OVL Assertion-Checking of Embedded Softwares

with Dense-Time Semantics *

Farn Wang and Fang Yu
Institute of Information Science, Academia Sinica
Taipei, Taiwan 115, Republic of China
+886-2-27883799 ext. 1717; FAX +886-2-27824814; farn@iis.sinica.edu.tw
Tools available at: http://val.iis.sinica.edu.tw

Abstract

OVL (Open Verification Library) is designed to become
a standard assertion language of the EDA (Electronic
Design Automation) industry and has been adopted by
many companies. With OVL, verification process can
blended seamlessly into the development cycles of com-
plex systems. We investigate how to use OVL asser-
tions for the verification of dense-time concurrent sys-
tems. We have designed a C-like language, called TC
(timed C), for the description of real-time system with
OVL assertions between code lines. We explain how to
translate TC programs into optimized timed automata,
how to translate OVL assertions into TCTL (Timed
Computation-Tree Logic) formulae, and how to analyze
assertions when not satisfied. The idea is realized in our
translator RG (RED Generator).

In addition, we have developed several new verifica-
tion techniques to take advantage of the information
coming with OVL assertions for better verification per-
formance. The new techniques have been incorporated
in our high-performance TCTL model-checker RED 4.0.
To demonstrate how our techniques can be used in in-
dustry projects, we report our experiments with the
L2CAP (Logic Link Control and Adaptation Layer Pro-
tocol) of BlueTooth specification.

Keywords: assertions, specification, state-based,
event-driven, model-checking, verification

1 Introduction

In the last decade, many formal verification tools with
proprietary (i.e., commercial or tool-specific) assertion
languages have emerged in the industry[3, 14, 20, 24,
25, 31]. But, as Forster discussed, the lack of standards
in assertion languages not only can frustrate engineers
but also can create significant chaos and damage to the
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healthy progress of verification technology[7]. But what
should a standard assertion language look like 7 A good
assertion language must blend seamlessly into the devel-
opment cycles of system designs. In real-world projects,
engineers naturally describe their systems in program-
ming languages and insert comment lines to assert some
intuitive properties between codes, such as precondi-
tions or post conditions. If a verification tool asks engi-
neers to rewrite their C-codes in automata descriptions
or Petri net descriptions and to make up some assertions
offline of the programming cycle, then the engineers will
more likely be reluctant to accept the tool in fear of ex-
tra workload and deadline misses. Thus, providing a
natural method to bridge this gap in the verification of
real-time concurrent systems is one main goal in this
paper.

OVL (Open Verification Library) [7, 27] is a new ini-
tiative in VLSI industry for unifying the many commer-
cial EDA (Electronic Design Automation) tools, by pro-
viding a set of predefined specification modules instan-
tiated as assertion monitors. It is supported by EDA
industry companies and donated to Accellera (an elec-
tronic industry standards organization) in anticipation
to make OVL an industry standard. With OVL, engi-
neers can write assertions as comment lines in their HDL
(Hardware Description Language [5, 30]) programs.

OVL was originally designed for the assertions of
VLSI circuits, which are highly synchronous discrete-
time systems. With the coming of multi-multimillion-
gate SOC (System-on-a-Chip)[29] in the new century,
clock skews may eventually invalidate the synchrony
assumptions. Also, multiclock chips can also hap-
pen frequently in systems developed with IPs (Intel-
lectual Properties) to simplify design patterns. But to-
day’s industry projects usually only use static timing
analysis[26, 28] to guarantee real-time properties. Thus
it will be of great interest if we can extend OVL asser-
tions to dense-time model in formal verification. Such
an extension will also allow embedded system engineers
to take advantage of verification technology with mini-
mum effort in their development cycles. And that is the
first motivation of this research.

To blend seamlessly into the development cycles,



it is also important that system designs can be de-
scribed in a format close to programming languages.
In section 5, we define a new language, called Timed
C (TC), with C-like syntax and OVL assertions as
comment lines. TC is designed for efficient mechani-
cal translation from C-programs into input languages
of our TCTL model-checker RED 4.0 for formal ver-
ification. The input to RED 4.0 consists of a timed
automata2] (with synchronization channels[22]) and
a TCTL (Timed Computation-Tree Logic)[1] specifica-
tion. In section 5, we discuss how to mechanically trans-
late TC programs to optimized (for verification perfor-
mance) timed automata with synchronizers.

In section 7, we present four types of OVL asser-
tions and demonstrate how to translate these OVL as-
sertions, with dense-time semantics, to TCTL formulae.
In some cases, we have to create auxiliary processes and
state-variables to monitor the satisfaction of OVL asser-
tions. We have realized all these ideas in a translator,
RG (RED Generator), which translates TC programs
into input format to RED[32, 33, 34, 35, 36, 37], a high-
performance TCTL model-checker for timed automata.

The positions of OVL assertions in a program may
also shed light on the possibility of verification perfor-
mance enhancement. If an assertion is declared specif-
ically in a process’ program, usually it means that the
assurance of the assertion is strongly linked to the be-
havior of this process. Then by carefully abstracting
out state information of other processes, state-space
representation can be significantly simplified and per-
formance improvement in verification can be obtained.
This intuition has led us to the design of several local-
ized abstraction functions, which are explained in sec-
tion 8. Unlike the previous work on approximate model-
checking[40], our new abstraction technique is specially
tailored to take advantage of the information hidden
in OVL assertions. And our experiment with this new
technique of localized abstract reduction indeed shows
that performance improvement can be gained in verifi-
cation with the information hidden in OVL assertions.

To demonstrate the usefulness of our techniques
for real-world projects, in section 9, we have experi-
mented to model and verify the L2CAP (Logic Link
Control and Adaptation Layer Protocol) of BlueTooth
specification[11]. BlueTooth, a wireless communication
standard, has been widely adopted in industry. We
model two devices, communicating with the L2CAP of
BlueTooth, in TC and carry out experiments to verify
various properties between the two devices. The exper-
iments are by themselves important because of the wide
acceptance and application of the protocol.

We have also extended the functionality of RED, in-
cluding the capability of deadlock detection (reachabil-
ity analysis of states from which no more transitions are
possible). Moreover, since OVL assertions are written
in between code lines, their dissatisfaction may provide
valuable feedback for code debugging and direction to
system refinement. When there are more than one as-
sertions in a TC program and some of them are not
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Figure 1: Software architecture

satisfied, RED is also capable of identifying which as-
sertions are not satisfied. It is also possible to use the
counter-example generation capability of RED to bet-
ter understand the system behavior and diagnose the
design bugs.

The remainder of this paper is organized as fol-
lows. Section 2 discusses the verification tool frame-
work. Section 3 and 4 introduce the input language
to RED 4.0, i.e., synchronized concurrent timed au-
tomata (SCTA) and TCTL. Section 5 discusses the lan-
guage of TC(Timed C) and algorithms for translating
TC constructs into optimized SCTA subgraphs. Sec-
tion 6 describes OVL assertions. Section 7 discusses
how to translate OVL assertions into TCTL formulae.
Section 8 introduces our localized abstraction technique
specially tailored for performance verification of OVL
assertions. Section 9 reports our verification experi-
ments with L2CAP. Section 10 discusses how to imple-
ment deadlock detection in RED and how the technique
can be useful in practice. Section 11 concludes the paper
with remarks on future plan of the work.

Formal semantics of SCTA and TCTL can be found
in appendices A and B respectively. An example of
TC program with OVL assertion and its corresponding
optimized SCTA can be found in appendices C and D
respectively.

2 Verification tool framework

The software architecture of our verification framework
is shown in figure 1. On the top, users describe the



system designs in our C-like language, TC, with OVL
assertions as comments between code lines. After pars-
ing and analyzing a TC program, our translator RG
generates a file, in the format of input language to
our TCTL model-checker RED, with an SCTA and a
TCTL formulus. An SCTA includes a set of process
automata communicating with each other with binary
synchronizers[22] and global variables. The global au-
tomaton for the whole system is the Cartesian product
of the process automata. Some process automata de-
scribe the system behaviors while others monitor the
satisfaction of the OVL assertions.

The TCTL formulus is derived from the OVL as-
sertions. If there are more than one assertions, then
their corresponding TCTL formulae conjunct together
to construct the final TCTL formulus.

We use two phases in the generation of SCTAs. The
first phase generates an SCTA, which is further opti-
mized in the second phase. The optimization program
used in the second phase can also be used independently
to help users of RED in optimizing their system descrip-
tions.

After the SCTA and TCTL-formulus are gener-
ated, users may feed them to RED[32, 33, 34, 35, 36],
our TCTL model-checker. Our RED is implemented
with the new BDD-like data-structure of CRD (Clock-
Restriction Diagram)[34, 35, 36, 37]. If RED says that
the SCTA does not satisfy the TCTL formulus, RED
can identify among the many OVL assertions which
ones are not satisfied and may generate counter-example
traces in some situations. Users can use this information
as feedback to fix bugs and re-execute this verification
cycle. On the other hand, if RED says the SCTA satis-
fies the TCTL formulus, the correctness of the system
design is formally confirmed.

3 Synchronized concurrent
timed automata (SCTA)

We use the widely accepted model of timed automata[2]
with synchronizers[22]. A timed automaton is a finite-
state automaton equipped with a finite set of clocks
which can hold nonnegative real-values. At any mo-
ment, the timed automaton can stay in only one mode
(or control location). In its operation, one of the tran-
sitions can fire when the corresponding triggering con-
dition is satisfied. Upon firing, the automaton instan-
taneously transits from one mode to another and resets
some clocks to zero. In between transitions, all clocks
increase their readings at a uniform rate.

In our input language, users can describe the timed
automata as a synchronized concurrent timed automata
(SCTA). Such an automaton is in turn described as a
set of process automata (PA). Users can declare local
(to each process) and global variables of type clock, in-
teger, and pointer (to identifier of processes). Boolean
conditions on variables can be tested and variable val-
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Figure 2: process automata of the railroad crossing sys-
tem

ues can be assigned. Process automata can communi-
cate with one another through binary synchronizations.
Each transition (arc) in the process automata is called
a process transition.

In figure 2, we have drawn two process automata,
in a railroad crossing system. One process is for train-
monitor and one for the gate-controller. The monitor
uses a local clock ~; while the controller uses 7. In
each mode, we may label an invariance condition (e.g.,
v < 300). Along each process transition, we may
label synchronization symbols (e.g. !TRAIN.NEAR), a
triggering condition (e.g., y1 > 100), and assignment
statements (e.g., v1 := 0;). When the monitor detects
that a train is approaching the crossing, it sends out a
I'TRAIN_NEAR signal to the controller. On receiving the
signal, the train will reach the crossing in 100 to 300
time units while the gate will be lowered down in 20 to
50 time units.

A process transition may not represent a legit-
imate global transition (LG-transition). Only LG-
transitions can be executed. Symbols TRAIN NEAR and
TRAIN_LEAVE, on the arcs, represent channels for syn-
chronizations. Synchronization channels serve as glue to
combine process transitions into LG-transitions. An ex-
clamation (question) mark followed by a channel name
means an output (input) event through the channel. For
example, !TRAIN NEAR means a sending event through
channel TRAIN NEAR while 7TRAIN_NEAR means a receiv-
ing event through the same channel. Any input event
through a channel must match, at the same instant,
with a unique output event through the same channel.
Thus, a process transition with an output event must
combine with another process transition (by another
process) with a corresponding input event to become an
LG-transition. For example, in figure 2, process tran-
sitions 77 — T and C; — (5 can combine to be
an LG-transition while Ty — T and Cy — C3 can-
not. Also process transition 7o — T3 by itself can



constitute an LG-transition since no synchronization is
involved. The formal semantics of SCTA is left in ap-
pendix A.

4 TCTL (Timed CTL)

TCTL (Timed Computation-Tree Logic)[1] is a
branching-time temporal logic for the specification of
dense-time systems. An interval Z specifies a con-
tinuous time segment and is denoted as the pair of
(open) starting time and (open) stopping time like
(c,d),[c,d), [c,d], (c,d] such that c € N, d € N'U {c0},
and ¢ < d. Open and closed intervals are denoted re-
spectively with parentheses and square brackets.

Suppose we are given a set P of atomic propositions
and a set X of clocks, a TCTL formula ¢ for S has the
following syntax rules.

¢ = pley—x2 ~c| oLV do | oy | TOULD |Vl P2

Here p € P, z1,25 € X, c € N, T is an interval, ¢; and
¢ are TCTL formulae, and 7 is an interval.

J means “there exists a computation.” V means “for
all computations.” ¢1U7¢> means that along a compu-
tation, ¢, is true until ¢ becomes true and ¢ happens
at time in Z. For example, with a specification like

Vtrain_status = ATCROSSING
U[o,10)train_status = NOT_ATCROSSING

we require that for all computations, train_status be-
comes NOT_ATCROSSING in 10 time units.

Also we adopt the following standard shorthand :
true for —false, ¢1 Ao for —((=¢1)V (=¢2)), 1 = @2 for
(=p1)V ¢z, 3O7¢y for Itrue Uz ¢y, YOz ¢y for 2307y,
VO ¢y for VirueUzpy, A07¢y for =VO1¢y.

The formal semantics of TCTL formulae is left in
appendix B.

5 Timed C

Engineers are trained to write programs in traditional
programming languages, like C, C++, Verilog, ..., etc.
Timed C (TC) is designed to bridge the gap between the
engineering world and the verification research commu-
nity. It supports most of the programming constructs
in traditional C, like sequences, while-loops, and switch-
statements. It also provides syntax constructs to ab-
stract unimportant details for mechanical translation
to SCTA. Moreover, we have added new constructs to
make it easy to describe event-driven behaviors, like
timeouts.

5.1 The railroad crossing example

The TC program in table 1 models a simple railroad
crossing system. The system consists of two processes:

monitor and gate_controller, both executing infinite
while-loops. In the beginning, we declare two variables
of enumerate type, as in Pascal. The first value in the
enumerated value set is the initial value of the declared
variables.

After sending out a synchronization signal
ITRAIN_NEAR, train status will be assigned value
ATCROSSING in 100 to 300 time units. If in between two
statements there is no interval statements, it is equiv-
alent to the writing of interval [0, 00). Lines beginning
with // are comments, in which we can write OVL as-
sertions.

In the program, there are also two OVL assertions,
which is explained in section 6.

5.2 Mechanical translation to SCTA

The real-time system model-checkers nowadays are
based on mathematical models, like SCTA, Petri net,
hybrid automata, ... [9, 10, 17, 23, 39, 34, 35, 40, 41]. To
make the model-checking technology more attractive, it
will be nice if we can mechanically translate C-programs
to SCTAs. The language of TC (Timed C) serves as a
middle language from C-programs to SCTAs.

The SCTA (generated from RG) for the TC-program
in table 1 is exactly the one in figure 2.

For convenience, given a TC program construct B,
let RG(B) be the subgraph in an SCTA representing
the behavior of B. The SCTA subgraphs of RG(y =
3;) (an atomic assignment), RG(B1B,) (a sequence),
RG(while (z < 3) B), and RG(switch (y) {...}), are
shown in figures 3(a), (b), (c), and (f) respectively. In
construct switch(y){...}, y must be of type int. Con-
structs of if-else can be treated similarly as construct
switch. Since we require the specification of the range
of integer variable in their declaration in TC programs,
constructs like if-else can be treated as special cases of
constructs switch(...){...}.

Note that in the subgraphs figure 3(c) and (f) for
constructs while and switch, the test conditions for
the cases are directly labeled on the incoming transi-
tions as additional constraints. This means that the
conditional statements in TC do not take time in our
model. This assumption is important for efficient trans-
lation to SCTA, in which a transition with triggering
condition testing and assignments is executed instan-
taneously. This assumption is suitable for embedded
systems in which dedicated hardware is used for each
process.

But the traditional program constructs in C-like lan-
guages do not capture all the elements in the modeling
of real-time concurrent systems. One deficiency is that
there is no way to tell at what time the next statement
should be executed. To put it in other words, users
cannot, describe the deadlines, earliest starting time of
the next statement after the execution of the current
statement. Here we propose a new type of statement,
the interval statement, in the forms of ”[c, d];”, 7 [¢, d);”,
"(e,d);”, " (¢, d];”, where ¢ € N and d € N'U {oco} such



enum {NOT_ATCROSSING, ATCROSSING} train_status;
enum {NOT_DOWN, DOWN} gate_status;

process monitor() {
while (1) {

//assert_change #([0,20], 0) Al(train_status == ATCROSSING, train_status == NOT_ATCROSSING)
<!'TRAIN_NEAR>;
(100,300);
train_status = ATCROSSING;

//assert_always(gate_status == DOWN)
[5,10];
train_status = NOT_ATCROSSING;
[0,0];
<!TRAIN_LEAVE>;
[100,00];

process gate_controller() {
while (1) {

<?TRAIN_NEAR>;
[20,50) ;
gate_status = DOWN;
<?TRAIN_LEAVE>;
[0,50]1;
gate_status = NOT_DOWN;

Table 1: TC program for the modeling of railroad crossing system
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timeout|c, d] : Bibreak;

}

Figure 3: SCTA subgraphs for TC-program constructs

that ¢ < d and (¢, 0], [c,o0] are not allowed. An in-
terval statement, say [e,d], is not executed but serves
as a glue to bind the execution times of its predecessor
and successor statements. For example, a statement se-
quence like B;[3,5]; By means that the time lap from
the execution of the last atomic statement in B; to the
execution of the first statement in By is within [3,5].
The SCTA subgraph of RG(B4[3,5];B>) is shown in
figure 3(d). Note how we use an auxiliary system clock
v here to control the earliest starting time and deadline
of the successor transition.

From real-world C-programs, interval statements can
be obtained by abstracting out the execution time of
blocks or sequences of program statements. Accu-
rate execution time can be obtained with techniques of
WCET(18] analysis. In many embedded systems, a pro-
cessor exclusively executes one process and the execu-
tion time of a straight-line program segment can be ob-
tained by accumulating the execution time (from CPU
data-book) of the machine instructions in the segment.

Event-handling is an essential element in modeling
languages for real-time systems. With different events
observed, the systems may have to take different ac-
tions. We design the new construct of

switch event{
case(ssy) : Bibreak;
case(ssy) : Bobreak;

timeout|c, d] : Bibreak;

}

to capture this kind of system behaviors. ssi,sss,...
are sequences of synchronization labels, like ?receive,
!send, The construct means that the sys-
tem will wait for any of the event combinations of
(ss1), (ss2),... to happen and take the corresponding
actions By, Bs, ... respectively. But the system will only
wait for a period no longer than d time units because of
the timeout event which will happen between ¢ and d
time units. The corresponding SCTA subgraph is drawn
in figure 3(h). Note that the SCTA subgraph does have
an auxiliary entry mode to enforce the timeout.

Finally e also allow programmers to use synchronizers
in SCTA for the convenience of modeling of concurrent
behaviors and construction of LG-transitions. For ex-
ample, users can also write an atomic statement like ” <
?ack !finish >;” and RG(< ?7ack !finish >;) is
shown in figure 3(e).



5.3 Optimization of SCTA

The first phase of RG generates an SCTA, which is
clumsy to verify. The SCTA will have a lot of null states
connecting together the SCTA subgraphs generated for
various TC program constructs. Also, many opera-
tions on local variables may create unnecessary partial-
ordering and irrelevant intermediate states, which can
only waste resources in the verification tasks for the
given OVL assertions. We borrowed the code optimiza-
tion techniques from compiler research[4] for the opti-
mization of SCTAs. After the optimization, the reach-
able state-space representation of the SCTA can be re-
duced and verification performance can be enhanced.

A simple but effective technique for locally improv-

ing the target code is peephole optimization, a method
to improve the performance of the target program by
examining a short sequence of target instructions and
replacing these instructions (called the peephole) by a
shorter or faster sequence [4]. We followed this idea
and developed our SCTA Optimizer. The optimization
techniques, which we employed, include

e bypass of null transitions: For easy mechanical
translation, sometimes we generate null modes and
transitions. These modes and transitions can be
eliminated without changing the system behaviors.

e compaction of intermediate local transitions: In
SCTA, we can declare local variables of type integer
and pointers. The exact execution time (within an
interval) of assignments to such local variables may
not affect the behavior of peer processes. This kind
of situation can be analyzed and we can compact
these local actions into one process transition.

e climination of unreachable modes: After the by-
passing of many transitions, some modes in the
original SCTA may no longer be connected to the
initial mode in the SCTA graph. We can simply
ignore such modes.

e climination of intermediate temporary variables: In
the evaluation of complex expressions, sometimes
we have to declare intermediate temporary state-
variables to store the intermediate results, like the
sum of an addition inside a multiplication. By
properly analyzing the structure of the arithmetic
expressions, we can avoid the usage of some inter-
mediate temporary variables.

Because of the page-limit, we omit the details of our
implementation here. But we have carried out experi-
ment on the L2ZCAP used in section 9. The TC program
with some OVL assertions can be found in appendix C.
The experiment reported in section 9 shows dramatic
improvement in verification performance after the opti-
mization.

6 OVL assertions

We here demonstrate how to translate the following four
types of OVL assertions to TCTL formulae for model-

checking with RED.

//assert_always(¢)
//assert never(¢)

//assert_change#(Z, f)ID(¢1, ¢2)
//assert_time#(Z, f)ID(¢1, ¢2)

Here ¢, ¢1, ¢2 are Boolean predicates on variable values.
7 is an interval (as in section 4). f is a special flag. ID
is the name of the assertion.

We choose these four assertion types from OVL
as examples because many other assertion types can
be treated with similar technique, which we use
for these four types. In the four assertion types,
//assert_always(¢) and //assertmever(¢) specify
some properties at the current state. The first type

//assert_always(¢)

means that "now ¢ must be true.” For example, in ta-
ble 1, the second assertion in the while-loop of process
monitor says that "now the gate must be down.”

The second type

//assert never(o)

means that "now ¢ must not be true.”

The other two assertion types specify some properties
along all computations from the current state. f is a
flag specific to assert_change and assert_time. When

£=0,
/assert_change#(Z, f)ID (1, $») (1)

means that from now on, along all traces, WHENEVER,
¢y is true, ¢» must change value once within time in
T. That is, this assertion will be assured once and for
all. For example, in table 1, the first comment line in
the while-loop of process monitor, is an assert_change,
which says that when a train is at the crossing
(train_status == ATCROSSING), then Boolean value
of predicate train_status == NOT_ATCROSSING must
change within 0 to 20 time units.

When f =1, assertion (1) means that from now on,
along all traces, THE FIRST TIME WHEN ¢, is true,
from that ¢;-state on, ¢ must change value once within
time in Z. That is, every time this assertion is encoun-
tered, it will only be used once, when ¢, is true, and
then discarded.

We have to make a choice about how to interpret
"THE FIRST TIME” in a dense-time multiclock sys-
tem. OVL assertions were originally defined to mon-
itor events in VLSI circuits with the assumption of a
discrete-time global clock[7]. In synchronous circuits, an
atomic event can happen at a clock tick or sometimes
can be conveniently interpreted as true in the whole
period between two clock ticks. We believe the latter
convenient interpretation is more suitable for this work
because in concurrent systems, it is not true that all pro-
cesses will change states at the tick of a ”global clock.”
And this period between two ticks can be interpreted as
a state in a state-transition system. According to this
line of interpretation, we shall interpret assertion (1) as



”from now on, along all traces, in THE FIRST
INTERVAL WITHIN WHICH ¢, is true,
from every state in that interval,
¢-» must change value once within time in 7.

to better fit the need of dense-time concurrent systems.
This choice of interpretation may later be changed to
fit all domains of applications.

The last assertion

//assert—time#(zyf)ID(QSl:(bZ) (2)

is kind of the opposite to assert_change. When f = 0,
it means that from now on, along all traces, WHEN-
EVER ¢, is true, ¢» must not change value at any time
in Z. Option f = 0 also means that this assertion will
be claimed once and for all.

Similarly, when f = 1, assertion (2) means that from
now on, along all traces, in THE FIRST INTERVAL
WITHIN WHICH ¢, is true, from every state in that
interval, ¢» must not change value at any time in Z.
Option f = 1 means that whenever this assertion is
encountered, it will only be used once (when ¢ is true)
and then discarded.

7 From assertions to TCTL

Suppose we have n assertions aq, ..., qa,. For each as-
sertion «, we need a binary flag b,. Then we label the
modes of the automata with by, ,...,b,, to denote the
scope within which the respective assertions are hon-
ored. For example, in the TC-program in table 1, there
are two assertions. Suppose the assert_change asser-
tion on the top is a; and the assert_always assertion
in the middle is as. The SCTA of this TC-program is
shown in figure 2. Then b,, is only labeled at mode T3
while b,, is only labeled at mode T5.

An assertion like o : //assert_always(¢) is trans-
lated to the TCTL formulus, denoted as TCTL(«),

VD((V(q labeled with bg) q) = ¢).

Here ”\/ (, 1abeled with b,) 4" 1S @ predicate, which we gen-

erate to signal when assertion o must be satisfied.
For a : //assert mever(¢), TCTL(a) is

VB((V (4 1abeled with ba) O = 7)-

For each assert_time or assert_change a with
unique name ID, we need to use auxiliary variables,
auxiliary actions, and sometimes auxiliary processes
to monitor their satisfaction. We need an auxiliary
Boolean state variable [, to monitor either

e when ¢ has become true with option f = 0; or

e when ¢; has become true for the first time with

option f = 1.
For example, in figure 2, [, is initially false and set to
true at every process transition to mode 7. [,, is never
reset to false with option f = 0. (Details are discussed
in the following.)

!moni
Imoni o @

Imoni o

Imoni o

?set o, !moni
a =1
?set o !moni o

?set o !moni
* * la =1

la =1

7setq !moni

TP Imoni o
a =1

a =05

Imoni o

Imoni o

?setq !monig

la =15

?setq !moni o
la =1

?set o !moni .
@ « 7set o moni o

la =1; la =1;
Figure 4: Auxiliary monitor process with option f =1

For « : //assert_change#(Z, f)ID(¢1, ¢2), no mat-
ter whether f =0 or f =1, TCTL(«) is

(V(q labeled with ba) q)

VO (la N 1)
— v <_> (Y=ol 7h3) V (‘v’qﬁgUz—'%)))

Formulus Y—¢oU1¢s captures the trace along which ¢o
changes from false to true at time in Z while Yool 7 ¢
captures the trace along which ¢ changes from true to
false at time in 7.

For o : //assert_time#(Z, f)ID(¢1, ¢=2), no matter
whether f =0 or f =1, TCTL(«) is the same

(\/ q labeled with by q)
v (Vg bt 89 %) (i) v vz )

Formulus YOz—¢, captures the trace along which ¢, is
maintained false within 7 while VO7¢, is maintained
true within Z.

When the assertions of type either assert_change or
assert_time is written with option f = 0, we need the
following minor modification to the process automata
input to RED: for every incoming transition to modes
labeled with b,,, we need to label it with the auxiliary as-
signment l,, := 1; to indicate that the scope of assertion
a is entered. This can be seen from label l,, := 1; on
the incoming transitions to mode T in figure 2.

When the assertions of type either assert_change or
assert_time is written with option f = 1, we need one
auziliary monitor process (AMP) to report, with the
auxiliary state-variable [,, when ¢; is true for the first
interval. The AMP’s behavior for « is shown in figure 4.
There are four modes in AMP to reflect all combinations
of truth values of [, and ¢;. Every LG-transition in



the original system will now have to synchronize with a
transition in the AMP. This is done with synchronizer
moni,. We label the first process transition in each LG-
transition with synchronization ?moni,. In this way, the
AMP is tightly synchronized with the original system
and the beginning and ending of the assertion scope are
precisely monitored.

When the system transits into the scope of assertion
a, the AMP will also receive a synchronizer 7set,, in
addition to the sending out of synchronizer 'moni,. On
receiving 7set,, the AMP will set the value [, to report
that the scope is entered. Then on every change value
of ¢1 from true to false in a state with [, = true, [, will
be reset to false. When [, changes from true to false, it
means that the the system has left the first interval in
which ¢; is true in the scope of a.

8 Localized abstract assertion-
checking

Verification problem is highly complex to solve with the
state-space explosion problem. Thus it is very impor-
tant to take advantage of whatever ideas, used in the
designs, communicable from the design engineers to the
verification engineers. The framework of OVL assertion-
checking has advantage in this aspect because the asser-
tions are given in between lines of process programs.
Thus it is reasonable to assume that an assertion is
either assured by the corresponding process or essen-
tial for the correctness of the process. Along this line
of reasoning, we have developed three state-space ab-
straction technique, which we call localized abstraction.
Unlike traditional abstraction techniques[40], our new
technique adjust to the information coming with asser-
tions.
Suppose we have an assertion « given in the program
of process p. For «, a process p’ is called significant
if either p = p’ or some local variables of p' appear
in . All other processes are called insignificant. For
an assertion, the three localized abstractions reduce the
state-space representations by making abstractions on
the state-variables of the insignificant processes. The
three localized abstractions are described in the follow-
ing. Suppose we have a state-space description 7.
e L(): strictly local abstraction
L*(n) is identical to n except all information about
state-variables, except the operation modes, of in-
significant processes are eliminated. The option
can be activated with option -Ad of RED 4.0.

o L5(): local and discrete abstraction
LY (n) is identical to 1 except all information about
local clocks of insignificant processes are elimi-
nated. The option can be activated with option
-At of RED 4.0.

e L% (): local and magnitude abstraction
A clock inequality x — 2’ ~ ¢ is called a magnitude
constraint iff either z = 0 or ' = 0. L% (n) is iden-

tical to n except all non-magnitude clock difference
constraints of the insignificant processes are elim-
inated. The option can be activated with option
-Am of RED 4.0.
We report the performance of our three abstraction ab-
stractions in section 9.

9 Verification experiments

The wireless communication standard of BlueTooth has
been widely discussed and adopted in many appliances
since the specification[11] was published. To show the
usefulness of our techniques for industry projects, in the
following, we report our verification experiments with
the L2CAP (Logical Link Control and Adaptation Layer
Protocol) of BlueTooth specification[11].

9.1 Modelling L2CAP

L2CAP is layered over the Baseband Protocol and re-
sides in the data link layer of BlueTooth. This protocol
supports higher level message multiplexing, packet seg-
mentation and reassembly, and the conveying of qual-
ity of service information. We model the behavior of
L2CAP in TC and write specification in OVL assertions.
The protocol regulates the behaviors between a mas-
ter device and a slave device. We use eight processes:
the master upper (user on the master side), the master
(L2CAP layer), master L2CAP time-out process, mas-
ter L2CAP extended time-out process, the slave upper
(user on the slave side), the slave (L2CAP layer), slave
L2CAP time-out process, and slave L2CAP extended
time-out process to model the whole system.

The SCTA in figure 5 describes the behavior
of a L2CAP device described in the BlueTooth
specification[11]. A device may play the role of either
master or slave depending on whether the device starts
the connection. Both the master and the slave use the
SCTA in figure 5. A master is a device issuing a request
while a slave is the one responding to the master’s re-
quest.

The TC program of L2CAP with an OVL assertion
is shown in appendix C. The corresponding optimized
SCTA generated from RG is shown in appendix D. The
original TC program has 303 lines of code. The opti-
mized SCTA has 25 modes, 151 process transitions, 6
state variables, and 8 dense-time clocks in total.

The message sequence chart (MSC) in figure 6 may
better illustrate a typical scenario of event sequence
in L2CAP. The two outside vertical lines represent, the
L2CA interface from (slave’s and master’s) upper lay-
ers to the L2CAP layers (slave and master respec-
tively). The scenario starts when the master’s up-
per layer issues an L2CA_ConnectReq (Connection Re-
quest) through the L2CA interface. Upon receiving
the request, the master communicates the request to
the slave (with an L2CAP_ConnectReq), who will then
convey the request to the slave’s upper layer (with an



?L2CAP_ConfigReq!L2CAP_Reject A .
?L2CAP_DisconnectReq 'L2CAP_DisconnectRsp 7ERTX-timeQut !L2CA_TimeOutInd

?L2CA-CenfigReq!L2€ Configtimieg
? ) ! AP Rsp == © > 7RTX-timeout !L2CA_TimeOutInd
?L2CA_DisconnectRsp !L2CAP-DisconnectRs L2CAp_comectReq!L2c_ ., S

?RTX_timeout !L
?ERTX_tifeq

I CLOSED

imeButInd
disable_ERTX

timeout !L2CA_TimeOutInd
7L2CAP-Dis

isconnectReq !L2CA_Dig¥ennectInd

W4_L2CA_DISCONNECT_RSP W4_L2CA_CONNECT_RSP

eq!L2CA_DisconnectInd

?L2CAP~DisconnectRr
7L2CA{ConnectRsp !L2CAP_Conngc¥Rsp

. ?L2CAP_ConnectRsp !L2CA_Conne/c¥Cfy{!disable_RTX
?L2CA_ConfigRsplieg 2CAP_ConfigRspleg

?L2CAP_ConfigRsp
OPEN bOfer=2; /

CONFIG
? i ! i
“L2CA-ConfigRsp!L2CAP-Cop ’ ?L2CAP_ConfigReq!L2CA_ConfigInd

?L2CAP_Data!LQCA_DafaRea i .
buffer=1; ?L2CA_ConfifgReq !L2GAP_ConfigRey

?L2CA_DataWrite! 7L2CAP_ConfigRspNeg !L2CA_ConfigCfmeg !disable_RTX
?L2CA_DataRead ?L2CA=ConfigRsp !L2CAP_ConfigRsp con==0

buffer=1; ?L2CA-ConfigReq!L2CAP_ConfigReq  CON=1;
buffer=2;

PRTXN !L2CA_TimeOut Ind

?L2(¢AP_DisconnectReq!L2CA_DisconnectInd
BRTX\t imeout !L2CA_TimeOutInd

2CA/ConfiglCfm con==

?L2CAP_ConfigRsp !L2CAenf IpCfm con=

?L2CAP_ConfigReq!L2CA_Ca

Figure 5: SCTA of a Bluetooth device

L2CA_ConnectInd). The protocol goes on with mes- W4_L2CAP_CONNECT RSP, the master reset M_Con to zero
sages bouncing back and forth until the master sends as initial value.

an L2CAP ConfigRsp message to the slave. Then both The second OVL assertion is

sides exchange data. Finally the master upper layer

issues message L2CA_DisconnectReq to close the con- //assert never (S_Con==0) (b)

nection and the slave confirms the disconnection.

We have made the following assumption in the model.
When an upper layer process needs to send out an event
in response to the receiving of an event, the time be-
tween the receiving and sending is in [0,5]. Also, we as-

inserted at the beginning of the switch-case
W4_L2CAP_CONNECT RSP of the slave TC process pro-
gram. S_Con is the counterpart of M_Con. The assertion
is thus not satisfied.

sume that the timeout value of RTX timers and ERTX The third OVL assertion is

g;ngispare all GObtiIile t1}11nits. ‘With dons time(lut, ttl;e //assert_change #([0,60],0)

CLOSED. | ADOTIS Hhe SessIon and changes fo state c(master_status==W4_L2CAP_CONNECT RSP, (c)
’ master_status==W4_L2CAP_CONNECT_RSP)

9.2 Performance data which says that if the master enters state

W4_L2CAP_CONNECT_RSP, then it will eventually leave the
state. The assertion is inserted at the beginning of the
master TC process. This is satisfied because of the time-
//assert_always(M_Con == 0) (a) out issued from timer M_RTX.
The fourth OVL assertion is

We have experimented with four OVL assertions. The
first is

inserted at the beginning of the switch-case

W4_L2CAP_CONNECT RSP of the master TC process pro- //assert_time #([0,00),1)

gram. M Con is a binary flag used to check if con- d(slave_status==W4_L2CAP_DISCONNECT RSP,  (d)
nection requests have been received from both master slave_status==W4_L2CAP_DISCONNECT_RSP)

upper and slave. The TC program with assertion (a)

are presented in appendices C. The assertion is sat- which says that if the slave enters state
isfied because at the time process master enters state W4_L2CAP_DISCONNECT RSP, then it will never leave the

10
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Figure 6: A message sequence chart of L2CAP

state. ”00” is our notation for infinity oco. The asser-
tion is inserted at the beginning of the slave TC process.
This is NOT satisfied because of the timeout issued from
timer S_RTX.

The verification performance of RED 4.0 with and
without localized abstraction technique against the four
assertions is shown in table 2. The sizes of SCTAs for
the four assertions, before and after optimizaton, are
also reported. In the following, we analyze the meaning
of the performance data.

9.3 Performance effect of optimization

With our optimization techniques discussed in subsec-
tion 5.3, significant reduction in SCTA size is achieved
for each of the assertions. In all four assertions, the
numbers of modes in optimized SCTAs are reduced to
around one tenth of those in unoptimized SCTAs. Also
the numbers of transitions are also reduced to less than
half. In our experience, the time needed to model-check
timed automata is exponential to the size of input. Thus
we do expect that the unoptimized SCTA will be much
harder to verify. This expectation is justified by com-
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paring the verification performance for the optimized
and unoptimized SCTAs. In all cases, the optimzed
SCTAs allow efficient verification within less than 1 min
while the corresponding SCTAs do not allow verification
tasks to finish in 20 mins. The performance data in ta-
ble 2 shows that our SCTA optimization techniques are
indeed indispensible.

9.4 Performance effect of localized ab-
stractions

In table 2, for each assertion against their optimized
SCTAs, we see that the verification performances with
localized abstraction technique are all better than the
one without. This is because that in the L2CAP pro-
cess, there are local variables M_Con and S_Con and in
the upper layer and timeout processes, there are local
clocks metric. For the four assertions, only the process
in whose program the assertion is written is significant.
With the localized abstraction technique, state informa-
tion on local variables of insiginificant processes can be
eliminated to some extent and the state-space represen-
tations can be manipulated more efficiently. We believe
that from the performance comparison, we find that our
localized abstraction technique can indeed be of use in
practice.

Among the three localized abstraction functions, we
also observe difference in performance. Initially, since
L*() eliminate more state-information than L%, () and
L%() do, we expect L%() will result in the most re-
duced state-space representations and the best verifi-
cation performance. To our surprise, function L%() per-
forms the worst against three of the four assertions.
We spent sometime to look into the intermediate data
generated with L®(). We found that because infor-
mation like M_Con==1 can be eliminated, state-space
representations with both M_Con==0 and M_Con==1 will
be generated. But the corresponding state-space with
M_Con==0 may otherwise be unreachable without the
abstraction of L*(). Such false reachable state-spaces
can in turn trigger more transitions, which are other-
wise not triggerable. Thus, with L%*(), we actually may
waste time/space in computing representations for un-
reachable state-spaces. This explains why there is the
performance difference among the three localized ab-
straction functions.

10 Deadlock detection

In the programming of complex systems, it is easy to fall
into the situation that synchronization falls apart and
the system stops progressing. This can happen when
either a waiting period is set wrong or a message never
appears. A situation, from which no progress of compu-
tation is possible, is called a deadlock and happens very
often in practice.

In fact, in our modelling of the L2CAP, we have
identified many bugs which trap the system behavior



optimization? | abstraction? | size or performance? || assertion (a) | assertion (b) | assertion (c) | assertion (d)
optimized no #modes/#transitions 25/151 25/151 24/150 28/166
time,/memory 91.61s/845k | 23.71s/845k | 34.95s/858k | 49.27s/1860k

"0 time,/memory 18.83s/845k | 22.36s/845k | 32.63s/858k | 48.81s/1869k

L3 () time/memory 19.22s/845k | 19.82s/845k | 28.74s/858k | 40.63s/1869k

%) time,/memory 10.225/845k | 22.25s/845k | 31.46s/358k | 47.57s/1860k

not no #modes/#transitions 258/360 258/360 258/360 262/376
optimzed time >20min >20min >20min >20min

Data collected in cygwin environment on a Pentium 4 with 1.7GHz, 256 MB, running MS Windows XP.

Table 2: Verification performance of assertions with various options

in deadlock. In one instance, while the master process
receives event ?M_L2CA_ConnectRsp from upper layer in
state W4_L2CA_CONNECT_RSP, we should expect the mas-
ter preess to send out event IM_L2CAP_ConnectRsp to the
slave process and changes to state CONFIG. But instead,
we mistakenly put down event ?M_L2CAP_ConnectRsp
and the synchronization falls apart. In the modelling
of a tightly synchronized communication systems, such
mistakes can happen very often. Engineers are in dire
need for any automated tool in discovering the possibil-
ity of deadlocks in their system design.

To support quick discovery of deadlock possibilities,
we have enhanced the functionality of RED. When in-
voked with option ”-Dx,” RED will automatically detect
the existence of such deadlocks. When invoked addition-
ally with option ”-c¢,” RED will also generate a trace
demonstrating how such deadlocks can be reached.

We here give a brief description on how to do dead-
lock detection in RED. But due to page-limit, we do
not plan to go into details. In RED, we have a big BDD
named FX, which represents the combination of process
transitions for LG-transitions. We can also add the trig-
gering condition of each process transitions to FX so that
it becomes the combination of process transitions with
triggering conditions for LG-transitions. Then the nega-
tion of FX denotes the state-space in which no further
LG-transition can be triggered. Namely, —=FX represents
the condition for deadlock. Then we use =FX as the risk
condition and perform reachability analysis with RED
to see if a deadlock state is reachable.

When we found that our model (with the just-
mentioned deadlock bug) did not generate an infinite
computation, we suspected the existence of a deadlock.
We experiemented to use this new function of RED 4.0
to try to discover any deadlock bug. And RED is capa-
ble of generating a trace leading to the deadlock state
in 10.36 sec in CPU time and 834k memory usage. The
experiment was also performed in the cygwin environ-
ment on a Pentium 4 with 1.7GHz clock rate and 256MB
memory, running MS Windows XP.
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11 Conclusion

This paper describes a new tool supporting formal OVL
assertion-checking of dense-time concurrent systems. A
formal state-transition graph model of the system and
TCTL formulae of the properties are constructed from
a description written in the TC language. We show how
to mechanically translate TC-programs into optimized
SCTAs. To take advantage of the information coming
with OVL assertions for better verification performance,
We demonstrate the power of new techniques by verify-
ing the wireless communication L2CAP in BlueTooth.

Since our framework are based on RED, which
supports high-performance full TCTL symbolic model
checking, we feel hopeful that the techniques presented
here can be applied to real world industry projects. The
major motivation of this work is to provide a natural
and friendly verification process to reduce the entry bar-
rier to CAV technology, especially for engineers of real-
time and embedded systems. And our experiment data
on the real-world L2CAP indeed shows great promise
of verification in the style of OVL assertion-checking for
dense-time concurrent systems.
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APPENDICES

A Definition of SCTA

A SCTA (Synchronized Concurrent Timed Automaton
is a set of finite-state automata, called process automata,
equipped with a finite set of clocks, which can hold non-
negative real-values, and synchronization channels. At
any moment, each process automata can stay in only
one mode (or control location). In its operation, one of
the transitions can be triggered when the corresponding
triggering condition is satisfied. Upon being triggered,
the automaton instantaneously transits from one mode
to another and resets some clocks to zero. In between
transitions, all clocks increase their readings at a uni-
form rate.

For convenience, given a set () of modes and a set
X of clocks, we use B(Q, X) as the set of all Boolean
combinations of inequalities of the forms mode = ¢ and
x — 2’ ~ ¢, where mode is a special auxiliary variable,
q€Q,z,z’ € XU{0}, “~” is one of <, <, =,>, >, and
c is an integer constant.

Definition 1 process automata A process automa-
ton A is given as a tuple (X, E,Q,I,u,T,\, 7,7) with
the following restrictions. X is the set of clocks. E
is the set of synchronization channels. @ is the set
of modes. I € B(Q,X) is the initial condition on
clocks. p: @ + B(0,X) defines the invariance con-
dition of each mode. T C @) x () is the set of transi-
tions. A : (E x T) — Z defines the message sent and
received at each process transition. When A(e,t) < 0,
it means that process transition ¢ will receive |A(e, )]
events through channel e. When A(e,t) > 0, it means
that process transition ¢ will send A(e, t) events through
channel e. 7: T + B(,X) and 7 : T ~ 2% respec-
tively defines the triggering condition and the clock set
to reset of each transition. |

Definition 2

SCTA (Synchronized Concurrent Timed Automata) An
SCTA of m processes is a tuple, (E, A1, Aa, ..., Ap)
where E is the set of synchronization channels and for
each 1 <p <m, Ay = (Xp, E,Qp, Ip, iy, Tp, \p, Tp, Tp)
is a process automaton for process p.

A waluation of a set is a mapping from the set to
another set. Given an n € B(Q,X) and a valuation v
of X, we say v satisfies n, in symbols v |= 5, iff it is
the case that when the variables in 7 are interpreted
according to v, n will be evaluated true.

Definition 3 states Suppose we are given an SCTA
S =(E, A1, Ay, ..., Ap) such that for each 1 < p < m,
Ay =(Xp, B, Qp, Ip, t1p, Tp, A\p, Tp, Tp). A state v of S is
a valuation of U, <<, (Xp U {mode, }) such that
e v(mode,) € @, is the mode of process i in v; and
o for each € U <pcpn Xp» v(z) € RT such that
R T is the set of nonnegative real numbers and v =
Ai<p<m tp(v(modey)). |



For any t € RT, v+t is a state identical to v except
that for every clock z € X, v(z) +t = (v +1t)(x). Given
X C X, vX is a new state identical to v except that for
every ¥ € X, vX(z) =0.

Now we have to define what a legitimate synchroniza-
tion combination is in order not to violate the widely
accepted interleaving semantics. A transition plan is a
mapping from process indices p, 1 < p < m, to elements
in T, U {L}, where L means no transition (i.e., a pro-
cess does not participate in a synchronized transition).
The concept of transition plan represents which process
transitions are to be synchronized in the construction of
an LG-transition.

A transition plan is synchronized iff each output event
from a process is received by exactly one unique corre-
sponding process with a matching input event. For-
mally speaking, in a synchronized transition plan @,
for each channel e, the number of output events must
match with that of input events. Or in arithmetic,
21 <p<ma(pzL ANE ®(p) = 0.

Two synchronized transitions will not be allowed to
occur at the same instant if we cannot build the syn-
chronization between them. The restriction is formally
given in the following. Given a transition plan @, a
synchronization plan Ye for ® represents how the out-
put events of each process are to be received by the
corresponding input events of peer processes. Formally
speaking, ¢ is a mapping from {1,...,m}?> x E to N
such that Uq(p,p’, ) represents the number of event e
sent form process p to be received by process p’. A syn-
chronization plan ¥4 is consistent iff for all pand e € E
such that 1 < p < m and ®(p) #L, the following two
conditions must be true.

® Z1gp'gm;q>(p');u_ Ua(p,p',e) = AN(®(p));

® Zlgpgm;@(p)#L Ve (p',p,e) = =A(®(p));

A synchronized and consistent transition plan @ is
atomic iff there exists a synchronization plan ¥¢ such
that for each two processes p, p’ such that ®(p) #L and
®(p') #L, the following transitivity condition must be
true: there exists a sequence of p = p1,pa,...,pr = p’
such that for each 1 < i < k, thereis an e; € E such that
either e (pi, pit1,€i) > 0 or Vo (pit1,pi,e;) > 0. The
atomicity condition requires that each pair of meaning-
ful process transitions in the synchronization plan must
be synchronized through a sequence of input-output
event pairs. A transition plan is called an IST-plan
(Interleaving semantics Transition-plan) iff it has an
atomic synchronization plan.

Finally, a transition plan has a race condition iff two
of its process transitions have assignment to the same
variables.

Definition 4 runs Suppose we are given an SCTA § =
(E, A1, As, ..., Ap) such that foreach 1 <p <m, A, =
(Xp, E,Qp, I, tp, Tpp, A\p, Tp, mp). A run is an infinite se-
quence of state-time pair (vo,t0)(v1,t1) ... (Ve tg) - -
such that vy |= I and toty ... tg...... is a monotonically

ii

increasing real-number (time) divergent sequence, and
for all £ > 0,

e for all ¢t € [O,tk+1 — tk], v, + t ':
/\lgpgm /J‘(Vk (mOdep)); and
e cither

— vg(mode,) = vg41(modey) and vy + (41 —
tk) = Vgt1; Or
— there exists a race-free IST-plan ® such that
forall 1 <p<m,
% either wj(modep,) = vgi1(mode,) or
(vt (modey), V41 (modey)) € T, and

v+ (e — ) =
Algpgm;cb(p);u_ Tp (v (modey), V41 (mode,))
and

* (v, + (t+1 -

tk))Concatlgpgm;é(p);éLﬂ-p(Vk (mOdep)7 Vi+1 (mOdep)) =

Vg+1. Here concat(yy,...,7y,) is the new

sequence obtained by concatenating se-

quences vi, ..., in order. |

We can define the TCTL model-checking problem of

timed automata as our verification framework. Due to

page-limit, we here adopt the safety-analysis problem

as our verification framework for simplicity. A safety

analysis problem instance, SA(A,n) in notations, con-

sists of a timed automata A and a safety state-predicate

n € B(Q,X). Ais safe w.r.t. ton, in symbols A = 5, iff

for all runs (vo,to)(vi,t1) - (Vi th) - - ... ,forall k >0,

and for all ¢ € [0,tx+1 — tx], vi +t E 1, L.e., the safety
requirement is guaranteed.

B TCTL semantics

Definition 5 (Satisfaction of TCTL formulae):
We write in notations v |= ¢ to mean that ¢ is satis-
fied at state v in S. The satisfaction relation is defined
inductively as follows.

e The base case of ¢ € B(P,X) was previously de-
fined;

o U= ¢V ¢y iff either v = ¢y or v = ¢

e v=—¢ iff vf é

e v E dApUzpy iff there exist a v-run =
((Vl,tl),(VQ,tQ),...) in A, an ¢ Z 1, and a § €
[07 tit1 — ti]: s.t.

—ti+6—t €1,

— v+ 6 ¢o,

— for all j,0" s.t. either (0 <

0.t =15) o /= )Al0 €
1-

(In words, there exists a v-run along which ¢- even-
tually holds at some point in time (~ ¢; +¢) in the
time interval [t;, t;11], for some 4, and before reach-
ing that point ¢; always holds.)

L %4 V¢1UI¢2 iff for
every v-run = ((q1,v1,t1), (¢2,v2,t2),...) in A, for
some i > 1 and § € [0,t,41 — t;],

—ti+6—t €1,
— Vit 6 ¢o,

J<i)A( €
[076)))’/j+6l ':



— for all j,d" s.t. either (0 < j < i) A (0" €
(0,211 —t;]) or (j =) A (6" €[0,0)), v +0" |=

1.
Given a shared-variable concurrent timed automaton S
and a TCTL formula ¢, we say S is a model of ¢, written
as S | ¢, iff 0 = ¢ where 0 is the mapping that maps
mode,, to g, 0, all global variables and all clocks to zeros.
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C TC program for L2ZCAP with an assertion

/¥UB: 5, RTX: 6, ERTX: 10%/
process master_upper () {
while (1) {
switch event {
case <!M_L2CA_ConnectReq>
break;
case <7M_L2CA_ConnectInd>:
[0,5];
switch event {
case <!M_L2CA_ConnectRsp>:
break;
case <!M_L2CA_ConnectRspleg>:
break;

break;
case <7H_L2CA_ConfigInd>:
[0,5]1; <!M_L2CA_ConfigRsp>; break;
case <!M_L2CA_ConfigReg>:
break;
case <!M_L2CA_Datalirite>:
break;
case <7H_L2CA_ConnectCfm>:
[0,51; <!M_L2CA_ConfigReq>; break;
case <7H_L2CA_ConnectCfmlNeg>:
break;
case <7H_L2CA_ConfigCfm>
break;
case <7H_L2CA_ConfigCfmleg>:
break;
case <7H_L2CA_DataRead>:
break;
case <!M_L2CA_DisconnectReg>:
break;
case <7H_L2CA_DisconnectInd>:
[0,51; <!M_L2CA_DisconnectRsp>; break;
case <7H_L2CA_DisconnectCfm>:
break;
case <7H_L2CA_TimeOutInd>:
break;

}
}

process master ()

enum{CLOSED, W4_L2CAP_CONNECT_RSP, W4_L2CA_CONNECT_RSP, CONFIG, OPEN, W4_L2CA_DISCONNECT_RSP, W4_L2CAP_DISCONNECT_RSP} master_status;

int M_Buffer, M_Con;

while(1) {
switch (master_status) {
case CLOSED:
switch event {
case <7S_L2CAP_ConnectReq !M_L2CA_ConnectInd>:

M_Con =0; [0,0]; master_status=W4_L2CA_CONNECT_RSP; break;

case <?S_L2CAP_ConfigReq !M_L2CAP_Reject>:
break;

case <?M_L2CA_C R IM_L2CAP_C R, !'start _M_RTX>:

M_Con =0; [0,0]; master_status=W4_L2CAP_CONNECT_RSP; break;

case <7M_L2CA_ConfigReq !M_L2CA_ConfigCfmlleg>:
break;

case <7S_L2CAP_Di q !M_L2CAP_Di
break;

case <7M_RTX_timeout !M_L2CA_TimeDutInd>
master_status = CLOSED; break;

case <7M_ERTX_timeout !M_L2CA_TimeDutInd>:
master_status = CLOSED; break;

break;

case W4_L2CAP_CONNECT_RSP:
//assert_always(M_Con == 0)
switch event {

case <7 S_L2CAP_C p !M_L2CA_ConnectCfm !disable_M_RTX>:
master_status = CONFIG; break;

case <7S_L2CAP_C P M_L2CA_C nd !disable_M_RTX !start_M_ERTX>
break;

case <? S_L2CAP_ConnectRsplleg !M_L2CA_ConnectCfmlleg !disable_M_RTX !disable_M_ERTX>

master_status = CLOSED; break;

case <7S_L2CAP_Di Req !M_L2CA_Di Ind
master_status = W4_L2CA_DISCONNECT_RSP; break;

case <7M_RTX_timeout !M_L2CA_TimeDutInd>
master_status = CLOSED; break;

case <7M_ERTX_timeout !M_L2CA_TimeDutInd>:
master_status = CLOSED; break;

break;
case W4_L2CA_CONNECT_RSP:
switch event {
case <7M_L2CA_C Rsp !M_L2CAP_C tRsp:
master_status = CONFIG; break;
case <7M_L2CA_ConnectRspNeg !M_L2CAP_ConnectRspNeg>:
master_status = CLOSED; break;
case <7S_L2CAP_Di q !M_L2CA_Di Ind>:
master_status = CLOSED; break;
case <7M_RTX_timeout !M_L2CA_TimeDutInd>
master_status = CLOSED; break;
case <7M_ERTX_timeout !M_L2CA_TimeDutInd>:
master_status = CLOSED; break;

break;
case CONFIG:
switch event {
case <7S_L2CAP_ConfigReq !'M_L2CA_ConfigInd>:
break;

case <?S_L2CAP_ConfigRsp !M_L2CA_ConfigCfm !disable_M_RTX> M_Con==0:

M_Con=

; break;



case <7S_L2CAP_ConfigRsp !M_L2CA_ConfigCfm !disable_M_RTX> H_Con=
master_status = OPEN; break;

case <7S_L2CAP_ConfigRspNeg !M_L2CA_ConfigCfmNeg !disable M_RTX>
break;

case <7S_L2CAP_Di q !M_L2CA_Di Ind>
master_status = W4_L2CA_DISCONNECT_RSP; break;

case <7M_L2CA_ConfigReq !M_L2CAP_ConfigReq !start_M_RTX>
break;

case <7M_L2CA_ConfigRsp !M_L2CAP_ConfigRsp> M_Con==0:
M_Con=1; break;

case <7M_L2CA_ConfigRsp !M_L2CAP_ConfigRsp> M_Com
master_status = OPEN; break;

case <7M_L2CA_ConfigRspNeg !'M_L2CAP_ConfigRspNeg>:
break;

case <7M_L2CA_Di q !M_L2CAP_Di q !start_M_RTX>:
master_status = W4_L2CAP_DISCONNECT_RSP; break;

case <7M_RTX_timeout !M_L2CA_TimeDutInd>
master_status = CLOSED; break;

case <7M_ERTX_timeout !M_L2CA_TimeDutInd>:
master_status = CLOSED; break;

break;
case OPEN:
switch event {
case <7S_L2CAP_ConfigReq !M_L2CA_ConfigInd>:
master_status = CONFIG; break;
case <7S_L2CAP_Di q !M_L2CA_Di Ind>:
master_status = W4_L2CA_DISCONNECT_RSP; break;
case <7S_L2CAP_Data !M_L2CA_DataRead>:
break;
case <7M_L2CA_ConfigReq !M_L2CAP_ConfigReq !start_M_RTX>:
master_status = CONFIG; break;
case <7M_L2CA_Di Req !M_L2CAP_Di Req !start_M_RTK>:
master_status = W4_L2CAP_DISCONNECT_RSP; break;
case <7M_L2CA_DatalWirite !M_L2CAP_Data>:
break;
case <7M_RTX_timeout !M_L2CA_TimeDutInd>
master_status = CLOSED; break;
case <7M_ERTX_timeout !M_L2CA_TimeDutInd>:
master_status = CLOSED; break;
}
break;
case W4_L2CA_DISCONNECT_RSP
switch event {

case <7M_L2CA_Di Rsp !M_L2CAP_Di Rsp
master_status = CLOSED; break;

case <7S_L2CAP_Di; q !M_L2CA_Di. Ind>
break;

case <7M_RTX_timeout !M_L2CA_TimeDutInd>
master_status = CLOSED; break;

case <7M_ERTX_timeout !M_L2CA_TimeDutInd>:
master_status = CLOSED; break;

break;
case W4_L2CAP_DISCONNECT_RSP:
switch event {
case <7S_L2CAP_Di Req !M_L2CA_Di Ind
master_status = W4_L2CA_DISCONNECT_RSP; break;
case <7S_L2CAP_Di p !M_L2CA_Di fm !disable_M_RTX>
master_status = CLOSED; break;
case <7M_RTX_timeout !M_L2CA_TimeDutInd>:
master_status = CLOSED; break;
case <7M_ERTX_timeout !M_L2CA_TimeDutInd>
master_status = CLOSED; break;
}
break;

}
}
}

process M_RTX(){
while(1){
switch event {
case <?start_M_RTX>:
switch event {
case <7disable_M_RTK>:
break;
timeout [60,60]:
<IM_RTX_timeout>; break;
}
break;
case <7disable_M_RTX>:
break;
}
}
}

process M_ERTX(){
while(1){
switch event {
case <?start_M_ERTX>:
switch event {
case <7disable_M_ERTX>:
break;
timeout [60,601:
<IM_ERTX_timeout>; break;
}
break;
case <?disable_M_ERTX>:
break;
}
}
}

process slave_upper () {
while (1) {
switch event {




case <!S_L2CA_ConnectReg>
break;
case <?S_L2CA_ConnectInd>:
[0,51;
switch event {
case <!S_L2CA_ConnectRsp>:
break;
case <!S_L2CA_ConnectRspNeg>:
break;

break;
case <7S_L2CA_ConfigInd>:
[0,51; <!S_L2CA_ConfigRsp>; break;
case <!S_L2CA_ConfigReg>:
break;
case <!S_L2CA_Datalirite>:
break;
case <7S_L2CA_ConnectCfm>:
[0,5]; <!S_L2CA_ConfigReq>; break;
case <7S_L2CA_ConnectCfmleg>:
break;
case <7S_L2CA_ConfigCfm>
break;
case <7S_L2CA_ConfigCfmleg>:
break;
case <7S_L2CA_DataRead>:
break;
case <!S_L2CA_DisconnectReg>:
break;
case <7S_L2CA_DisconnectInd>:
[0,51; <!S_L2CA_DisconnectRsp>; break;
case <7S_L2CA_DisconnectCfm>:
break;
case <7S_L2CA_TimeOutInd>:
break;

}
}

process slave(){
enum{CLOSED, W4_L2CAP_CONNECT_RSP, W4_L2CA_CONNECT_RSP, CONFIG, OPEN, W4_L2CA_DISCONNECT_RSP, W4_L2CAP_DISCONNECT_RSP} slave_status;
int S_Buffer, S_Con;

while(1){
switch (slave_status) {
case CLOSED:
switch event {
case <7M_L2CAP_ConnectReq !S_L2CA_ConnectInd>:
S_Con =0; [0,0]; slave_status=W4_L2CA_CONNECT_RSP; break;
case <7M_L2CAP_ConfigReq !S_L2CAP_Reject>:
break;
case <7S_L2CA_C Req !S_L2CAP_C Req !start_S_RTX>
S_Con =0; [0,0]; slave_status=W4_L2CAP_CONNECT_RSP; break;
case <7 S_L2CA_ConfigReq !S_L2CA_ConfigCfmlleg>:
break;
case <7M_L2CAP_Di Req !S_L2CAP_Di Rsp:
break;
case <7S_RTX_timeout !S_L2CA_TimeOutInd>
slave_status = CLOSED; break;
case <7S_ERTX_timeout !S_L2CA_TimeOutInd>:
slave_status = CLOSED; break;
}
break;
case W4_L2CAP_CONNECT_RSP:
switch event {
case <7 M_L2CAP_ConnectRsp !S_L2CA_ConnectCfm !disable_S_RTX>:
slave_status = CONFIG; break
case <7M_L2CAP_C 1S_L2CA_C Pnd !disable_S_RTX !start_S_ERTX>
break;
case <7 M_L2CAP_C plieg !
slave_status = CLOSED; break;
case <7M_L2CAP_Di; q 'S_L2CA_Di Ind>
slave_status = W4_L2CA_DISCONNECT_RSP; break;
case <7S_RTX_timeout !S_L2CA_TimeOutInd>
slave_status = CLOSED; break;
case <7S_ERTK_timeout !S_L2CA_TimeOutInd>:
slave_status = CLOSED;
break;

_L2CA_ConnectCfmNeg !disable_S_RTX !disable_S_ERTX>

break;
case W4_L2CA_CONNECT_RSP:
switch event {

case <7S_L2CA_C p !S_L2CAP_C: p
slave_status = CONFIG; break;

case <7S_L2CA_C plleg !S_L2CAP_C Rspleg
slave_status = CLOSED; break

case <7M_L2CAP_Di Req !S_L2CA_Di Ind
slave_status = CLOSED; break;

case <7S_RTX_timeout !S_L2CA_TimeDutInd>
slave_status = CLOSED; break;

case <7S_ERTX_timeout !S_L2CA_TimeDutInd>:
slave_status = CLOSED; break;

break;
case CONFIG:

switch event {

case <7M_L2CAP_ConfigReq !S_L2CA_ConfigInd>:
break;

case <7M_L2CAP_ConfigRsp !S_L2CA_ConfigCfm !disable_S_RTX> S_Con==0:
S_Con = 1; break;

case <7M_L2CAP_ConfigRsp !S_L2CA_ConfigCfm !disable_S_RTX> S_Con=
slave_status = OPEN; break;

case <7M_L2CAP_ConfigRspNeg !S_L2CA_ConfigCfmlNeg !disable_S_RTX>
break;

case <7M_L2CAP_Di q !S_L2CA_Di Ind>
slave_status = W4_L2CA_DISCONNECT_RSP; break;

case <7S_L2CA_ConfigReq !S_L2CAP_ConfigReq !start_S_RTX>




break;

case <7S_L2CA_ConfigRsp !S_L2CAP_ConfigRsp> S_Con==0:
S_Con =1; break;

case <7S_L2CA_ConfigRsp !S_L2CAP_ConfigRsp> S_Com
slave_status = OPEN; break;

case <7S_L2CA_ConfigRspNeg !S_L2CAP_ConfigRspNeg>:
break;

case <7S_L2CA_Di q !S_L2CAP_Di q !start_S_RTX>:
slave_status = W4_L2CAP_DISCONNECT_RSP; break;

case <7S_RTX_timeout !S_L2CA_TimeDutInd>
slave_status = CLOSED; break;

case <7S_ERTX_timeout !S_L2CA_TimeDutInd>:
slave_status = CLOSED; break;

break;
case OPEN:
switch event {
case <7M_L2CAP_ConfigReq !S_L2CA_ConfigInd>:
slave_status = CONFIG; break;
case <7M_L2CAP_Di Req !S_L2CA_Di Ind
slave_status = W4_L2CA_DISCONNECT_RSP; break;
case <7M_L2CAP_Data !S_L2CA_DataRead>:
break;
case <7S_L2CA_ConfigReq !S_L2CAP_ConfigReq !start_S_RTX>:
slave_status = CONFIG; break;
case <7S_L2CA_Dii q !'S_L2CAP_Di q !start_S_RTX>:
slave_status = W4_L2CAP_DISCONNECT_RSP; break;
case <7S_L2CA_DataWrite !S_L2CAP_Data>:
break;
case <7S_RTX_timeout !S_L2CA_TimeOutInd>
slave_status = CLOSED; break;
case <7S_ERTK_timeout !S_L2CA_TimeOutInd>:
slave_status = CLOSED; break;

break;
case W4_L2CA_DISCONNECT_RSP
switch event {

case <7S_L2CA_Dii p !S_L2CAP_Di p
slave_status = CLOSED; break;

case <7M_L2CAP_Di; q 'S_L2CA_Di Ind>
break;

case <?S_RTX_timeout !S_L2CA_TimeOutInd>
slave_status = CLOSED; break;

case <?S_ERTX_timeout !S_L2CA_TimeOutInd>:
slave_status = CLOSED; break;

break;
case W4_L2CAP_DISCONNECT_RSP:
switch event {

case <7M_L2CAP_Di; q !S_L2CA_Di. Ind>
slave_status = W4_L2CA_DISCONNECT_RSP; break;
case <7M_L2CAP_Di Rsp !S_L2CA_Di. fm !disable_S_RTX>

slave_status = CLOSED; break;

case <?S_RTX_timeout !S_L2CA_TimeOutInd>:
slave_status = CLOSED; break;

case <?S_ERTX_timeout !S_L2CA_TimeOutInd>
slave_status = CLOSED; break;

}

break;

}
}
}

process S_RTX(){
while(1){
switch event {
case <7start_S_RTX>:
switch event {
case <7disable_S_RTX>:
break;
timeout [60,60]:
<IS_RTX_timeout>; break;

break;
case <7disable_S_RTX>:
break;

}
}

process S_ERTX(){
while(1){
switch event {
case <?start_S_ERTX>:
switch event {
case <7disable_S_ERTK>:
break;
timeout [60,601:
<IS_ERTX_timeout>; break;
}
break;
case <7disable_S_ERTX>:
break;
}

D Optimized SCTA and TCTL for L2CAP

#define CLOSED 0O
#define W4_L2CAP_CONNECT_RSP 1
#define W4_L2CA_CONNECT_RSP 2
#define CONFIG 3
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#define OPEN 4
#define W4_L2CA_DISCONNECT_RSP 5
#define W4_L2CAP_DISCONNECT_RSP 6

process count = 8;
local clock metric ;
local discrete

local discrete

local discrete

local discrete

local discrete

local discrete S_Con:0..5;
global synchronizer M_L2CA_ConnectReq, M_L2CA_ConnectInd, M_L2CA_C Rsp, M_L2CA_C Rspleg, M_L2CA_ConfigInd, M_L2CA_ConfigRsp, M_L2CA_ConfigReq, M_L2CA_DataWrite, M_L2CA_ConnectCfm,
M_L2CA_ConnectCfmNeg, M_L2CA_ConfigCfm, M_L2CA_ConfigCfmNeg, M_L2CA_D: » M_L2CA_Di Req, M_L2CA_Di. Ind, M_L2CA_Di Rsp, M_L2CA_D

master_status:0..7;
M_Buffer:0..5;
M_Con:0..5;
slave_status:0..7;
S_Buffer:0..5;

M_L2CA_TimeDutInd, S_L2CAP_ConnectReq, S_L2CAP_ConfigReq, M_L2CAP_Reject, M_L2CAP_ConnectReq, start_M_RTX, S_L2CAP_DisconnectReq, M_L2CAP_DisconnectRsp, M_RTX_timeout,
M_L2CA_C nd, start_M_ERTX, S_L2CAP_ConnectRspleg, disable_M_ERTX, M_L2CAP_ConnectRsp,
M_L2CAP_ConnectRsplleg, S_L2CAP_ConfigRsp, S_L2CAP_ConfigRspNeg, M_L2CAP_ConfigReq, M_L2CAP_ConfigRsp, M_L2CA_ConfigRspNeg, M_L2CAP_ConfigRsplNeg, M_L2CAP_DisconnectReq,
S_L2CA_ConfigInd, S_L2CA_ConfigRsp,

M_ERTX_timeout, S_L2CAP_ConnectRsp, disable_M_RTX, S_L2CAP_C

S_L2CAP_Data, M_L2CAP_Data, S_L2CAP_Di p, S_L2CA_C q, S_L2CA_ConnectInd, S_L2CA_C P, S_L2CA_Ci plieg,
S_L2CA_ConfigReq, S_L2CA_DataWrite, S_L2CA_ConnectCfm, S_L2CA_ConnectCfmNeg, S_L2CA_ConfigCfm, S_L2CA_ConfigCfmNeg, S_L2CA_DataRead, S_L2CA_DisconnectReq,
S_L2CA_DisconnectInd, S_L2CA_Di; Rsp, S_L2CA_Di fm, S_L2CA_TimeOutInd, S_L2CAP_Reject, start_S_RTX, S_RTX_timeout, S_ERTX_timeout, disable_S_RTX,
M_L2CAP_C P » S_L2CA_C Pnd, start_S_ERTX, disable_S_ERTX, S_L2CA_ConfigRsplleg;

7/

#++ Process [1] will be initialed here!

*/
mode master_upper_whilestartl true {

/*1%*/  when 7M_L2CA_ConnectInd true may metric = 0; goto master_upper_intervalzone4;

/*2%/  when 7M_L2CA_ConfigInd true may metric = 0; goto master_upper_intervalzone9;

/*3%*/  when 7M_L2CA_ConnectCfm true may metric = 0; goto master_upper_intervalzonei3;

/*4%/  when 7M_L2CA_DisconnectInd true may metric = 0; goto master_upper_intervalzonel?;

/*5%/  when !M_L2CA_ConnectReq true may goto master_upper_whilestarti;

/*6%/  when !M_L2CA_ConfigReq true may goto master_upper_whilestarti;

/%7+/  when !M_L2CA_DatalWrite true may goto master_upper_whilestarti;

/%8%/  when 7M_L2CA_ConnectCfmlNeg true may goto master_upper_whilestarti;

/%9%/  when 7M_L2CA_ConfigCfm true may goto master_upper_whilestarti;

/%10%/  when 7M_L2CA_ConfigCfmlNeg true may goto master_upper_whilestarti;

/*11%/  when 7M_L2CA_DataRead true may goto master_upper_whilestarti;

/*12%/  when !M_L2CA_DisconnectReq true may goto master_upper_whilestarti;

/%13%/  when 7M_L2CA_DisconnectCfm true may goto master_upper_whilestarti;

/*14%/  when 7M_L2CA_TimeOutInd true may goto master_upper_whilestarti;

}
mode master_upper_intervalzone4 metric<=5 {

/%15%/  when !M_L2CA_ConnectRsp metric>=0 may goto master_upper_whilestarti;

/%16%/  when !'M_L2CA_ConnectRspNeg metric>=0 may goto master_upper_whilestarti;

}
mode master_upper_intervalzone9 metric<=5 {

/*17%/  when !M_L2CA_ConfigRsp metric>=0 may goto master_upper_whilestarti;

}
mode master_upper_intervalzonel3 metric<=5 {

/%18+/  when !M_L2CA_ConfigReq metric>=0 may goto master_upper_whilestarti;

}
mode master_upper_intervalzonel7 metric<=5 {

/%19%/  when !'M_L2CA_DisconnectRsp metric>=0 may goto master_upper_whilestarti;

}

/

#+% Process [2] will be initialed here!

*/
mode master_whilestart2i true {

/%20%/  when master_status == 1 may goto master_switchstart40;

/*21%/  when 7S_L2CAP_ConnectReq !M_L2CA_ConnectInd master_status 0 may M_Con = 0; metric = 0; goto master_intervalzone28

/%22%¢/  when 7M_L2CA_C Req !M_L2CAP_C Req !start_M_RTX master_status == 0 may M_Con = 0; metric = 0; goto master_intervalzone33
/%23+/  when 7S_L2CAP_ConfigReq !M_L2CAP_Reject master_status 0 may goto master_whilestart21

/%24%/  when 7M_L2CA_ConfigReq !'M_L2CA_ConfigCfmNeg master_status == O may goto master_whilestart2i;

/%25%/  when 7S_L2CAP_DisconnectReq !M_L2CAP_DisconnectRsp master_status 0 may goto master_whilestart2i;

/%26%/  when 7M_RTX_timeout !M_L2CA_TimeOutInd master_status == 0 may master_status = CLOSED; goto master_whilestart2i;

/*27%/  when 7M_ERTX_timeout !M_L2CA_TimeOutInd master_status == O may master_status = CLOSED; goto master_whilestart2i;

/%28%/  when 7M_L2CA_C p !'M_L2CAP_C p master_status 2 may master_status = CONFIG; goto master_whilestart21i

/%29%/  when 7M_L2CA_C plleg !'M_L2CAP_C Rsplleg master_status 2 may master_status = CLOSED; goto master_whilestart21i

/%30%/  when ?S_L2CAP_DisconnectReq !M_L2CA_DisconnectInd master_status 2 may master_status = CLOSED; goto master_whilestart21i

/*31%/  when 7M_RTX_timeout !M_L2CA_TimeOutInd master_status 2 may master_status = CLOSED; goto master_whilestart21i

/%32%¢/  when 7M_ERTX_timeout !M_L2CA_TimeOutInd master_status 2 may master_status = CLOSED; goto master_whilestart21;

/%33+/  when ?7S_L2CAP_ConfigReq !M_L2CA_ConfigInd master_status == 3 may goto master_whilestart21i

/*34%/  when 7S_L2CAP_ConfigRspNeg !'M_L2CA_ConfigCfmNeg !'disable_M_RTX master_status 3 may goto master_whilestart2i

/*35%/  when 7M_L2CA_ConfigReq !'M_L2CAP_ConfigReq !start_M_RTX master_status == 3 may goto master_whilestart2i;

/*36%/  when 7M_L2CA_ConfigRspNeg !M_L2CAP_ConfigRspleg master_status == 3 may goto master_whilestart2i;

/*37%/  when 7S_L2CAP_ConfigRsp !'M_L2CA_ConfigCfm !disable_M_RTX master_status 3 and M_Con == 0 may M_Con = 1; goto master_whilestart21
/*38%/  when 7S_L2CAP_ConfigRsp !'M_L2CA_ConfigCfm !disable_M_RTX master_status 3 and M_Con 1 may master_status = OPEN; goto master_whilestart2i
/%39%/  when 7S_L2CAP_DisconnectReq !M_L2CA_DisconnectInd master_status 3 may master_status = W4_L2CA_DISCONNECT_RSP; goto master_whilestart2i;
/%40%/  when 7M_L2CA_ConfigRsp !'M_L2CAP_ConfigRsp master_status == 3 and M_Con == 0 may M_Con = 1; goto master_whilestart2i

/*41%/  when 7M_L2CA_ConfigRsp !'M_L2CAP_ConfigRsp master_status == 3 and M_Con == 1 may master_status = OPEN; goto master_whilestart2i
/%42%¢/  when 7M_L2CA_DisconnectReq !'M_L2CAP_DisconnectReq !start_M_RTX master_status 3 may master_status = W4_L2CAP_DISCONNECT_RSP; goto master_whilestart2i
/%43%/  when 7M_RTX_timeout !M_L2CA_TimeOutInd master_status 3 may master_status = CLOSED; goto master_whilestart21i

/*44%/  when 7M_ERTX_timeout !M_L2CA_TimeOutInd master_status 3 may master_status = CLOSED; goto master_whilestart21;

/*45%/  when 7S_L2CAP_Data !M_L2CA_DataRead master_status 4 may goto master_whilestart21i

/*46%/  when 7M_L2CA_DataWrite !'M_L2CAP_Data master_status 4 may goto master_whilestart2i

/*47%/  when 7S_L2CAP_ConfigReq !M_L2CA_ConfigInd master_status == 4 may master_status = CONFIG; goto master_whilestart21

/*48%/  when 7S_L2CAP_DisconnectReq !M_L2CA_DisconnectInd master_status == 4 may master_status = W4_L2CA_DISCONNECT_RSP; goto master_whilestart21i;
/*49%/  when 7M_L2CA_ConfigReq !'M_L2CAP_ConfigReq !start_M_RTX master_status == 4 may master_status = CONFIG; goto master_whilestart21i
/%50%/  when 7M_L2CA_DisconnectReq !'M_L2CAP_DisconnectReq !start_M_RTX master_status == 4 may master_status = W4_L2CAP_DISCONNECT_RSP; goto master_whilestart21
/%51%/  when 7M_RTX_timeout !M_L2CA_TimeOutInd master_status == 4 may master_status = CLOSED; goto master_whilestart2i

/%52%¢/  when 7M_ERTX_timeout !M_L2CA_TimeOutInd master_status 4 may master_status = CLOSED; goto master_whilestart21;

/%53+/  when ?S_L2CAP_DisconnectReq !M_L2CA_DisconnectInd master_status == 5 may goto master_whilestart2i;

/*54%/  when 7M_L2CA_DisconnectRsp !'M_L2CAP_DisconnectRsp master_status == 5 may master_status = CLOSED; goto master_whilestart21

/%55%/  when 7M_RTX_timeout !M_L2CA_TimeOutInd master_status 5 may master_status = CLOSED; goto master_whilestart21i

/*56%/  when 7M_ERTX_timeout !M_L2CA_TimeOutInd master_status 5 may master_status = CLOSED; goto master_whilestart21;

/*57%/  when 7S_L2CAP_DisconnectReq !M_L2CA_DisconnectInd master_status == 6 may master_status = W4_L2CA_DISCONNECT_RSP; goto master_whilestart21;
/*58%/  when 7S_L2CAP_DisconnectRsp !M_L2CA_DisconnectCfm !disable M_RTX master_status == 6 may master_status = CLOSED; goto master_whilestart2i;
/%59%/  when 7M_RTX_timeout !'M_L2CA_TimeOutInd master_status 6 may master_status = CLOSED; goto master_whilestart2i

/*60%/  when 7M_ERTX_timeout !M_L2CA_TimeOutInd master_status 6 may master_status = CLOSED; goto master_whilestart21;
}

viii



mode master_intervalzone28 metric<=0 {

metric>=0 may master_status = W4_L2CA_CONNECT_RSP; goto master_whilestart2i;

metric>=0 may master_status = W4_L2CAP_CONNECT_RSP; goto master_whilestart2i;

P IM_L2CA_C nd !disable_M_RTX !start_M_ERTX true may goto master_whilestart2i;

7S_L2CAP_ConnectRsp !M_L2CA_ConnectCfm !disable_M_RTX true may master_status = CONFIG; goto master_whilestart2i;
7S_L2CAP_ConnectRspNeg !M_L2CA_ConnectCfmNeg !disable M_RTX !disable M_ERTX true may master_status = CLOSED; goto master_whilestart2i;
?S_L2CAP_DisconnectReq !M_L2CA_DisconnectInd true may master_status = W4_L2CA_DISCONNECT_RS! goto master_whilestart2i;

?M_RTX_timeout !M_L2CA_TimeOutInd true may master_status = CLOSED; goto master_whilestart2i;

7M_ERTX_timeout !M_L2CA_TimeOutInd true may master_status = CLOSED; goto master_whilestart2i;

0; goto slave_upper_intervalzonei33;
; goto slave_upper_intervalzone138;
0

; goto slave_upper_intervalzone142;
?S_L2CA_DisconnectInd true may metric = 0; goto slave_upper_intervalzoneid6;

/%61%/  when

}

mode master_intervalzone33 metric<=0 {

/%62%/  when

}

mode master_switchstart40 true {

/%63+/  when ?S_L2CAP_C

/%64%/  when

/%65%/  when

/%66%/  when

/%67+/  when

/%68%/  when

}

7/

#++ Process [3] will be initialed here!

*/
mode M_RTX_whilestart114 true {

/%69%/  when ?start_M_RTX true may metric = O; goto M_RTK_switchstart118;
/%70%/  when 7disable_M_RTX true may goto M_RTX_whilestart114;

}
mode M_RTX_switchstart118 metric<=60 {

/*71%/  when 7disable_M_RTX true may goto M_RTX_whilestart114;

/%72%/  when !'M_RTX_timeout metric>=60 may goto M_RTX_whilestarti14;

}

7/

#++ Process [4] will be initialed here!

*/
mode M_ERTX_whilestart122 true {

/%73%/  when 7start_M_ERTX true may metric = 0; goto M_ERTX_switchstarti26;
/%74%/  when 7disable_M_ERTX true may goto M_ERTX_whilestart122;

}
mode M_ERTX_switchstart126 metric<=60 {

/%75%/  when ?disable_M_ERTX true may goto M_ERTX whilestart122;

/%76%/  when !'M_ERTX_timeout metric>=60 may goto M_ERTX_whilestart122;

}

7/

#+% Process [5] will be initialed here!

*/
mode slave_upper_whilestart130 true {

/*77%/  when ?S_L2CA_ConnectInd true may metric =

/%78+/  when 7S_L2CA_ConfigInd true may metric =

/%79%/  when 7S_L2CA_ConnectCfm true may metric

/%80%/  when

/*81%/  when !S_L2CA_ConnectReq true may goto slave_upper_whilestart130;
/%82%¢/  when !S_L2CA_ConfigReq true may goto slave_upper_whilestart130;
/%83+/  when !S_L2CA_DataWrite true may goto slave_upper_whilestart130;
/*84%/  when 7S_L2CA_ConnectCfmleg true may goto slave_upper_whilestart130;
/*85%/  when 7S_L2CA_ConfigCfm true may goto slave_ upper_whilestart130;
/*86%/  when 7S_L2CA_ConfigCfmleg true may goto slave_upper_whilestart130;
/*87%/  when 7S_L2CA_DataRead true may goto slave_upper_whilestart130;
/*88%/  when !S_L2CA_DisconnectReq true may goto slave_upper_whilestarti30;
/%89%/  when 7S_L2CA_DisconnectCfm true may goto slave_upper_whilestart130;
/%90%/  when ?S_L2CA_TimeOutInd true may goto slave_upper_whilestart130;
}
mode slave_upper_intervalzone133 metric<=5 {

/%91%/  when !S_L2CA_ConnectRsp metric>=0 may goto slave_upper_whilestart130;
/%92%/  when !S_L2CA_ConnectRspleg metric>=0 may goto slave_upper_whilestart130;
}

mode slave_upper_intervalzonel38 metric<=5 {

/%93%/

when

1S_L2CA_ConfigRsp metric>=

may goto slave_upper_whilestarti30;

mode slave_upper_intervalzoneld2 metric<=5 {

7M_L2CAP_ConnectReq !S_L2CA_ConnectInd slave_status == O may S_Con = O; metric = 0; goto slave_intervalzonelST7;

7S_L2CA_C q !'S_L2CAP_C q !start_S_RTX slave_status == O may S_Con = 0; metric = 0; goto slave_intervalzone162
0 may goto slave_whilestarti50;

7S_L2CA_ConfigReq !S_L2CA_ConfigCfmlleg slave_status == O may goto slave_whilestarti50;

7M_L2CAP_DisconnectReq !S_L2CAP_DisconnectRsp slave_status == 0 may goto slave_whilestarti50;

0 may slave_status = CLOSED; goto slave_whilestarti50;

?S_ERTX_timeout !S_L2CA_TimeOutInd slave_status == O may slave_status = CLOSED; goto slave_whilestarti50;

_L2CA_C !disable_S_RTX !start_S_ERTX slave_status == 1 may goto slave_whilestarti50;
_L2CA_ConnectCfm !disable_S_RTX slave_status 1 may slave_status CONFIG; goto slave_whilestarti50
_L2CA_ConnectCfmNeg !disable_S_RTX !disable_S_ERTX slave_status == 1 may slave_status = CLOSED; goto slave_whilestarti50;
_L2CA_DisconnectInd slave_status 1 may slave_status = W4_L2CA_DISCONNECT_RSP; goto slave_whilestarti50;
1 may slave_status = CLOSED; goto slave_whilestarti50;

1 may slave_status = CLOSED; goto slave_whilestarti50;

slave_status == 2 may slave_status = CONFIG; goto slave_whilestarti50;

2 may slave_status = CLOSED; goto slave_whilestarti50;
_L2CA_DisconnectInd slave_status 2 may slave_status = CLOSED; goto slave_whilestarti50;

2 may slave_status = CLOSED; goto slave_whilestarti50;

2 may slave_status = CLOSED; goto slave_whilestarti50;

/%94%/  when !S_L2CA_ConfigReq metric>=0 may goto slave_upper_whilestart130;
}
mode slave_upper_intervalzonel46 metric<=5 {
/%95%/  when !S_L2CA_DisconnectRsp metric>=0 may goto slave_upper_whilestart130;
}
7/
#++ Process [6] will be initialed here!
*/
mode slave_whilestart150 true {
/%96%/  when
/%97%/  when
/%98%/  when 7M_L2CAP_ConfigReq !S_L2CAP_Reject slave_status
/%99%/  when
/%¥100%/  when
/%101%/  when 7S_RTX_timeout !S_L2CA_TimeOutInd slave_status
/%102%/  when
/%103+/  when 7M_L2CAP_C p
/%104%/  when 7M_L2CAP_ConnectRsp
/%105%/  when 7M_L2CAP_ConnectRsplieg
/%106%/  when 7M_L2CAP_DisconnectReq
/%107+/  when 7S_RTX_timeout !S_L2CA_TimeOutInd slave_status
/%108%/  when 7S_ERTX_timeout !S_L2CA_TimeOutInd slave_status
/%109%/  when ?S_L2CA_C p !S_L2CAP_C P
/%110%/  when 7S_L2CA_ConnectRspNeg !S_L2CAP_ConnectRspNeg slave_status
/*111%/  when 7M_L2CAP_DisconnectReq
/*112%/  when 7S_RTX_timeout !S_L2CA_TimeOutInd slave_status
/%113+/  when 7S_ERTX_timeout !S_L2CA_TimeOutInd slave_status
/x114x/  when

7M_L2CAP_ConfigReq !S_L2CA_ConfigInd slave_status == 3 may goto slave_whilestarti50;



7M_L2CAP_ConfigRsplleg !S_L2CA_ConfigCfmNeg !'disable_S_RTX slave_status == 3 may

7S_L2CA_ConfigReq !S_L2CAP_ConfigReq !start_S_RTX slave_status == 3 may goto sla
3 may goto slave_whil
3 and S_Con
7M_L2CAP_ConfigRsp !S_L2CA_ConfigCfm !disable_S_RTX slave_status == 3 and S_Con =:
3 may slave_status =
0 may S_Con =
1 may slave_s
3 may s
7S_RTX_timeout !S_L2CA_TimeOutInd slave_status == 3 may slave_status = CLOSED; g
7S_ERTX_timeout !S_L2CA_TimeOutInd slave_status == 3 may slave_status = CLOSED;

4 may goto slave_whilestart150;

4 may goto slave_whilestart150;

7M_L2CAP_ConfigReq !S_L2CA_ConfigInd slave_status == 4 may slave_status = CONFIG;
7M_L2CAP_DisconnectReq !'S_L2CA_DisconnectInd slave_status == 4 may slave_status =
7S_L2CA_ConfigReq !S_L2CAP_ConfigReq !start_S_RTX slave_status == 4 may slave_sta:
7S_L2CA_DisconnectReq !S_L2CAP_DisconnectReq !start_S_RTX slave_status == 4 may s
4 may slave_status = CLOSED; g
4 may slave_status = CLOSED;

_L2CA_DisconnectInd slave_status == 5 may goto slave_wh:
5 may slave_status =
5 may slave_status = CLOSED; g
§ may slave_status = CLOSED;

_L2CA_DisconnectInd slave_status == 6 may slave_status =
_L2CA_DisconnectCfm !disable_S_RTX slave_status 6 may
7S_RTX_timeout !S_L2CA_TimeOutInd slave_status == 6 may slave_status = CLOSED; g;
7S_ERTX_timeout !S_L2CA_TimeOutInd slave_status == 6 may slave_status = CLOSED;

metric>=0 may slave_status = W4_L2CA_CONNECT_RSP; goto slave_whilestarti50;

metric>=0 may slave_status = W4_L2CAP_CONNECT_RSP; goto slave_whilestarti50;

/%116%/  when
/%116%/  when
/*117+/  when 7S_L2CA_ConfigRspleg !S_L2CAP_ConfigRsplNeg slave_status
/*118%/  when 7M_L2CAP_ConfigRsp !S_L2CA_ConfigCfm !disable_S_RTX slave_status
/¥119%/  when
/%120%/  when 7M_L2CAP_DisconnectReq !S_L2CA_DisconnectInd slave_status
/*121%/  when 7S_L2CA_ConfigRsp !S_L2CAP_ConfigRsp slave_status == 3 and S_Con
/%122%/  when 7S_L2CA_ConfigRsp !S_L2CAP_ConfigRsp slave_status == 3 and S_Con
/%123%/  when 7S_L2CA_DisconnectReq !S_L2CAP_DisconnectReq !start_S_RTX slave_status
/%124x/  when
/%125%/  when
/%126%/  when 7M_L2CAP_Data !S_L2CA_DataRead slave_status
/%127+/  when 7S_L2CA_DataWrite !S_L2CAP_Data slave_status
/%128+/  when
/¥129%/  when
/%¥130%/  when
/¥131%/  when
/%132%/  when 7S_RTX_timeout !S_L2CA_TimeOutInd slave_status
/%133%/  when 7S_ERTX_timeout !S_L2CA_TimeOutInd slave_status
/%134%/  when 7M_L2CAP_DisconnectReq
/%135%/  when 7S_L2CA_DisconnectRsp !S_L2CAP_DisconnectRsp slave_status
/%136%/  when 7S_RTX_timeout !S_L2CA_TimeOutInd slave_status
/%137+/  when 7S_ERTX_timeout !S_L2CA_TimeOutInd slave_status
/%138%/  when 7M_L2CAP_DisconnectReq
/%139%/  when 7M_L2CAP_DisconnectRsp
/%¥140%/  when
/¥141%/  when
}
mode slave_intervalzonel57 metric<=0 {
/%142%/  when
}
mode slave_intervalzone162 metric<=0 {
/%143%/  when
}
/
#+% Process [7] will be initialed here!
*/
mode S_RTX_whilestart243 true {
/*144%/  when 7start_S_RTX true may metric = 0; goto S_RTX_switchstart247;
/%145%/  when 7disable_S_RTX true may goto S_RTX_whilestart243;
}
mode S_RTX_switchstart247 metric<=60 {
/%146%/  when 7disable_S_RTX true may goto S_RTX_whilestart243;
/%147+/  when !S_RTX_timeout metric>=60 may goto S_RTX_whilestart243;
}
7/
#++ Process [8] will be initialed here!
*/
mode S_ERTX_whilestart251 true {
/%148%/  when 7start_S_ERTX true may metric = 0; goto S_ERTX_switchstart255;
/%149%/  when 7disable_S_ERTX true may goto S_ERTX_whilestart251;
}
mode S_ERTX_switchstart255 metric<=60 {
/%150%/  when ?disable_S_ERTX true may goto S_ERTX_whilestart251;
/*151%/  when !S_ERTX_timeout metric>=60 may goto S_ERTX_whilestart251;
}
initially

master_upper_whilestarti[1] and metric[1]==0
and master_whilestart21[2] and master_status[2]==0 and M_Buffer[2]==0 and M_Con[2]==0 and metric[2]==0

and M_RTX_whilestart114[3] and metric[3]
and M_ERTX_whilestart122[4] and metric[4]
and slave_upper_whilestart130[5] and metric[s
and slave_whilestart150[6] and slave_status[6]
and S_RTX_whilestart243[7] and metric[7]

0

0
0 and S_Buffer[s

0 and S_Con[6;

0 and metric[s

0

and S_ERTX_whilestart251[8] and metric[8]==0

specification
forall always( master_switchstart40[2] implies M_Con[2] == 0 )

goto slave_whilestarti50;
ve_whilestarti50;
estart150;

0 may S_Con = 1; goto slave_whilestart150;

= 1 may slave_status = OPEN; goto slave_whilestarti50;
W4_L2CA_DISCONNECT_RSP; goto slave_whilestart150;

1; goto slave_whilestarti50;
tatus = OPEN; goto slave_whilestart150;
lave_status = W4_L2CAP_DISCONNECT_RSP;
oto slave_whilestart150;
goto slave_whilestart150;

goto slave_whilestarti50;

goto slave_whilestart150;

W4_L2CA_DISCONNECT_RSP; goto slave_whilestarti50;

tus = CONFIG; goto slave_whilestart150;
lave_status = W4_L2CAP_DISCONNECT_RSP;
oto slave_whilestart150;
goto slave_whilestarti50;
ilestart150;
CLOSED; goto slave_whilestarti50;
oto slave_whilestart150;
goto slave_whilestart150;

goto slave_whilestart150;

W4_L2CA_DISCONNECT_RSP; goto slave_whilestarti50;
slave_status = CLOSED; goto slave_whilestarti50;

oto slave_whilestart150;
goto slave_whilestarti50;

1==0



