Symmetric Symbolic Safety-Analysis of Concurrent Software
with Pointer Data Structures

Farn Wang*
Institute of Information Science, Academia Sinica, Taipei, Taiwan, R.O.C.
farn@iis.sinica.edu.tw

Karsten Schmidt!
Dept. of Computer Science, Carnegie-Mellon University
Pittsburgh, PA, 15213, USA, kschmidt@cs.cmu.edu

Abstract

Pointer is a very convenient device for constructing dynamic networks and passing parameters in complex soft-
ware. But with bugs like dirty pointers, it also creates challenges in maintaining system functionality. We formally
define the model of software with pointer data structures. Model checking such software may cost tremendous
resources because of the dynamic data structure. We developed symbolic algorithms for the manipulation of
conditions and assignments with indirect operands for verification with BDD-like data-structures. We rely on two
techniques, including inactive variable elimination and process-symmetry reduction in the network configuration,
to contain the time and memory complexity. We argue for the indispensibility of process-symmetry reductoin
in model-checking such systems and laid the theoretical groundwork for the discussion of symmetry reduction.
We propose the efficient technique of IbSINC (Incomplete but Sound Isomorphism of Network Configuration)
reduction to avoid the expensive but complete symmetry reduciton. We then identify the anomaly of image false
reachability of the IbSINC reduction and also define a useful class of symmetric systems, for which the efficient
IbSINC reduction works well without the anomaly problem. We implemented the techniques in the RED tool and
tested it against the Mellor-Crummy and Scott’s locking algorithms and several other benchmarks. The perfor-
mance comparison with tool SMC shows that for the special class of pointer-data-structure concurrent systems,
our technique can lead to significant performance improvement.

Keywords: symmetry, symbolic model-checking, pointers, data-structures

1 Introduction

Model checking[6] of networks with special topologies like rings and buses has been widely studied. In real-world
software, arbitrary and dynamic network configuration is, however, often constructed using pointers. An action like
“riy = T2 = ... = T, = ...;” can stretch through a network and change the local memory of a peer process in
the network. Such indirect references are not only very common in practice, but also extremely important in both
hardware and software engineering. For example, most CPUs now support hardware indirect addressing to facilitate
virtual memory management. This important hardware indirect referencing mechanism is transparent to softwares
and runs silently. For another example, dynamic data-structures like linear lists, trees, and graphs are constructed
with pointers and used intensively in most nontrivial softwares. In example 1, we have a locking algorithm[16] which

uses pointers to maintain a queue for critical section mutual exclusion.

Example 1 : MCS (Mellor-Crummy & Scott’s) locking algorithm The algorithm[16] is an example protocol
in which a global waiting queue of processes is explicitly used to insure mutual exclusive access to the critical section
in a concurrent system. In figure 1, The MCS locking algorithm for a process is drawn as a finite-state automaton.

*The work is partially supported by NSC, Taiwan, ROC under grants NSC 90-2213-E-001-006, NSC 90-2213-E-001-035, and the by
the Broadband network protocol verification project of Institute of Applied Science & Engineering Research, Academia Sinica, 2001.
tsupported by DARPA/ITOP within the MoBIES project

next — locked

next := null;

locked := false;

prev — next := P;

locked = false

Figure 1: MCS locking algorithm

The critical section is from modes 6 to 9. The queue is constructed with one global pointer L (to the tail of the queue),
and two local pointers of each process: next and prev (respectively to the successor and predecessor processes of
the local process in the queue). P is a special symbol for the data structure address of the running process. Each
process also has a local Boolean variable locked which is set to false when the process is permitted to the critical
section by its predecessor in the queue. We want to guarantee that at any moment, no more than one process is in
its critical section. |

MCS locking algorithm is just one example for the extensive usage of dynamic pointer data-structures in software
industry. In real-world, the data-structures can be defined and grow to configurations like stacks, layered trees,
multi-dimensional (sparse or triangular, to make it more complicate) matrices, and even random graphs. Due to
their dynamic nature, software with such data-structures has been known to be extremely difficult to maintain and
to debug. For example, any experienced software engineers will agree that bugs caused by dirty pointers to freed
data-structures are extremely difficult to detect and remove. It is almost like a nightmare! Such bugs, whose effect
usually does not emerge until long after a data-structure is corrupted through a dirty pointer, is very difficult to
trace backward. This nightmare serves as the motivation for the research reported in this manuscript.

The technique of symbolic model-checking manipulates logic predicates describing state-spaces. Since the tech-
nique can usually handle large sets of states in an abstract and concise way, it provides opportunity for higher
efficiency in verification. In the last decades, BDD (Binary-Decision Diagram)[2, 5] has emerged as one of the prime
industry technology in symbolic manipulation. In this paper, we have the following accomplishments toward using
BDD technology for the formal verification of concurrent software with pointer data-structures.

e We define a formal model for concurrent software with pointer data structures for rigorous research on solution
for the problem. Especially note that the framework is defined in such a way to explicitly allow all processes
to share the same automaton template but at the same time allow them to use their local variables. This is
extremely important in identifying process-symmetry in a convincing way. To our best knowledge, most other
model-checkers[3, 4, 11, 12, 14, 26] accept that each process be described with its own automaton and usually
create difficulty in efficiently identifying symmetric behaviors among the process automata.

e We present algorithms for the symbolic manipulation of conditions and assignments with indirect operands for
verification with BDD-like data-structures. Algorithms for both forward analysis and backward analysis have
been developed and implemented with tuning for verification performance. Special care is taken to allow for
recurrence assignments, like y — x := 3y — = + z; where the left-hand-side may also occur in the right-hand-
side.

e Then we discuss how to adapt two reduction techniques for model checking such systems.

— Reduction by inactive variables eliminations, which helps the construction of concise state-space repre-
sentation through the elimination of variable valuations that do not affect the system behaviors. Such a

technique has been used heavily in tools like Spin[11, 12], UPPAAL[4], SGM[14, 26], and red[22, 23, 24, 25].
Due to the implicit reading of pointer values in the indirection of operand references, the adaptation is
not so trivial.

— Reduction by process-symmetry. The idea of symmetry reduction [15, 21, 7, 9, 14, 26, 18, 22] is to keep
only one state if two states turn out to be symmetric. We argue that, with the dynamic variety of network
configurations that can be constructed with pointers, symmetry reduction becomes a must in verifying
such systems. We shall follow the approach of process-symmetry in [9, 26, 14, 22, 23] since process
represents a typical basic unit for behavioral equivalence in symmetry. A challenge here is how to design
an efficient strategy to detect the equivalence among processes with process-symmetry in their dynamic
data-structures. We review some of the theoretical framework of transposition (or permutation) as our
groundwork for symmetry reduction. Since graph-isomorphism is generally considered a very difficult
problem, the complete detection of a true symmetry relation between two states can be costly. We thus
developed the reduction strategy of incomplete but sound isomorphism of network configuration (IbSINC
reduction in short), which can be computed efficiently. We identify the anomaly of image false reachability
in the IbSINC reduction. We also define symmetric systems, in which IbSINC reduction works well and
the anomaly will not happen.

e We also implemented our modelling and verification techniques for pointer data-structure systems in our model-
checker red version 3.1, which is available freely at http://www.iis.sinica.edu.tw/ farn/red/, for timed
automata. The implementation not only support pointer data-structures but also support complex arithmetics
on addresses (or pointers, or identifiers).

e We carried out experiments on several benchmarks to show the usefulness of our techniques and the indis-
peunsibility of the IbSINC reduction and make performance comparison with SMC[10] of Emerson, et al. The
benchmarks represent dynamic configurations of doubly-linked queues, doubly-linked cycles, and forests with
arbitrary number of children to internal nodes. The fact that our tool performs well with the diversity of the
dynamic data-structures shows great promise of our techniques for the special class of pointer data-structure
concurrent systems.

In section 2, we shall define the formal framework of this research. In section 3, we shall present the algorithmic
framework to integrate safety-analysis software with various reduction techniques. In section 4, we shall present
the algorithm for the manipulation of symbolic predicates and symbolic assignment statements with BDD-like data-
structures. In section 5, we shall discuss how to use the implicit pointer-reading operations in indirect references
to facilitate the reduction by elimination of inactive variables. In section 6, we shall lay a firm groundwork on
the research of symmetry reduction and investigate some of the theoretical properties of the problem of identifying
isomorphism in general directed graphs. Especially, we identify the anomaly of image false reachability with bijections.
In section 7, we discuss our implememntations and performance data collected with three benchmarks. Specifically
in subsection 7.1, we present our efficient IbSINC reduction. Performance comparison with SMC[10] is also reported.
Section 8 is the conclusion.

2 Concurrent algorithms and the safety analysis problem

For convenience, we consider concurrent algorithms with local data structures attached to each process for convenience
of presentation and discussion. The address of a data structure can be viewed as the identity of the corresponding
process. We shall have the convention that if p is the address of a process’s data-structure, then the process is also
named p. But our model and techniques can be easily adapted for the modelling and verification of systems with
data-structure addresses not bound to process identifiers.

Two types of variables can be declared. The first is the type of discrete variables with predeclared finite integer
value ranges. For each declared variable z, Ib(z) and ub(z) denote its declared lowerbound and upperbound respec-
tively. Such variables can be used in formulae and assignments with arithmetic expressions and indirect operands.
For convenience, we can also assign symbolic macro names to integer values. Traditionally, false is interpreted as 0
while true as 1.

The second is the type of pointers (address variables) to processes (data-structures). The value ranges of pointers
are from zero (or NULL) to the number of processes. As in example 1, L is used as a pointer to the tail of a queue. We
also support arbitrary address arithmetics. A special pointer value constant symbol is NULL, which in C’s tradition
is equal to zero. Or in the same notations as of discrete variables, Ib(z) = NULL and ub(z) is the number of processes

for all declared pointers z.

Variables can be declared as global variables which all processes can access, or local variables of a process which
only the declaring process can directly access. A name can be used to represent the respective local variables of
different processes. For instance, in example 1, different processes access different variables which are all locally
called locked.

In the following, we shall first formally define the syntax and semantics of our systems, and then define the safety
analysis problem.

2.1 Syntax of algorithm descriptions

Conceptually, a concurrent algorithm S is a tuple (G¢,GP, L%, L?, A(P)) where G% and L? are respectively the sets
of global and local discrete variables, GP and LP are respectively the sets of global and local pointers, and A(P) is the
process program template, with process identifier symbol P.

Given a set X7 of global and local discrete variables and a set X? of global and local pointers, a local state predicate
n of X% and XP can be used to describe the triggering condition of state transitions and has the following syntax.

na= e~ e | g Vg
ex= c|NULL|P|z|y—el|zxp]|yp] > e|e De

where ~€ {<,<,=,#,>,>},c € N = {0}, z € X¢UXP, y € XP, and & € {+,—,*,/}. Parenthesis can be
used for disambiguation. Traditional shorthands are ¢ # €2 = —=(e1 = €), m An2 = =((-m) V (-m2)), and
1 = 12 = (—m) V 12, Thus a process may operate on conditions of the global and local variables, and also on the
local variables of peer processes pointed to by pointers. We let B(X? XP) be the set of all local state predicates
constructed on the discrete variable set X7 and the pointer set X?.

In our concurrent algorithms, once the triggering condition is satisfied by global variables and the local variables
of a process, the process may execute a finite sequence of actions with the following syntax: “y1 = yo = ... = yp —
T :=¢;,” where n > 0. Conveniently, let T(X¢, XP) be the set of all finite sequences of actions constructed of discrete
variable set X? and pointer set X7.

Given a concurrent algorithm S = (G4, G?, L4, L?, A(P)), A(P) is the program template, with identifier symbol P,
for all processes. Program template A(P) has a syntax similar to that of finite-state automata. A(P) is conceptually
a tuple (@, qo, E, T, 7) with the following restrictions:

@ is a finite set of operation modes.

go € @ is the initial operation mode.

E C @ x Q is the set of transitions between operation modes.

7:E+ B(GYU LY GP U L) is a mapping that defines the triggering condition of each transition.

7. Ew T(GYU LY, GP U LP) is a mapping that defines the action sequence performed upon occurrence of a
transition. We assume that transitions are atomic actions.

We require that there is a variable mode € L? that records the current operation mode of the corresponding process.
However, when drawing A(P) as an automaton like in figure 1, we omit the description of mode values in the triggering
conditions and action sequences for simplicity and clarity.

2.2 Computation of systems

Given a system of M processes, we assume the processes are indexed with integer from 1 to M. Given a concurrent
algorithm S, S™ denotes the implementation of S by exactly processes one through M. A state v of SM is a
mapping from

{NULL,1,..., M} x N UGYUGP U {L,NULL, P} U L4 U LP)

such that
e v(NULL,z) =L (memory fault) for all x € " and all variable z.
e forall 1 <p< M, v(p, L) =1;v(p,P) =p; v(p,c) =cif c€ N;and
for all z € G%, v(p,) € [Ib(x),ub(z)] is the value of global discrete variable z at state v;
for all z € GP, v(p,z) € {NULL} U {1,..., M} is the value of global pointer x at state v;
for all z € L%, I/(p, x) € [Ib(z), ub(z)] is the value of local discrete variable of process p at state v; and
for all x € L?, v(p,x) € {NULL} U {1,..., M} is the value of local pointer z of process p at state v.

O O O o

Given a global state v, a process 1 < p < M, and a process predicate n € B(G?UL?, G U L?), we define the mapping
of p satisfies n at v, written v(p,n), to {true, false, L} in the following inductive way.

v(p,y — €) = v(v(p,y),e€) if p # NULL.

v(p,ylc] =€) =v(c,y — €) if 1 < ¢ < M; otherwise, v(p,y[c] =€) =L .

v(p,er/ea) = Lif @& ="/ Av(p,ez) =0.

v(p,e1 Dex) = v(p,€e1) D (p, €2) if either @ 6 {+, —,x}or ®="/"Av(p,e) # 0. Integer-division is assumed,
that is z/y is defined as =L ||z /y|]|, where ‘ ‘ is the sign of z/y.

\z*y\
V(p> €1 ~ 62) = V(p> 61) ~ V(p> 62)
e “l~¢” equals to L and “e ~L1” equals to L.
e The negation of the satisfaction mapping is defined as follows.
v(p,n) || false | L | true
v(p,—m) || true | L | false
e The disjunction of the satisfaction mapping is defined as follows.
v(p,m Vn2) || false | L | true

false false | L | true
1 1 1| L
true true | L | true
Given an action @ of S, the new global state obtained by applying
Y1 — . — Yn — T = €, with n > 0, to p at v, written
next_state(p,v,y1 = ... = yn = T :=¢;), is defined as follows:

e When v(p, 1 — e — Yn — x) #1 and v(p,€) #1,
next_state(v, p, y1 — .. — Yn — x = €;) is identical to v except that
next_state(v,p,y1 = ... 2 yp = =€))v(p,y1 = ... = yn),x) = v(p,€).

e When either v(p,y1 — e — Yn — x) =1 or v(pe) =1,

next_state(v,p,y1 — ... = yn — = := ¢;) is undefined.
Note that the semantics is defined to allow for recurrence of a variable in both the left-hand-side and right-hand-side
of an assignment. Given an action sequence a ..., € T(G?U LY, GP U LP), we let

next_state(v, p, ayas . . . o) = next_state(next_state(p, v, 1), p,as...ay).

The nitial state Vo of an implementation SM must satisfy
/\1<p<M vo(p,mode) = 0. We assume that the system runs with interleaving semantics in the granularity of transi-
tions, that is at any moment, at most one process can execute a transition. Execution of a transition is atomic.

A computation of an implementation SM is a (finite or infinite) sequence p = vovy ... v of states such that
for all £ > 0,

e 1 is the initial state of S™; and

e for each v, with k > 0, either vy, = v or there is a p € {1,..., M} and a transition from ¢ to ¢’ such that

ve—1(p,7(q,q")) = true and
next_state(vg—1,p, 7(q,q")) = v is defined.

2.3 Safety analysis problem

To write a specification for the interaction among processes in a concurrent system, we need to define global predicates
with the following syntax.

pu= Pr~Pa| g | PV o
Y= c¢|NULL |y |z[p]|z—€|wp] = €|t e

where ce N,y €e GPUGP, z € L*ULP, 2 € GP, w € LP,and 1 < p < M.
Given a state v and a global predicate ¢, we define the valuation of v on ¢, written v(¢), in the following inductive

way.
o v(thy ~1ha) = v(P1) ~ v(2) € {true, false}
e v(z[p]) = v(p,z)
o v(=¢p) = ().
® v(d1V o) =v(¢p1) Vv(d2).

The rest is the same as the corresponding rules for local state predicates.

A computation p = vvy .. Vg of SM violates safety property ¢ iff there is a k& > 0 such that either vy, is
undefined or vg(p, ¢) # true for some 1 < p < M. The safety analysis problem instance SAP(S, M, ¢) is to determine
if for all computations p of S™ starting from some initial states, p does not violate safety property ¢.

Example 2 : Consider the MCS locking algorithm in example 1. The critical section consists of modes 6 through
9. Thus the safety analysis problem for mutual exclusive access to the critical sections of two processes can be
formulated as SAP(S, 2, (6 <mode[l] <9 A6 < mode[2] <9)). |

3 Framework for safety analysis and reductions

We adopt the model-checking[6] technology for the verification of software implementations with pointer data struc-
tures. With such a technology, we are given a description of behaviors (typically as finite-state automata) and a
specification of behaviors (typically in temporal logics). The goal is to explore and construct a representation of the
reachable state-space and analyze if the automaton satisfies the specification. Our general algorithmic framework for
symbolic safety analysis is shown as follows.

SAP(S, M, ¢) {
reachable := A\, . . \,(vo(p,mode) = 0); /* the initial state-predicate */
next := true;
Loop until next = false, do {
next := false;
Sequentially for each 1 < p < M and for each transition (g,q"), do {
/* filter through triggering condition. */

new := indirect_condition(reachable, p, 7(q,q")); (1)
/* symbolic execution. */

new := indirect_assignment(new,p, 7(q,q")); (2)
new := reduce(new); /* application of reduction techniques */ (3)

next := next U (new — reachable);

}

reachable := reachable U next;

}

if (reachable A\ ¢ # false) return “unsafe”; else return “safe”;

The procedure iterates through the outer loop until reachable becomes a fixpoint. At line (1), indirect_condition(D,p,n)
returns a global predicate in BDD representing the subspace of D in which n is true of process p. At line
(2), indirect_assignment(D,p,7(q,q")) calculates a a global predicate in BDD representing the result after ap-
plying action sequence m(q,q’') to states in subspace represented by D. Symbolic implementations of procedure
indirect_condition() and indirect_assignment() will be discussed in section 4. At line (3), reduce() is about
application of various reduction techniques to control the complexity of reachable state-space representations.

At the first glance, model checking technology looks straightforward. The real challenge comes from the fact that
in practice, the representation sizes of reachable state-spaces of any reasonably interesting software implementations
are usually tremendous. In sections 5 and 6, we shall present two techniques to reduce the complexity of state space
representations.

4 Symbolic computation of predicates with indirections

In our presentation of symbolica algorithms with BDD, we shall conveniently write Boolean combinations of BDDs,
like Dy V Dy, with the assumption that Boolean operations on BDDs are already defined. Details of such BDD
operations can be found in [2, 5].

4.1 Symbolic evaluation of conditions with indirect operands

In a pointer data-structure system, users may write a predicate with operands of aribitrary indirections. For example,
we may have a pointer data-structure system with the following declarations.

global pointer L;
local pointer parent, leftchild, rightchild;
local discrete count: 0..5;

All these variables are to be encoded by finite number of bits in BDD-like data-structure. This is possible because
their value ranges are finite. Specifically, 1b(count) = 0, and ub(count) = 5.

When we are given a state-space representation D in BDD-like data-structure, how can we compute the maximal
subspace representation D', of D, in which a complicate condition 1 with indirections like

parent[l] — count — 2 % leftchild[2] — rightchild — count < L — count

is true. The condition says that difference of the count of parent of the 1st process (parent[l] — count) and
twice the count of the right child of the left child of the 2nd process (2 * leftchild[2] — rightchild — count)
is less than the count of process L (L — count). Since there is no restriction on lengths of indirections, we need
a flexible algorithm to construct such D’. Our algorithm is simplified for presentation and explanation as the
following function indirect_condition(), which in turns invokes functions indirect_ref(), indirect_arith(), and

indirect_effect().
indirect_condition(D,p,n) {

Collect the operands wy, . ..,w, used in n;
Rewrite i into 1’ in the form of wy ~ e.
Construct D, := D A indirect_arith(e,p);
if wgis hy =1l = ... = Iy = z with k£ > 0, then {
Let R := false;
Construct Dy, := D, A indirect ref(hy = Iy = ... = I, p);
for j:=1to M, do {
Let H := var_eliminate(D,,; A (PI = j),PI);
Let H := condition effect(x[j],~, H);
Let R:= RV H;

}
}

else if wp is z[i] with local variable z with specific process reference 4, then
Let R := condition_effect(z[i],~,D.);

else if wy is « with local variable z with no specific process reference, then
Let R := condition_effect(z[p],~, D.);

else if wy is a global variable z, then
Let R := condition_effect(z,~,D,);

return R;

Procedure var_eliminate(D,x) filters z out of D. For a local discrete variable z, var_eliminate(D,z) =
Voelib(e),ub(z)) Ple=v Where D|s—, is the new local state predicate obtained by instantiating to v. For a local
pointer x, var_eliminate(D,x) = Vve{NULL,l,...,M} D|y—y.

The presentation is simplified in that when it invokes indirect_arith(), we assume that we don’t have to worry
about problems like divide-by-zero and imprecision caused by integer division. In our real implementation, the
algorithm is more involved and iteratively solves the linear inequality constraints with respect to operand wqy. In the
iterations to solve the inequality constraints, such problems are properly taken care of with case-analysis. Due to
page-limit, we only use the simplified presentations of algorithms in the following. The algorithm uses two auxiliary
variables, VALUE and PI. VALUE is used to hold the value of ann arithmetic expression. PI is used to hold the
destination process identifier of an indirection of arbitrary length.

Function indirect ref(h; — l;+1 — ... — li,p) constructs the necessary condition at a state v when v(h; —
lit1 = ... = Iy, p) is identical to the process identifier recorded in variable PI.
indirect ref(h; = li11 — ... = Ik, p) {

if i > k, return(PI = p);

Let R := false;

if h; is a local pointer [;[j] with specific process reference j, then

for f:=1to M, do

R:= RV (l;[j] = f A indirect ref(liy1 — ... = Ik, f));
else if h; is a local pointer [; with no specific process reference, then
for f:=1to M, do
R:= RV (li[p] = f A indirect ref(liy1 — ... = i,));
else if h; is a global pointer g;, then
for f:=1to M,do R:=RV (g; = f Aindirect ref(liy1 — ... = lg, f));
return(R);

Function indirect_arith(e,p) uses the auxiliary variable VALUE to symbolically record the value of expression e

at process p.
indirect_arith(e,p) {

R := false;
ifeishy = 1lo — ... =l = z with k£ > 0, then {
H := indirect ref(h; = lo — ... = I, p);
for j :=1to M, 1b(z) < v < ub(z), do
R:= RV (var_eliminate(H A PI = j,PI) A z[j] = v A VALUE = v);
}

else if € is z[i] with local variable z and specific process reference i, then
for 1b(z) < v < ub(z), do R:= RV (z[i] = v A VALUE = v);
else if € is local variable x with no specific process reference, then
for 1b(z) < v < ub(z), do R:= RV (z[p] = v A VALUE = v);
else if € is a global variable z, then
for 1b(z) < v < ub(z), do R:= RV (x = v A VALUE = v);
else if € is €; ® e2 where ® € {+, —, %, /}, then {
R, := indirect_arith(e,p);
R, := indirect_arith(es, p);
for every possible value vy, vs of variable VALUE, do {
H, :=var_eliminate(R; A VALUE = vy, VALUE);
H, := var_eliminate(Ry A VALUE = vy, VALUE);
R = RV(Hl/\Hg/\VALUEzvl @’UQ); (1)

}
}

return R;

To evaluate an expression like €; @ €3, the values recorded in the VALUE variable respectively in the symbolic
predicates of ¢; and e» are used as in line (1) in procedure indirect_arith().
condition effect(z,~,D) {
R := false;
for every possible value v of variable VALUE, do
R:= RV (x ~vAvar_eliminate(D A VALUE = v, VALUE));
return R A 1b(z) < z < ub(z);

)

4.2 Symbolic manipulation of assignments with indirect operands

Given a state-space predicate D and an assignment statement like wg := €;, the symbolic postcondition by process p
in traditional wisdom is

indirect_condition(var_eliminate(D,wp),p,wo = €;)

But this fails in two ways. First, there can be indirections in wg. Second, the destination of wg can occur in € in a
recurrence assignment. In fact, such recurrence assignment is really very common and indispensible in practice.

Our algorithm is given as follows.
indirect_assignment(D,p,wy :=¢;) {

Construct D, := D A indirect_arith(e,p);

if wgis hy =1l = ... = Iy = z with k£ > 0, then {

Let R := false;
Construct Dy, := D A indirect ref(hy — Iy = ... = I, p);
for j:=1to M, do {

Let H := var_eliminate(var_eliminate(D,, A (PI = j),PI),z[j]); (2)
Let H := condition effect(x[j], ~,var_eliminate(H, z[j]));
Let R:=RV H,;

}
}

else if wy is x[i] with local variable x with specific process reference 4, then

Let R := condition_effect(z[i], ~,var_eliminate(D,,z[i])); (3)
else if wy is local variable x with no specific process reference, then

Let R := condition_effect(z[p], ~, var_eliminate(De, z[p])); (4)
else if wy is a global variable z, then

Let R := condition effect(z, ~,var_eliminate(D,,x)); (5)
return R;

In this algorithm, the problem with the recurrence assignment are solved since we use variable VALUE as a temporary
recorder for the expression value and the destination variable are eliminated from the symbolic predicate at line (2),
(3), (4), and (5) with procedure var_eliminate() before being assigned by procedure condition effect().

In our implementation, performance tuning has also been made to efficiently manipulate non-recurrence assign-
ments.

5 Reduction by inactive local variable elimination

The idea is that from some states, some variables will not be used until they are written again. Such variables
are called inactive in such states and their values can be forgotten without affecting the behavior of the software
implementation. Such a technique has been used heavily in tools like Spin[11, 12], UPPAAL[4], SGM[14, 26], and
red[22, 23, 24, 25]. But for systems with pointers, it is important to note that pointers used for indirect referencing
are also implicitly read in the execution of the corresponding action. With this caution in mind, we develop a fixed-
point procedure to derive an upper approximation local state predicate that describes the states in which a local
variable is active. Once we find that a variable is inactive in all states described by a BDD, we can

e replace the values of those inactive local discrete variables in a state with zeros; and

e replace the values of those inactive local pointers in a state with nulls;
With such replacements, we expect to greatly cut the complexity of our reachable state space representations.

However, it can be difficult to determine the exact description of a state set in which a local variable is inactive. In
fact, we shall aim at constructing a local state predicate for an upper approximation of the active condition. Given
a local discrete variable z, the local state predicate will be in B(G? U L¢ — {z}, G U LP). For a local pointer z, it
will be in B(G? U LY, G? U LP — {z}). That is, the upper approximation is described in terms of the variables, except
z[p], directly observable by the local process p. Then a lower approximation of the corresponding inactive condition
of z[p] is obtained by negating the just-obtained upper approximation of the active condition.

A local variable z[p] is possibly read by process p in assignment wq := ; iff either

e an indirect reference like y1 — ... = y,,, — y occurs in wg and z[p] € {y1[p], - - -, ym[p]}; or

e an indirect reference like y; — ... = y,, occurs in € and z[p] € {y1[pl, - .-, ym[p]}
Given a local variable z[p], an upper approximation of its active condition is constructed in two steps. First, we
construct a base approximation from the triggering conditions and actions of all transitions in the algorithm as

follows
base_uapprox_active(r)

let n, := false;
for each transition (q,q') in A(P),
if z is possibly read in actions in 7(q, ¢'),
then 7, :=n, V (mode = ¢ A var_eliminate(7(q,q'),z)).
else {
break 7(q,q") into DNF Ay V Ay V...V Ay;
for each A;, if z appears in A;,

then n, := 7, V (mode = ¢ A var_eliminate(A;, x)).
}
}

return 7,;

In the second step, from the base approximation, we calculate an upper approximation of the backward weakest

precondition through each transition until a least fixpoint is reached. This is done in the following steps.
uapprox_active(z) {

7, := base_uapprox._active(z);n, := false;
Repeat until n, = n, {
77;0 =Nz
sequentially for each transition (¢, q") in A(P), {
let § be an upper approximation of the weakest precondition
of n, before applying (¢, q").
let nl, :=nl Vv

}
}

return n, as active,.

It can be proven that the upper approximation local state predicate is indeed independent of x. For example, by
applying the above-mentioned procedure to the MCS algorithm in figure 1, we find that

activelocked = 4 S mode S 5
activepexy = mode =1V (2 <mode <4 Aprev# P)Vmode > 5
activeprey = 1 <mode <4

It shows that local variable locked, for example, will not be read and thus affect the system behaviors outside local
modes 4 and 5. The elimination of values of 1locked when it becomes inactive makes the state-space representation
more concise and compact.

6 Theoretical foundation of symmetry reduction

6.1 Basics

Symmetrically structured systems behave symmetrically. That is, if a transition can transform a state s into a state
s’ then symmetric counterparts of that transition will transform a symmetric counterpart of s into a symmetric
counterpart of s'.

Formally, a symmetry o in our context is a bijection (i.e. permutation) on the process identifiers o : [1, /\/l] [1 M].
For convenience, we may represent a bijection o as a sequence (iy,...,irp) such that {i1,...,im} = {1,..., M}
Such a bijection o defines a transformation @ on state v by

e for p = NULL, ov(p,x) =L;

ofora:EGdandpE[lM]E(P;): v(p, z);
e forz € GP and p € [, M], Gv(p,7) = ((z));
e for € L? and p € [1, M], 5v(o(p)

(o(p),) = v(p, x);
for x € L? and p € [1, M], ov(o(p),x) = o(v (x)).
(Assume o (NULL) = NULL, and o(L) =1). That is, values of local discrete variables of process p in state v become
values of local variables in o(p) in state gv, global pointers pointing to p in v will point to o(p) in Gv, and if p has
a local variable that points to p’ in v, the same variable in o(p) will point to o(p') in v. Global discrete variables,
NULLs and 1’s remain unchanged by &.
Since all processes run identical programs, the only way to break symmetry is to have process identifier constants
occur in the program. Other than this, programs are insensitive to arbitrary bijection in the following sense:

THEOREM 1 Let o be a bijection on the process identifiers such that o(p) = p for all process identifiers p that
occur explicitly in expressions of the program, Let a be an action that is enabled in process p and state v. Then « is
enabled in process o(p) and state o(v) as well, and it holds nezt_state(o(p),o(v),a) = Tnext_state(p, v, a). |

10

nexit nexit nexit nexit nexit nexit
p1 p2 p3 ——| p1 | <—| p2 | p3 |
} |] ‘—|] ‘—I

(a) (b) after perumtation

Figure 2: Anomaly of image false reachability

This result is an immediate consequence of the following lemma. Remember that we assume the operation mode
to be a local discrete process variable.

LEMMA 2 Let E be an expression of discrete type, F' an expression of pointer type, and B be a boolean predicate.
Let o be a bijection on the process identifiers such that o(p) = p for all process identifier constants that appear in
any of E, F, or B. Let v(p,E) (v(p,F), v(p,B)) be the value that E (F, B) evaluates to in v when local variables
take values from p. Then the following equations hold:

v(ip, E) = ov(o(p), E)
v(p,B) = ov(a(p),B)
o(wp,F)) = ov(o(p),F)

Proof : Omitted due to page-limit. |

From lemma 2, we can deduce

COROLLARY 3 If o is a bijection such that o(p) = p for all process identifiers that are explicitly mentioned in
the program, then a state V' is reachable from a state v if and only if v is reachable from Gv. |

The idea of symmetry reduction [15, 21, 7, 9, 14, 26, 18, 22] is to keep only one state if two states turn out to be
symmetric.
Let X be a group of bijections, i.e. a set of bijections closed under composition and inversion. Then the relation
=y on states, defined by v =5 ¢/, iff do0.0 € ¥ and gv = V' is an equivalence relation. A reduced transition system
with respect to ¥ would contain, consequently, one member of each equivalence class of states. With Cor. 3, this
reduced system covers all reachable states in the sense that every reachable state is equivalent to one that is part of
the reduced transition system.
Obviously, the larger ¥ is, the more states become equivalent, and the smaller the reduced transition system
becomes compared with the original one. On the other hand, we do not want to spend too much time for searching a
set ¥ that satisfies the requirements of Cor. 4. This space/time tradeoff can be solved in various ways. We propose
some solutions. However there are at least two challenges in designing an efficient and yet correct symmetry-reduction
procedure:
correctness: In defining the equivalence classes, we have to take reachability issues into consideration. For example,
we may have M = 3, such that the local pointers next of the processes initially form the following static
clockwise cycle in figure 2(a). If we choose to use the image cycle after bijection o = (132) as the representative,
then the representative state in the equivalence class will be the counter-clockwise cycle shown in figure 2(b).
But the problem is that the chosen counter-clockwise cycle image may never be reachable from the initial state
since the cycle is a static one. We call this problem the anomaly of image false reachability. Thus when the
goal state is specified as next[p;] = p2, the reachability analysis procedure equipped with such a problematic
symmetry-reduction may actually give a wrong answer to the query.

complexity: The pointers of processes can be used to construct various graph configurations. Symmetry-reduction,
in other words, is try to partition set of graphs into isomorphic classes. But graph isomorphism has not been
known to be a PTIME problem. Thus, to compute the unique representatives of different classes can be very
costly.

In the following subsections, we first discuss how to transposition (binary bijection) of process identifiers to
efficiently compute equivalent state images in a symmetric subclass; and then we discuss the complexity issues in the
general class.

11

6.2 Efficient symmetric image computation in symmetric class

For convenience, we use 0y, ,, to represent the transposition (binary bijection) which only switches the position of
p; and p;. The following corollary helps identify the “symmetry” in program, initial state predicate, and goal state
predicate.

COROLLARY 4 Assume a reduced transition system that contains one member per equivalence class of states
w.r.t. the group of bijections . If all 0 € ¥ satisfy

e o(p) = p on all process identifier p that are mentioned anywhere in the program, and

e if v is an initial state then so is o(v),
then the set of all states that are equivalent to states in the reduced transition system is exactly the set of reachable
states of the transition system. If ¥ satisfies additionally that for all o € ¥ and all states v, v satisfies the goal
condition iff v does, then the reduced set of states intersects with the goal condition if and only if the original
transition system does. |

That is, under these conditions we can replace the original transition system with the reduced one for solving a
safety analysis problem. Observe that the result of Lemma 2 holds not only for expressions occurring in the program,
but also for predicates used for initial and goal conditions (in these predicates, expression of the form z[p] replace
local variables but behave identically w.r.t. the calculations in the proof of Lemma 2). Therefore,

THEOREM 5 If ¥ is a set of bijections where all o € ¥ satisfy o(p) = p for all process identifiers that occur
anywhere in the program, in the initial condition, or in the goal condition, then ¥ meets all conditions required in

Cor. 4. |

In particular, this set is closed under composition and inversion. Moreover, such a group ¥ has a well-structured
generating set—the set of all transpositions o,,,,; where p; # p;, neither p; nor p; are among the ”forbidden” process
identifiers, 0y, (pi) = Pj, Tp:p; (Pj) = pi, and op,p, (Px) = pi. for all other pr. This means that every member of this
Y can be represented as a sequence of exchanging two process identifiers. Using this fact, a state can be stepwise
transformed by applying transpositions until some kind of ”lexicographically” smallest state is achieved. Since this
process resembles usual sorting procedures, it yields a unique, smallest member of the equivalence class of the original
state in polynomial time. Thus, this procedure can be used to efficiently solve the problem of how to construct the
reduced transition system.

The just-mentioned method for detecting symmetry can be efficiently performed by examining the syntax of the
program, initial state predicate, and goal state predicate. There is a way to find a larger ¥ also having transpositions
Op;p; @S generating set, but covering cases where p;, pj, or both do appear in the formula. We can construct, for
some process p; and another process p;j, a BDD of the initial condition two times—where the second BDD has the
variables corresponding to process p; change places with the variables corresponding to p;. We can use the uniqueness
of optimal BDD to check whether this exchange of roles between p; and p; leads to the same initial condition, leads
to the same initial condition. If this is the case then o,,,. leaves the initial condition invariant.

6.3 Symmetry detection with asymmetric systems or asymmetric predicates

As argued in figure 2, there may be initial predicates that are invariant w.r.t. to some symmetries, but not with
respect to any transposition o;;. Such (possibly not all) symmetries of this kind can be found using the concept
of graph automorphisms. The idea is to consider the syntax tree of the formula representing the initial predicate.
If we can permute subformulas of commutative and associate operators (A, V), or terms of symmetric expressions
(=, #) such that the permuted formula looks identical to the original formula with the exception that some of the
process identifiers have been permuted, then the corresponding bijection will be a symmetry leaving the initial
condition invariant (since such bijection does not change the value of the formula, the value for an original state and
a permuted state will be the same. Formally, graph automorphisms are defined on labeled graphs. A labeled graph
[V,E,L] consists of a set V' of vertices, a set E C V x V of edges, and a labeling function L : VU E — D that assigns
an element of some domain D to each vertice and each edge. A graph automorphism is a bijection ¢ on V' such
that for all vy,v, € V, L(v1) = L(o(v1)), [v1,v2] € E iff [o(v1),0(v2)] € E, and L([v1,v2]) = L([o(v1), 0(v2)]), i.e.,
o preserves the labeling and the edge relation on [V, E]. In a graph constructed out of a formula, we would chose
D=NUGPUG'ULPUL*U{V,~,=,#,<,>,<,> NULL} and construct a graph as follows:

12

o o
pl p2 p3 p4 pS

Figure 3: Labeled graph constructed for the formula z[1] =3V z[3] =5V z[5] =1V (z[2] #2Vy < 7) and M =5

e include, for each p € [1, M], a vertice p labeled empty;
e For ¢ = ¢1 V 2 V... ¢d,, construct graphs for the ¢;, and add a vertice labeled with V and edges labeled with

NULL pointing to the roots of the constructed subtrees; the new node becomes the root;

e for ¢ = =1, construct a tree graph ¢; and add a vertice labeled with — and an edge labeled with NULL to the
root, of the subtree; the new node becomes the root;

e for ¢ =T =Ty, (or ¢ =Ty # Tv), construct graphs for T} and T», and include a new root node labeled with
= (or #, resp.), and edges labeled NULL to the roots of the two subtrees;

o for o =T < T, (or ¢ =Ty < /geq/ > T»), construct graphs for T and T, and include a new root node

labeled with < (or <, >, >, resp.), an edge labeled < to the root of T}, and an edge labeled > to the root of

T>— the different labeling of the two edges assures that left and right subexpression of asymmetric operations

are not exchanged;

for an expression T' = NULL, insert a new root vertice labeled NULL;

for an expression T' = ¢ (¢ € cal N, build a new root vertice labeled c¢;

for an expression T' = y (for global variable y € G? UG?), add a new root vertice labeled y;

for an expression T = z[p] (for a local variable * € L? U L? and a process identifier p), add a new root node

labeled z and an edge labeled NULL to the unique vertice labeled p;

Notice that the process identifiers are nodes, not labels of nodes. Thus, we may permute them.

Figure 3 depicts a labeled graph of a formula.

It is immediately clear that a graph automorphism replaces a formula’s syntax tree into an identical tree, with
just the process identifier vertices permuted. Since a graph automorphism respects the edge relation, permuting
inner nodes of the graph corresponds to changing the order of subformulas of symmetric operations. Therefore, for
a projection of a graph automorphism to the process identifier vertices, we obtain a symmetry that leaves the initial
(or goal) predicate invariant.

Graph automorphism groups can have exponential size (in the size of the graph), but there is always a generating

set of at most W elements. For the computation of the generating set, no polynomial time algorithm is known.
In fact, the problem is closely related to the graph isomorphism problem which is widely believed to be a possible
candidate for a problem that lies properly between the complexity classes P and N P — complete. However, existing
tools computing graph automorphisms (for instance, [17, 20]) show that a computation is possible in reasonable time
for fairly large graphs (thousands of nodes) with practical background.

Since a set of symmetries arising from graph automorphism does not necessarily contain transpositions, we need
other ways to find out whether states in the transition system are equivalent. This problem has been studied in [19]
in the context of Petri nets; the results of that paper are without major efforts applicable to the situation of pointer

13

structures.

Beyond the graph automorphism solution, there may be still more symmetries taking semantic equivalences of
syntactically asymmetric formulas into consideration. We are not going into details in this respect.

So far, the second of the proposed solutions using BDD equivalence has been implemented and is used for the
experimental results. The algorithmically much more involved graph automorphism solution could be implemented if
further studies suggest that a further condensation of the state space is worth the computational complex calculations
of the automorphism approach.

7 Implementation and experiments

We implemented our techniques in a symbolic verification tool called red (Region-Encoding Diagram) [22, 23] which
is available for free at

http://www.iis.sinica.edu.tw/ farn/red/

red supports verification of timed automata [1] with a new BDD-like data structure [2]. The reduction by inactive
variable elimination is automatic.

7.1 IbSINC reduction: Incomplete but Sound Isomorphism of Network Configu-
raitons

Remember that we represent the process identifiers as integers 1 to M. We shall define a total-ordering among
processes in a state. If in a state v, process i precedes process j in the total-ordering, we then write v =i < j. It is our
goal that for each symmetry-equivalence class of states, we shall only keep the state v in whichv 1 <2 < ... < M.
We shall define condition reverse(i,j), 1 <i < j < M, such that for all state-predicates 1, n Areverse(i, j) is true
if for all state v in the space reprsented by n, v £ i < j, which implies processes 7, j should be permuted according
to our heuristics. Then given a symbolic state-space representation 7, the following procedure reorders the process
identifiers to cut down the number of equivalent state subspaces.

reduce_symmetry(n) {
Sequentially for 7 :=1 to M — 1, do
Sequentially for j :=i+1 to M,
let n := (n — reverse(i, j)) V permute(n A reverse(i, j),i,5);
return 7;

}

Here permute(n, i, j) is obtained from 7 by

e switching the values of z[i] and z[j] for every local variable z; and

e changes the value 7 to j, or vice versa, of all pointer variables.
permute(n, i, j) is actually a binary transposition on process ¢ and j.

In the following, we implement our transposition heuristics in constructing the predicate of reverse(i,j). In
practice, it will be translated into BDD-like data structures for symbolic manipulations in calculating the fixpoint.
Suppose the global pointers are ordered as g1, g, - .-, g|ge| While the local pointers are ordered as l1,l2,...,l1»| in
the declaration. reverse(i, j), with ¢ < j, reasons as follows.
reverse(s, j) {

if /* global pointers point to j before pointing to ¢ in syntax order */

31 <a <|GP|(go = jAVY1 < h <al(gn #1)), return true;
else if g, < i in the state for all 1 < a < |GP|, then {
if /* local pointers of earlier processes point to j
* before pointing to ¢ in syntax order. */
thereisa 1 < h <iand al <b<|LP| such that in the state,
o forall 1 <h' < hand for all 1 < < |LP|, ly[h'] # i; and

14

before permutation L

/ prev “a
1 2 3 4

next

after permutation
prev

1 2 3 4

next

L—a

Figure 4: Transposition of process identifiers

o for all 1 <V < b, ly[h] #1;
b lb[h] =17,
then return true;
else if /* process j’s local pointers pointing to earlier processes before i’s
* local pointers do so in syntax order. */
there is a 1 < b < |LP| such that
e forall 1 <V <b,lyli] =ly[j]V (y[i] >iAly[j] > 1), and
o ly[j] <iAly[j] <lyli,
then return true;

}

return false;

}

In figure 4, we have drawn the four process network constructed by the MCS algorithm respectively before and after
our transposition in figure 1. After the transposition, the network nodes are reordered in a linear sequence according
to the queue formation.

7.2 Experiments

The IbSINC reduction in tool red is invoked by option “Sp.” We compared the performance of red, both with and
without the IbSINC reduction technique, with that of SMC[10]. SMC was developed with the theoretical framework
in [9]. Seven different options of symmetry reduction with various precisions are supported in SMC.

We have tested our implementation with three benchmarks. The first is the MCS locking algorithm whose
implementation of two processes is in appendix A. The safety condition to check is that no two processes are in the
critical section at the same time, that is

“Vicicjcm (6 <modeli] <9A6 <mode[j] <9)

The second benchmark is a dynamic double-link cycle insertion and deletion algorithm. We have a set of symmetric
processes which insert itself in and delete itself from the cycle maintained by two local pointers: next and prev. We
also have a global pointer L pointing to the tail of the cycle. If there is no process in the cycle, then L = NULL. The
safety condition to check is that when a process thinks it itself is in the cycle, global pointer L # NULL, i.e. there is
no cycle at all. Formally, the safety condition is

(3i,next[i] # NULL) = L # NULL
The third benchmark is a leader-election alogorithm. Each process has a local pointer parent. A set of symmetric

processes randomly request to be a child of another process, who is not yet somebody’s child. The process responds

15

[benchmarks | Tools | Options ? | 3] 4] 5] 6] 7] 8] 9]

MCS red -fSp 0.98s 5.258 27.09s 141.56s | 928.26s | 8584.44s [115072.26s
48k 131k 397k 1064k 3299k | 22824k | 197599k
-f 2.33s 23.13s 291.21s 5442.33s Not available
139k 1125k 12776k 234497k
SMC -s1 145.0 s Not available
core dumped
-82 596.4s >17 hours Not available
13472k not finished
-s3 600.3s >17 hours Not available
13477k not finished
-s4 1601.8s 20252.6s Not available
13460k core dumped
-85 1624.0s >17 hours Not available
13457k not finished
-s6 1600.3s >17 hours Not available
13459k not finished
-s7 1620.8s >17 hours Not available
13457k not finished
leader red -fSp 0.02s 0.08s 0.23s 0.59s 1.55s 4.43s 15.12s
election 17k 38k 69k 113k 171k 387k 1012k
-f 0.02s 0.05s 0.10s 0.16s 0.25s 0.35s 0.54s
17k 38k 69k 113k 171k 246k 337k
SMC -s1 0.3s 0.5s 0.3s 0.7s 4.8s 62.7s 2096.4s
1k 7k 34k 193k 1224k 8444k 68240k
-82 0.2s 0.2s 0.4s 2.4s 42.7s 1097.2s 34511.2s
1k 7k 29k 135k 681 3707k 21799k
-s3 0.2s 0.2s 0.4s 2.3s 29.5s 944.1s 16335.1s
1k Tk 28k 134k 567 3451k 14964k
-s4 0.2s 0.4s 0.4s 1.4s 9.2s 73.7s 619.0s
1k 6k 19k 62k 196 604k 1857
-s5 0.3s 0.3s 0.4s 1.3s 8.9s 70.4s 591.0s
1k 6k 19k 62k 195 602k 1851
-s6 0.3s 0.3s 0.5s 1.4s 9.1s 73.3s 621.0s
1k 6k 19k 62k 196 604k 1857
-s7 0.2s 0.3s 0.4s 1.3s 8.8s 70.7s 592.6s
1k 6k 19k 62k 195 602k 1851
double cycle | red -fSp 0.06s 0.26s 0.95s 3.59s 14.86s 59.65s 228.72s
insertion 16k 38k 98k 254k 618k 1462k 3418k
-f 0.93s 67.89s >15 mins Not available
165k 10073k | not finished
SMC No termination in 1 hour

s: CPU time in seconds; k: Memory in kilobytes;

Table 1: Performance data table of three benchmarks

to a request will write its identifier to a global pointer respond_id. Then the requesting process will write the content
of respond_id to its local variable parent. The processes use their variables parent to construct a dynamic forest
structure. We want to make sure that at any time, at least some process is not somebody’s child. Formally speaking,
that is

3i, parent[i] = NULL

The performance data table is in table 1. The first row of columns 3 to 11 are for the numbers of processes in the
implementation. All the data is collected on a Sun Sparc station with dual 450MHz processors and 4 GB memory
running Solaris. All data of red are collected with forward analysis (option -f). In each entry of the rows, the CPU
times (in seconds) and memory consumptions (in kilobytes) are shown. The memory complexity for red is collected
only for data structures, which includes the red nodes and the 2-3trees used to manage the red nodes.

The three benchmarks represent three different types of dynamic data-structures: doubly-linked queues, doubly-
linked cycles, and forests with arbitrary number of children of each internal nodes. According to the performance
table, we found that our techniques indeed greatly reduced time and memory complexity and had shown promise to
perform well with data-structure diversity.

8 Conclusion
Data structures with pointers are important abstract devices in software engineering to construct complex and

dynamic networks. In this work, we have proposed a formal framework for investigating the issues in model-checking
such systems. We have developed symbolic manipulation routine for BDD-like data-structures to calculate the

16

pointer-references in a state-space. Two reduction techniques are then adapted to such systems. And our experiments
have also shown that network configuration permutation is an indispensible technique in controlling the complexity
of such software systems.

References

[1] R. Alur, C. Courcoubetis, D.L. Dill. Model Checking in Dense Real-Time, Information and Computation 104,
pp-2-34 (1993).

[2] J.R. Burch, E.M. Clarke, K.L. McMillan, D.L.Dill, L.J. Hwang. Symbolic Model Checking: 10%° States and
Beyond, IEEE LICS, 1990.

[3] M. Bozga, C. Daws. O. Maler. Kronos: A model-checking tool for real-time systems. 10th CAV, June/July 1998,
LNCS 1427, Springer-Verlag.

[4] J. Bengtsson, K. Larsen, F. Larsson, P. Pettersson, Wang Yi. UPPAAL - a Tool Suite for Automatic Verification
of Real-Time Systems. Hybrid Control System Symposium, 1996, LNCS, Springer-Verlag.

[5] R.E. Bryant. Graph-based Algorithms for Boolean Function Manipulation, IEEE Trans. Comput., C-35(8), 1986.

[6] E. Clarke and E.A. Emerson. Design and Synthesis of Synchronization Skeletons using Branching-Time Temporal
Logic, Proceedings of Workshop on Logic of Programs, Lecture Notes in Computer Science 131, Springer-Verlag,
1981.

[7] E. Clarke, R. Enders, T. Filkorn, S. Jha. Exploiting symmetry in temporal logic model checking. Formal Methods
in System Design 9, 77-104, 1996.

[8] D.L. Dill. Timing Assumptions and Verification of Finite-state Concurrent Systems. CAV’89, LNCS 407,
Springer-Verlag.

[9] E.A. Emerson, A.P. Sistla. Utilizing Symmetry when Model-Checking under Fairness Assumptions: An
Automata-Theoretic Approach. ACM TOPLAS, Vol. 19, Nr. 4, July 1997, pp. 617-638.

[10] A.P. Sistla, V. Gyuris, E.A. Emerson. SMC: A Symmetry-based Model Checker for Verification of Safety and
Liveness Properties. TOSEM 9(2): Pages 133-166

[11] G.J. Holzmann. Design and Validation of Computer Protocols, Prentice Hall, New Jersey, 1991, ISBN 0-13-
539925-4.

[12] G.J. Holzmann. The Spin Model Checker, IEEE Trans. on Software Engineering, Vol. 23, No. 5, May 1997, pp.
279-295.

[13] G.J. Holzmann. An analysis of bitstate hashing, Workshop on Formal Methods in Systems Design, Nov. 1998.

[14] P.-A. Hsiung, F. Wang. User-Friendly Verification. Proceedings of 1999 FORTE/PSTV, October, 1999, Beijing.
Formal Methods for Protocol Engineering and Distributed Systems, editors: J. Wu, S.T. Chanson, Q. Gao;
Kluwer Academic Publishers.

[15] K. Jensen. Condensed state spaces for symmetrical coloured Petri nets. Formal Methods in System Design 9,
7-40, 1996.

[16] J.M. Mellor-Crummey, M.L. Scott. “Algorithms for Scalable Synchronization on Shared-Memory Multiproces-
sors.” ACM Transactions on Computer Systems, Vol. 9, No.1, Feb. 1991, pp.21-65.

[17] B. McKay. The nauty home page. http://cs.anu.edu.au/ bdm/nauty/.
[18] K. Schmidt. How to claculate symmetries of Petri nets. Acta Informatica 36, 545-590, 2000.

[19] K. Schmidt. Integrating low level symmetries into reachability analysis. Proc. TACAS 2000, LNCS 1785, 315-331,
2000.

17

[20] K. Schmidt. LoLA - a low level analyser. Proc. Int. Conf. Application and Theory of Petri nets 2000, LNCS
1825, 465-474, 2000.

[21] P. Starke. Reachability analysis of Petri nets using symmetries. J. Syst. Anal. Model. Simul. 8: 294-303, 1991.

[22] F. Wang. Efficient Data-Structure for Fully Symbolic Verification of Real-Time Software Systems. TACAS’2000,
March, Berlin, Germany. in LNCS 1785, Springer-Verlag.

[23] F. Wang. Region Encoding Diagram for Fully Symbolic Verification of Real-Time Systems, in proceedings of
COMPSAC’2000, Oct, Taipei, ROC.

[24] F. Wang. RED: Model-checker for Timed Automata with Clock-Restriction Diagram. Workshop on Real-Time
Tools, Aug. 2001, Technical Report 2001-014, ISSN 1404-3203, Dept. of Information Technology, Uppsala Uni-
versity.

[25] F. Wang. Symbolic Verification of Complex Real-Time Systems with Clock-Restriction Diagram, to appear in
Proceedings of FORTE, August 2001, Cheju Island, Korea.

[26] F. Wang, P.-A. Hsiung. Automatic Verification on the Large. Proceedings of the 3rd IEEE HASE, November
1998.

18

A MCS locking algorithm in RED for 2 processes

process count = 2;

global pointer L;

local pointer next, prev;
local discrete locked;

mode zero true { when true may next= NULL; goto one; }
mode one true { when true may prev= L; L= P; goto two; }
mode two true {

when prev != NULL may goto three;

when prev == NULL may goto six;
}
mode three true { when true may locked= 1; goto four; }
mode four true { when true may prev->next = P; goto five; }
mode five true {

when locked == 1 may ;

when locked == 0 may goto six;
X
mode six true {
when next == NULL may goto seven;
when next != NULL may goto nine;
X

mode seven true {
when L == P may L= NULL; goto zero;
when L != P may goto eight;
}
mode eight true {
when next == NULL may ;
when next '= NULL may goto nine;
}

mode nine true { when true may next->locked = 0; goto zero; }

initially zero[1] and zero[2] and L == NULL;
risk

(six[1] or seven[1l] or eight[1] or nine[1])
and (six[2] or seven[2] or eight[2] or nine[2]);

