CHI’95
Conference on Human Factors in Computing Systems, pages 210-217,

1995.

40

