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Abstract

We examine the causes of inefficiencies of previous BDD-like data-structures for timed automata state-space
representation and manipulation. We identify four issues, which can cause the inefficiencies: variable designs,
normal form definitions, zone-containment relation, and normal form computation. We explore the four issues
in details and propose to use CRD (Clock-Restriction Diagram) for timed automata state-space representation.
Then instead of using the traditional approach of computing canonical form (i.e., unique normal form) for zones
representing the same state-space, we propose the new technique of magnitude derivation and downward redun-
dancy elimination to convert zones into a small range of “normalized” zones. To better understand the complexity
of BDD-like data-structures with various techniques, we have carried out extensive experiments and report the
performance of BDD-like data-structures w.r.t. various techniques, benchmarks, and other tools.
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1 Introduction

Data-structure is the groundwork for efficient algorithms, especially for high-complexity tasks like real-time sys-
tem model-checking. Most modern model-checkers for real-time systems are built around symbolic manipulation
procedures[13] of zones, which means a behaviorally equivalent convex state space of a timed automaton and is sym-
bolically represented by a set of difference constraints between clock pairs. DBM (difference-bounded matrix)[10] is
generally considered the most efficient data-structure in representing sets of zones. But a DBM can only represent
a convex state-space and DBM-technology can incur inefficiency in representing concave state-spaces.

In the last several years, people have been trying to duplicate the success of BDD techniques in hardware ver-
ification for the verification of timed automata [1, 7, 16, 17, 18, 19, 23]. Fully symbolic verification technologies
using BDD-like structures[4, 8] can be efficient in both space and time complexities with intensive data-sharing in
the manipulation of state space representations. But so far, all BDD-like structures[1, 7, 16, 17, 18, 19, 23] have not
performed as well as the popular DBM [10], which is a 2-dimensional matrix and nothing BDD-like.

After examining the previous BDD-like data-structures, we feel that the efficiencies for the representation and
manipulation of state-spaces with BDD-like data-structures are very sensitive to the following four issues.

o The design of the evaluation variables that is, the domains and the semantics of the variables. Especially,
we have identified the representation fragmentation phenomenon of CDD[7], which is caused by the seman-
tics of CDD’s variables, in subsection 5.1 and shown that the phenomenon can indeed affect the verification
performance against several independently developed benchmarks.

e The definition of normal forms. A zone can be represented by more than one sets of constraints. To avoid
the space-explosion caused by recording many zones representing the same state-space, traditionally people
use the canonical-form approach, which records only a chosen canonical form (a unique normal form) zone to
represent all zones representing a given convex state-space. We found out that the more constraints are used
in representing a chosen zone, the more space-complexity are incurred and the less data-sharing is possible.

*The work is partially supported by NSC, Taiwan, ROC under grants NSC 90-2213-E-001-006, NSC 90-2213-E-001-035, and the by
the Broadband network protocol verification project of Institute of Applied Science & Engineering Research, Academia Sinica, 2001.
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Figure 1: Differences between CRD and CDD

e Zone-containment relation. Zones may contain one another. If we use too small a constraint set to represent a
zone, then we may not be able to efficiently decide the containment relations between distinct zones represented
by different paths in a CRD. Unfortunately, this requirement for efficiency contradicts that for the last issue.
Thus a proper balance needs to be found between representation efficiency and zone-containment-detecion
efficiency. We believe this issue will also affect the performance of many BDD-like data-structures for dense-
time state-space. For example, in CDD, it may also happen that some paths represent zones contained by
others. But the effect on performance by eliminating contained zones was not discussed in [7].

e Efficient calculation of normal forms. In general it requires great time and space-complexities, with BDD-
like data-structures, to compute the various canonical forms defined with tight bounds of clock differences.
Moreover, the canonical-form approach does not support efficient implementation of specific functionalities,
like elimination of empty zones.

Without a proper treatment of these four issues, we believe it is not possible to fully take advantage of the data-
sharing capability of BDD-like data-structures. Straightforward adaptation from solutions for DBM, e.g. all-pair
shortest-path canonical form, may result in low efficiency.

We have carried out numerous experiments with other tools (e.g. UPPAAL and Kronos) and various canonical
forms with some possible normal-form computation algorithms in order to gain better understanding of the issues. We
believe the observation we have made in the experiments will be very useful for the integration of current technologies
toward the construction of an efficient and practical model-checkers for timed automata.

With a better understanding of the issues, we show how to use our new data-structure: CRD (Clock-Restriction
Diagram)[20, 21] for better efficiency. CRD shares the same shape as CDD[7] with the major difference that variable
values in CDD are disjoint intervals while variable values in CRD are upperbounds, which are structurally overlapping.
For example, the CRD for the union of two zones: {0—z; < —3,21—23 < —4,25—11 < 6} and {0—z3 < —1,20—2x1 <
6}} (constraints of the form z — 2’ < oo are omitted) is in figure 1(a). If we change the upperbounds to interval
reprsentations, we get the structure in figure 1(b), which is very like CDD but still different in that the interval labels
from the root are not disjoint. The equivalent CDD for the same state-space, in figure 1(c), has both greater depth
and greater width than figures 1(a) and (b). In section 5, we shall illustrate with examples to show why this subtle
differences may incur significant performance differences in the manipulation and representation of state-spaces. Note
the CDD in figure 1(c) adheres to the CDD restriction that only variables x; — z; with i < j are used.

In view of the vast time and space-complexities needed to compute various canonical forms with BDD-like data-
structures, we switch to a drastic approach with two new techniques (Magnitude Derivation & Downward Redundancy
Elimination, MD&DRE), which together only try to “normalize” zone representations by converting zones into a
small range of normal-form zones representing the same state-space. In average, the two techniques work well
with CRD and seem a good trade-off between data-structure conciseness and representation-manipulation efficiency.
Another advantage of the MD&DRE techniques is that, in average, they support efficient elimination of inconsistent
zones without having to go through the tight-bound derivations with all-pair shortest-path computation.

Finally, for BDD-like data-structures, evaluation ordering of variables are never too crucial to emphasize for
efficiency. In this work, we also compare three evaluation ordering schemes and report their performances.

Compared with my previous work[20, 21], this manuscript reports the following new contributions. In [20, 21],
CRD was defined and the effect of normal forms on CRD depths and data-sharing was preliminarily reported. Also



a new normal form called Cascade form for better detection of zone-containment relationship was proposed with
construction algorithms. In this work, we look into the various issues in more detail and carry out experiments
to justify our arguments. For example, we identify the representation fragmentation phenomenon of CDD[7] in
subsection 5.1 and showed that it indeed blowed up the memory consumption in many benchmarks. Then we also
developed new techniques (MD&DRE) to further improve the performance of our tool. In the end, we argue that
BDD-like data-structures can be at least as competitive as DBM in the verification of dense-time systems.

In sections 2 and 3, we shall first define the basic concepts of timed automata verification and zones. In section 4,
we present our CRD[20, 21] and its basic manipulations. Specifically, subsections 4.2 and 4.4 direct to symbolic
algorithms in the appendices for basic functions like intersection and weakest precondtion calculation. In section 5,
we shall examine the four causes for inefficiency of previous data-structures. Especially subsection 5.2 also serves as
a short survey to compare with previous data-structures. In section 6, we introduce the techniques of MD&DRE.
In section 7, we discuss some possibilities in evaluation orderings. In section 8, we report our implementations. In
section 9, we report our experiments to compare

e techniques MD&DRE with various normal-form approaches and also with other tools;
e the performance difference with and without contained zone elimination;

e CRD’s performance w.r.t. input timing constant magnitudes; and

e CDD and CRD’s representation complexity in several benchmarks.

2 Timed automata verification

We use the widely accepted model of timed automata[2]. We assume familiarity with this model and will not go into
much detail due to the page-limit. A timed automaton is a finite-state automaton equipped with a finite set of clocks
which can hold nonnegative real-values. At any moment, the timed automaton can stay in only one mode (or control
location). In its operation, one of the transitions can be triggered when the corresponding triggering condition is
satisfied. Upon being triggered, the automaton instantaneously transits from one mode to another and resets some
clocks to zero. In between transitions, all clocks increase their readings at a uniform rate.

For convenience, given a set () of modes and a set X of clocks, we use B(Q, X) as the set of all Boolean combinations
of inequalities of the forms mode = ¢ and z — 2’ ~ ¢, where mode is a special auxiliary variable, ¢ € @, z, 2’ € X U{0},
“~” is one of <, <,=,>,>, and ¢ is an integer constant.

Definition 1 timed automata A timed automaton A is given as a tuple (X, Q,I,u,T,7,7) with the following
restrictions. X is the set of clocks. @ is the set of modes. I € B(Q, X) is the initial condition on clocks. p: Q
B(0, X) defines the invariance condition of each mode. T C @ x @ is the set of transitions. 7 : T +— B((), X) and
7 : T 2% respectively defines the triggering condition and the clock set to reset of each transition. |

A wvaluation of a set is a mapping from the set to another set. Given an n € B(Q, X) and a valuation v of X, we
say v satisfies n, in symbols v = 7, iff it is the case that when the variables in 7 are interpreted according to v, n
will be evaluated true.

Definition 2 states A state v of A = (X,Q, I, u, T, 7,7) is a valuation of X U {mode} such that
e v(mode) € @ is the mode of A in v; and
e for each z € X, v(x) € RT such that R™ is the set of nonnegative real numbers and v |= u(v(mode)). I

For any t € R, v+t is a state identical to v except that for every clock z € X, v(z)+t = (v+t)(z). Given X C X,
vX is a new state identical to v except that for every z € X, vX(z) = 0.

Definition 3 runs Given a timed automaton A = (X,Q, I, u,T,7,7), a run is an infinite sequence of state-time
pair (vo,to)(v1,t1) - (Vg tg) oo .- such that vy = I and toty ...t ... ... is a monotonically increasing real-number
(time) divergent sequence, and for all k£ > 0,

e for all ¢t € [0,tr41 — tx], vk +t E p(vi(mode)); and

e cither vi(mode) = vi11(mode) and vy + (41 — tg) = Vgy1; OF

— (vg(mode), Vg4 (mode)) € T and
— v + (tg+1 — tr) | 7(vi (mode), V41 (mode)) and
— (Vg + (tg41 — tr))7(vi (mode), Vi41 (mode)) = vpyg.

We can define the TCTL model-checking problem of timed automata as our verification framework. Due to
page-limit, we here adopt the safety-analysis problem as our verification framework for simplicity. A safety analysis
problem instance, SA(A,n) in notations, consists of a timed automata A and a safety state-predicate € B(Q, X).
A is safe w.r.t. to n, in symbols A |= n, iff for all runs (vo,to)(v1,t1) ... (W, tk) ... , for all £ > 0, and for all
t €[0,tg41 — tr], vk +t =, i.e., the safety requirement is guaranteed.



3 Zones, closure form, and reduced form

A zone is symbolically represented by a set of difference constraints between clock pairs and means a behaviorally
equivalent state subspace of a timed automaton. For convenience, let Z be the set of integers. Given ¢ > 0 and
ce Z,let I, be {oo}U{d|d € Z;—c < d <c}. Alsoforany d € Z,d+ 0o = 00 + d = 0.

Given an SA(A,n) with biggest timing constant C'4 used in A and 7, a zone is a set of constraints like x — 2’ ~ d,
with z,2" € X U {0}, ~€ {“<”,“<”}, and d € Z¢,, such that when d = 0o, ~ must be “<”. For convenience, let
Be = {(~,d) |~€ {“<",“<"};d € Tp;d = 00 =~= “<”}. With respect to given X and Cjy, the set of all zones is
finite. Formally, a zone ( can be defined as a mapping (X U {0})? = Bc,. Alternatively, we may also represent a
zone ( as the set {x — 2’ ~ d | {(x,2") = (~,d)}. We shall use the two equivalent notations flexibly as we see fit.

There can be many zones representing the same convex subspace. A straightforward canonical representation of a
zone-characterizable convex subspace is its zone in closure form (called shortest-path closure in [15]). A zone ( is in
closure form if and only if all its constraint bounds are tight, i.e., for any sequence of elements 1, ...,z € X U{0},
with 21 — 2 ~ d € (and V1 < i < k(2 — @i ~i di € (), either d < Y7, pdior (d =) i pdi A(~=
“<7 = Ajcier ~i= “<7)). We can artificially designate the closure form of each zone as our canonical form of the

corresponding state subspace characterized by the zone. For convenience, given a zone ¢, we let (¢ be the notation
for its closure form.

Another candidate for the canonical representation of zones is the reduced form (called shortest-path reduction in
[15]) which records only minimum number of constraints for each zone according to some policy. We refer interested
readers to [15, 20] for explanation how to convert a given zone  to its zone in reduced form, in symbols (¥, according
to certain policy. It is shown in [15] that (¢ = (¢#)¢; and DBM with zones in reduced form can be used as a canonical
representation of timed automaton convex states-spaces and can significantly save space in verification.

4 Clock Restriction Diagram

4.1 Definitions

CRDJ[20, 21] is not a decision diagram for state space membership. Instead it is like a decision diagram for zone set
membership. Each evaluation variable in a CRD is of the form z — ', where z, ' are zeros or clocks, and the values
of such variables range over B¢, , where C'4 is the bound used in DBM for a given safety-analysis problem instance.
Thus a value, say (<, 5), of evaluation variable z — ' describes the constraint of half-space z — 2’ < 5. A path from
root to the only leaf node true in CRD represents a zone.

By fixing an evaluation ordering, we can construct a CRD just as BDD, CDD, or RED. In CRD, a missing
constraint on the difference of a clock pair, say z,z’, is interpreted as x — ' < oo. Thus in the root node in
figure 1(a), even no constraint is on 0 — z in zone of the right path, we still construct an arc with 0 — 21 < oo from
the root node.

Given a set V of evaluation variables with true € V', an evaluation index ) over V is a 1-to-1 onto mapping from
V to {0,1,...,|V]| — 1} such that Q(¢rue) = |V| — 1. For convenience, for all v,v’ € V, we shall write v <q v’ iff
Q) < Q).

Definition 4 Clock Restriction Diagram (CRD) Given a set of variables V = {z —2' | z,2' € X U{0}} U {¢rue}, an
evaluation index Q over V', and a timing constant C'4, a CRD over V', Q, and C4 is a tuple D = (v, (81, D1), ..., (Bn, Dy))
with n > 0. In symbols, we write var(D) = v. The restrictions are that v € V such that

o v = trueiff n = 0;

e if v # true, then for all 1 <7 < n, §; € Bc, and D; is a CRD over V, Q, and C4 with v <q var(D;);

o if v # true, then for all 1 <14 < j <n, B; # B;; and

e if v # true and n = 1, then 31 # (<, 00). [

4.2 Basic set-oriented manipulations on CRD

For convenience of discussion, given a CRD, we may just represent it as the set of zones recorded in it. Definitions
of set-union (U), set-intersection (N), and set-exclusion (—) of two zone sets respectively represented by two CRDs
are straightforward. For example, given CRDs D : {(1,(2} and Ds : {(2,(3}, D1 N D4 is the CRD for {(2}; D1 U D>
is for {¢1,¢2,C3}; and Dy — D5 is for {¢1}. The complexities of the three manipulations are all O(|D1| - |D3]).

We need the following notation to conveniently define CRD manipulations which compare the strictness of elements
in Be,. Given (~1,d;),(~2,d2) € Be,, we say (~1,d;) is stricter than (~2,ds), in symbols (~1,d;) C (~2,ds), iff
di < dyV (di = da A (~e= “<” =~1= “<”)). The following convenient notations are also adopted: (~1,d1) C (~2



WeakestPrecondition(D, g, ") {
D := VariableEliminate(D M (mode = ¢') N[ l e (4,47 = 0,mode);
for x € w(q,q'), D := ClockEliminate(Bypass(D, x), z);
D := Bypass(D M (mode = q) M 7(q,¢') M p(q),0);
return D;

}

Table 1: calculation of timed weakest precondtion

,d2) = (~1,d1) T (~2,d2) A(~2,do) Z (~1,dy), (~1,d1) 3 (~2,d) = (~2,d2) E (v, dh), and (~1,dy) D (v, do) =
(~2,d2) E (~1,dy).

Given two zones (; and (3, (1 M(s is a new zone representing the space-intersection of ¢; and (;. Formally speaking,
for every x, ', ¢t M G(x,z') = G (z,2") if (1(x,2") E G(x,2'); or (o(x,x") otherwise. Space-intersection (1) of two
CRDs D; and Da, in symbols Dy M Dy, is a new CRD for {(; M (s | {1 € D1;( € Dy}. Our current algorithm of the
manipulation has complexity O(|D1] - |D2|) and can be found in appendix A.

4.3 CRD+BDD

It is possible to combine CRD and BDD into one data-structure for fully symbolic manipulation. Since CRD only has
one sink node: true, it is more compatible with BDD without FALSE terminal node which is more space-efficient than
ordinary BDD. There are two things we need to take care of in this combination. The first is about the interpretation
of default values of variables. In BDD, when we find a variable is missing during valuating variables along a path, the
variable’s value can be interpreted as either TRUE or FALSE. But in CRD, when we find a variable for constraint
z — ' is missing along a path, then the constraint is interpreted as z — 2’ < co.

The second is about the interpretation of CRD manipulations to BDD variables. Straightforwardly, “U” and “N”
on Boolean variables are respectively interpreted as “V” and “A” on Boolean variables. D; — D» on Boolean variables
is interpreted as D; A Dy when the root variable of either Dy or D, is Boolean. For Dy M D5, the manipulation acts
as “A” when either of the root variables are Boolean. Due to page-limit, we shall omit the proof for the soundness
of such interpretation.

From now on, we shall call it CRD+BDD a combination structure of CRD and BDD. As will be seen in section 7
and in our experiments, the evaluation ordering among variables in CRD+BDD may greatly affect the efficiency.

4.4 Weakest precondition computation of CRD

Our model-checking algorithm computes the reachable state-space fixpoint with iterative backward weakest precon-
dition calculation. High-level description of the algorithm is very much like the one presented in [22] and will not be
described in this manuscript. But we shall present a symbolic CRD manipulation algorithm for the computation of
weakest precondition since, to our knowledge, in the literature no such algorithms for timed automata state-space
representation in BDD-like data-structure has been presented.

To compute the weakest precondition before a transition rule (¢q,q') € T, we use the procedure in table 1.
Procedure VariableEliminate(D, w) returns a CRD identical to D except that variable w is removed. Procedure
ClockEliminate(D, ) returns a CRD identical to D except that all clock difference variables with respect to clock
x are removed. Procedure Bypass(D, z) returns a new CRD which represents the same state-space as D does. For
each zone ¢ € D and for each two clocks 1,22 € X, Bypass(D,z) will add a constraint on variable z; — x2 to ¢
derived from the constraints on z; — z and x — z5 in (. Algorithms, taking advantage of data-sharing capability of
CRD, for procedures VariableEliminate(), ClockEliminate(), and Bypass() can be found in appendix B, C, and D.

5 Issues on efficiencies of data-structures

For formal discussion, we introduce the following concepts about BDD-like data-structures. A decision-path in
a BDD-like data-structure is a path from root to terminal (false or ¢rue) in the data-structure. The depth of a
BDD-like data-structure is the length of the longest decision-path in the data-structure. The width of a BDD-
like data-structure is the number of decision paths in the data-structure. The depth of a BDD-like data-structure
represents the size of the largest convex constraint set it represents while the width represents the number of convex
constraint sets it represents. The depth and width of a BDD-like data-structure can be used as a convenient metric
to roughly measure how efficient a state-space is represented. In general, we would like to design



0—z1
<-1 \=0
x1—0
<5 <4
00—z
<0 <-1
x2—0
ST
true true true true
before unioning after unioning before unioning after unioning
(a) unioning of CDDs (b) unioning of CRDs

Figure 2: Comparison between variable semantics of CDD and CRD

e a BDD-like data-structures for zones to miminize both the depth and width of CRDs (or CDDs) at the same
time to contain the representation complexity; and

e efficient maipulation routines to convert zones to their normal forms, to eliminate zones contained by other
zones, and to eliminate empty zones.

5.1 Design of data-structures

In the design of BDD-like data-structures, two aspects need to be considered, i.e. the domain of variables and
semantics of variable values. Since BDD-like data-structures exhibit exponential blowup w.r.t. the size of variable
domain, in general it is good to keep the variable domain small. The semantics of variable values is about how we
should interpret the values of variables and has a much subtle effect on space-complexity. We feel that it will help
the readers understand this issue if we compare CRD with the previous data-structures. DBM-technology generally
handles the complexity of timing constant magnitude very well. Since a DBM can only represent conjunctive relations
and there is no data-sharing among DBMs, when the number of clocks increases, its performance may degrade rapidly.

NDDJ1] uses binary encoding for clock readings and its performance is very sensitive to timing-constant magnitude.

DDDJ16, 17] uses Boolean variables like z — y ~ d to encode representations for dense-time state-spaces. The
approach is very similar to Wang et al’s work [23] and is likely to be inefficient since the size of variable domain is
propotional to the timing constants and thus exponential to the input size.

REDJ18, 19] encodes the ordering of fractional parts of clock readings in the variable ordering and has achieved
very high space-efficiency for symmetric systems with large number of clocks and small timing constants. RED
is indeed a canonical representation of timed automaton state subspaces. But for large timing constants, RED’s
performance degrades rapidly.

Finally, we want to compare our CRD with CDD[7], which is a decision diagram for state-space membership and
has a very similar structure to CRD. The major difference between CRD and CDD is that the arcs from a node in
CDD are labeled with “DISJOINT” intervals while those from a node in CRD are labeled with upperbounds, which
are structurally overlapping. Due to this little difference, for some state-spaces, CDD may demand exponential size
of memory. For example, we have the following state-space for n clocks:

Vicicn Micjcn (i +7)%m) <aj < 20+ ((i + ) %n) (1)

Here “%” represents the modulo operator. When clock count n is 2, the compositions of the state-spaces in CDD
and in CRD are in figure 2 (a) and (b) respectively. As can be seen, the CDD union operation will produce a
CDD of three paths out of two zones while the CRD union operation will basically maintain the structures of the
component zones. In fact, our experiment shows that the state-space of (1) exhibits an exponential blow up in CDD
representation with respect to clock counts in the following table.



| clock counts |2| 3| 4| 5| 6| 7| 9| 11| 13| 15|
CDD | node counts || 4| 12| 31| 73| 162 | 346 | 1479 | 6064 | 24469 98166
arc counts || 6|23 | 78 | 238 | 663 | 1721 | 10056 | 52427 | 256674 | 1210285
7
8

CRD | node counts 16 [ 29| 46| 67 92 154 232 326 436
arc counts 18 (32| 50| 72 98 162 242 338 450

Such exponential blowup, we believe, is due to the “DISJOINT” requirements of CDD on intervals. The requirement,
although makes sense in mathematics, but actually contradicts the characteristics of zones which are noncanonical
representations of convex state-spaces and may intersect with one another. Thus when union operation is performed,
intervals will intersect each other into fragments. Such fragmentation phenomenon not only blows up the memory
space requirement, but also destroys the manipulation results on zones. Such manipulation results can be generated
from closure form computation or from zone-containment reduction. But since the union operation of CDD tends to
restructure the zones, it may likely make previous effort in analysis of state-spaces in vain.

To justify our argument, we have also endeavored to implement some CDD manipulation procedures and carried
out an experiment to observe the effect of the representation fragmentation phenomenon on representation complexity.
The experiment is reported in subsection 9.3 and indeed confirms our arguments on the effect of the pheonomenon.
Moreover, the experiment shows that the phenomenon not only blows up the representations of the just-mentioned
toy example, but may also blow up the space-usage of independently developed benchmarks.

After the discussion of this subsection, we hope that the readers have been convinced that proper design of
the data-structures is very crucial to the efficiency. However, we feel that previously people have not paid proper
attention to this issue.

5.2 Definition of zone normal forms

Since many zones (or different decision paths) can represent the same convex state-space, without proper control,
it is likely that BDD-like data-structures will end up with recording many zones for the same state-space. In
previous research, people devised various algorithms to convert zones to their canonical forms. It is our observation
that different canonical form definitions may incur drastically different representation efficiency and manipulation
efficiency with BDD-like data-structures. In this and the following subsections, we shall use CRD to discuss the
effect of various canonical forms on representation and manipulation efficiency.

The most popular canonical form is closure form[10, 7] (called shortest-path closure in [15]). A zone is in its
closure form if all its clock difference constraints are tight. Such tight bounds can be computed with all-pair
shortest-path algorithms. Unfortunately, the symbolic version of such algorithms with BDD-like data-structures are
very expensive in both time and space-complexity. Closure form is the natural choice for DBM[10] and adopted in
CDD[7] and DDD[16, 17]. We adopt the tradition that a CRD is in its closure form if all its zones are in closure
form. Same tradition will be honored with other canonical forms.

The second choice is reduced form (called shortest-path reduction in [15]) in which a zone contains minimal number
of clock difference constraints chosen by a policy. Note even the reduced form is not unique since we can choose
many smallest constraint sets for the same state-space.

The detailed constraint information in closure form CRD not only incurs extra space-complexity but also severely
harms the data-sharing capability of BDD-like data-structures. For example, we have the closure form and a possible
reduced form CRDs for the following two zones.

(0 20 < —2ANx0— 21 <0 /\1‘1—1’3§—3/\1’3—0§5) (1)
\Y (0 — 1’1§-2 /\1‘1—1’3§—3/\1’3—0§5)

The derived constraints zo — x3 < —3 and z3 — x5 < 3 in the closure form prevents data-sharing. For detail
information, we refer the readers to [21].

5.3 Efficient detection of zone-containment relation

Another problematic characteristic of zones is that they can contain one another and different decision-paths may
represent non-disjoint zones. Without capability to efficiently detecting zone containment relation, it may happens
that fixpoint algorithms will waste time and space in iterating through smaller and smaller state-spaces which are
contained by zones already in the BDD-like data-structures. The traditional wisdom of canonical forms calculation
does not handle this issue well.

To efficiently decide that one zone (; is a subspace of another zone (5, we have to have the following straightforward
containment requirement (SCR) on both ¢; and (s:



SCR((1,¢2): Vz,2' (G (z,2") T Go(x,2')).

If the containment relation between (; and (3 cannot be decided with SCR, then in general we have to do an all-pair
shortest-path computation, which is very expensive for BDD-like data-structures, to derive the tight bounds of all
clock difference constraints.

On one hand, closure form CRD can efficiently support the detection of SCR since all its bounds are tight. But
as described in subsection 5.2, closure form CRDs ususally introduce longest depth and may easily blow up the
space-complexity. To get a balance in choosing canonical forms for representation efficiency (see subsection 5.2) and
SCR detection efficiency, Wang proposed a new canonical form called cascade form CRD|21], which is very much
like reduced form except that we add more constraints with respect to clocks with the same reading to assist the
efficient detection of SCR. For detail information, we refer the readers to [21].

5.4 Efficient computation of the normal forms

It can be very expensive in both time and space (for huge intermediate CRDs only to be garbage-collected in the
end) to compute closure form CRDs with its great depths of decision-paths and low data-sharing capability.

Since reduced form and cascade form are also defined on tight bounds of clock differences, a straightforward
approach to compute them is to first compute their closure form counterpart explicitly. However, such an approach
will nullify any performance advantage of reduced form and cascade form since resources are still consumed to
compute their closure form counterpart. In [21], Wang proposed an algorithm to implicitly compute the all-pair
shortest-path information with 4 auxiliary variables to avoid the high complexity associated with the great decision-
path lengths in closure form CRDs. But in general, to compute all-pair shortest-path information either implicitly
or explicitly is very expensive with BDD-like data-structures.

Another but not minor issue which has been overlooked in previous research is about the capability of normal
forms to facilitate efficient elimination of empty zones. Intuitively, the earlier we can eliminate empty zones, the
less burdensome the manipulation of BDD-like data-structures is. With the traditional canonical-form approach,
such empty zones are eliminated in the course of deriving tight bounds with all-pair shortest-path information. No
efficient solutions have been developed to enhance efficiency in this issue.

6 Magnitude derivation & downward redundancy elimination

Since canonical forms are expensive to compute, we decide to experiment with efficient techniques to normalize zones
representing the same state-space to a small range of zones. If the “normalization algorithm” is efficient enough in
both time and space complexity in average cases, then perhaps it is a good deal to trade a little increase in CRD
widths for the reduction in total time and space consumptions. Normalized zones will be called as normal zones.
There can be more than one normal zones for a convex state-space.

The first technique is called magnitude derivation (MD). A clock difference constraint is called a magnitude
constraint iff one of its clocks is 0. Technique MD only makes magnitude constraints tight in a zone. The technique is
motivated by the observation that most timing constraints in timed automata are written with magnitude constraints.
Traditional canonical-form approaches eliminate inconsistent zones while tightening the bounds. But with the MD
technique, we expect a lot of the inconsistent zones will be eliminated when conjuncting with invariance conditions
and triggering conditions written with magnitude constraints. The algorithm for magnitude derivation is presented
in the following.

set of pairs of CRD+BDD R, R'; [* two static set variables */
MD(D) {
D' := false;
while D' # D, { D' := D; R :=0; D := recMD(D); }
return D;
}
clock ZMID; /* one static clock variable */
element in B¢, ZB; /* one static upperbound variable */
recMD(D) {
if D := true, then return D; else if 3D’, (D, D’) € R, then return D’;
D' := false;

it D= (.’I} _xla((Nlacl)aDl)a"'7((N’nacn)7Dn))7
ifz=0A2"#0{
fori:=nto 1, {



D} :=recMD(D;);

ZMID := 2'; ZB := (~;,¢;); R' :=0; D' := D' U (z — 2’ ~; ¢; M MDfromZero(D}));
}
ZB = (<, 00);

}
ifz#0Az"' =0 {
fori:=ntol, {
D) := recMD(D;);
ZMID :=z; ZB := (~;,¢;); R :=0; D' := D' U (z — ' ~; ¢; M MDtoZero(D}));
}
7B := (<, 00);

else fori:=ntol, D' :=D'U(z —z' ~; ¢; MrecMD(D;));
else /* D = (v, ([l1,u1], D1), ..., ([ln,un], Dn)), */

fori:=ntol, D':= D" U(l; <v < u; MrecMD(D;));
R:= RU{(D,D")}; return D';

Procedure recMD(D) iteratively calls procedures MDfromZero(D)}) and MDtoZero(D}). At each calling of MDfromZero(D}),
the procedure will try to derive the tight bound on all constraints like 0 — x from two constraints on 0 — ZMID and
ZMID — z recorded in Dj. Also each calling of MDtoZero(D}), the procedure will try to derive the tight bound on all
constraints like « — 0 from two constraints on 2 — ZMID and ZMID — 0 recorded in Dj.

Note that R is the database used to record the CRD nodes which have been processed. If a CRD node D is
already processed before, then its recorded result can be returned without further processing. This capability to take
advantage of data-sharing is very common in the manipulation algorithms of BDD-like data-structures.

The following basic routine is invoked in the execution of MDtoZero() and MDfromZero().

[ ] ZOIleLbAdd((Nl, Cl), (N2, Cg)) {
if ¢; + c2 > Cy, return (<, 00);
elseif 1 + o < —CaV (c1 +ca=—Ca A (~1="<V ~o="<), return (<, —Cy);
else return (~,c; + ¢2) such that ~="<’ & (~1="<'V ~p="<));

Again, in the following two procedures, we use R’ to take advantage of the data-sharing feature of CRD.
MDfromZero(D) {
if D := true, then return D;
else if D', (D, D) € R', then return D';
D' := false;
if D=(z—12'((~1,¢1),D1),...,((~n,cn), Dn)),
if # = ZMID,
if ' =0,
fori:=ntol, {
(~,c) := ZoneLbAdd((~;, ¢;), ZB);
if (~,¢) C (<,0), then { R' := R'U {(D, D")}; return D’; }
D" :=D'U (z —z' ~; ¢; MMDfromZero(D;));
}
else
fori:=ntol, {
(~,c) := ZoneLbAdd((~;, ¢;), ZB);
if (~,¢) 3 (<,0), then (~,c) = (<, 0);
D' :=D'U(x—2" ~;c;MN0—2' ~cNMDfromZero(D;));

else fori:=ntol, D':= D'"U(z — 2’ ~; ¢; MMDfromZero(D;));
else /* D= (’U, ([ll)ul]v Dl); ) ([ln,un]an)): >|(/
fori:=ntol, D':= D" U(l; <v < u; MMDfromZero(D;));

=n
R' := R'"U{(D,D")}; return D',

MDtoZero(D) {
if D := true, then return D;
else if D', (D, D) € R', then return D';
D' := false;
if D= (:L‘ - xl) ((Nl)cl))Dl)a sy ((Nﬂ,cn))Dn))a



if 2/ = ZMID,
ifx =0,
fori:=ntol,{
(~,c¢) := ZoneLbAdd((~;, ¢;), ZB);
if (~,¢) C (£,0), { R := R'U{(D,D")}; return D'; }
D' :=D'"U (z — ' ~; ¢; MMDtoZero(D;));
}
else
fori:=ntol,{
(~,c) := ZoneLbAdd((~;, ¢;), ZB);
if (~,¢) J(<L,0), { R :=R'U{(D,D")}; return D'; }
D' :=D'U(z—12' ~;j¢c;Max— 0~ cNMDtoZero(D;));

else fori:=nto 1, D' := D'U (xz — a' ~; ¢; MMDtoZero(D;));
else /* D = (v, ([l1,u1], D1), ..., ([ln,un], Dn)), */
fori:=ntol, D':=D"U(l; <v < u; MMDtoZero(D;));
R' := R'"U{(D,D")}; return D',

The second technique is called downward redundancy elimination (DRE). For convenience, let [(<,¢)] = ¢, [(<
0 =c—1,[(£,0)] =¢, [(<,¢)] =c+1, and diff(~1, ¢1, ~2,¢2) = [(~1,¢1)] — [(~2, c2)]. We identify two types of
constraint redundancies with respect to a variable ordering. Given a zone { and an evaluation index €, a constraint
Ty — T2 ~cE (s

o type I downward redundant iff there are ©; — x3 ~1 ¢1,23 — T3 ~o co € ( such that 1 — z3 <q 1 — 22,

Tz — T2 <Q T1 — T2, 1 tea<cV(er+e=cA(~="<"V ~="TV ~p=").
o type II downward redundant iff there are x1 — x3 ~1 ¢1,x3 — T2 ~2 c2 € ( such that either

— 11 —x3 <0 T1 — Ty <q T3 — To and ¢y < diff(~, ¢, ~1,¢1); or

— T3 — X2 <o T1 — T2 < 1 — 3 and ¢; < diff(~, ¢, ~o, ¢2).
The technique DRE is to iteratively pick downward redundant constraints from zones in a CRD and eliminate them
until there are no more downward redundant constraints left. Since we pick the downward redundant constraints
according to the evaluation ordering, all the downward redundant constraints can be eliminated in one traversal of
the given CRD.

The algorithm for downward redundancy elimination is in the following. It traverse through all the CRD nodes
and for each clock constraint variable, ZX — ZY, it then calls EliminateOneGroupDRE(D}) to see if any downward
redundancies constructed with constraints ZX — ZY can be identified and eliminated in D}.
set of pairs of CRD+BDD R, R"; [* two static set variables */

DRE(D) {
R := 0); return recDRE(D);
}
clock ZX, ZY; /* two static clock variables */
element in Bc, ZB; /* one static upperbound variable */

recDRE(D) {
if D := true, then return D;
else if 3D’ (D, D') € R, then return D';
D' := false;
if D= (z—2'((~1,¢1),D1),...,((~n,cn), Dn)),
fori:=nto1,do{
D} := recDRE(D;));
ZX :=2;ZY = 2';ZB := (~;,¢;); R’ =
D' :=D"U(z — &' ~; ¢; MEliminateOneGroupDRE(D}));

}
else /* D= (’U, ([ll)ul]aDl); E ([ln,un]an)): >|(/
fori:=ntol, D' := D' U(l; <v < wu; MrecDRE(D;));
R:= RU{(D,D")}; return D';

Procedure EliminateOneGroupDRE(D) uses three new basic routines as follows.

e DiffExtract(D,z — ', (~1,c1), (~2,¢2)) returns a CRD+BDD identical to D except that all paths representing
zones whose constraints on x — z', say (~,¢), do not fall within (~1,¢1) and (~2,c2), i.e. (~,¢) C (~1,¢1)V (~2
,¢2) C (~,c), are eliminated.
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e DiffSubtract(D,z—z', (~1,¢1), (~2, c2)) returns a CRD+BDD identical to D except that all paths representing
zones whose constraints on x — z', say (~, ¢), fall within (~1,¢1) and (~2,¢2), i.e. (~1,¢1) C (~,¢) C (~2, ca),
are eliminated.

e ZoneLbSubtract((~1,c1), (~2,¢2)) {

if (~1,01) = (<, =C4) V (~2,02) = (<,00), then return (<, —C4);

if (~1,¢1) = (<,00), then 11 := Cy; else if ~1="<’, then 11 := ¢; — 1; else 11 := cy;

if (~2,c2) = (<,—C4), then 1y := —Cla; else 12 := ¢o;

if 1 — 12 > Ca, return (<, 00); else if 11 — 19 < —Cy, return (<, Ca); else return (<, 11 — 12);

EliminateOneGroupDRE(D) {
if D := true, then return D;
else if 3D’ (D, D') € R', then return D';
D' := false;
if D=(z—2'((~1,¢1),D1),...,((~n,cn), Dn)), {
if x = 7Y, then
if ' = ZX, then /* elimination of negative cycles. */
fori:=nto 1, do {
(~,c¢) := ZoneLbAdd(ZB, (~i, c));
if (~,¢) C (<,0), then { R' := R'"U {(D, D")}; return D’; }
else D' := D' U (z — 2’ ~; ¢; MEliminateOneGroupDRE(D;));

}
else /* Type I DRE */
fori:=nto 1, do {
(~,¢) := ZoneLbAdd(ZB, (~;, ));
if &' =0A(~,c) C (0,<), then { R' := R'"U{(D,D")}; return D’; }
else if ZX =0 A (~,¢) O (0, <), then D} := EliminateOneGroupDRE(D;));
else {
D} := EliminateOneGroupDRE(D;));
ife—2" <gZX—-2'{
D? :=VariableEliminate(DiffExtract(D}, ZX — 2/, (~, ¢), (<, 0)), ZX — z');

D! :=DiffSubtract(D},ZX — 2, (~,¢), (<,0)) U D;
}

}
D' :=D'U(z — ' ~; ¢; N D});

}
else if o' = ZX, /* Type I DRE */
for i :=nto 1, do {
(~,c) := ZoneLbAdd(ZB, (~i, c;));
it ZY =0A (~,c¢) C (<,0), then { R' := R'U{(D, D")}; return D'; }
else if x =0 A (~,c¢) O (<,0), then D} := EliminateOneGroupDRE(D;));
else {
D) := EliminateOneGroupDRE(D;));
ifo—a' <gr—72Y {
D? := VariableEliminate(DiffExtract(D},z — ZY, (~,¢), (<,00)),z — ZY);
D! :=DiffSubtract(D},z — ZY, (~,¢), (<, 00)) U D;

}
D' :=D'"U(z—a' ~; ¢; 1 Dj});

}
else if z = ZX, /* Type Il DRE */
for i :=nto 1, do {
Dj := EllmlnateDneGroupDRE(D ));
if 7 — o < ZY — ' A (~;,¢) C (<,00), {
(~,c) := ZoneLbSubtract((~;, ¢;), ZB);
if (Na ) | (<7 CA)a {
D? .= DiffExtract(D},ZY — ', (<, —C4), (~,¢));
D! := (z — 2’ ~; ¢; MDiffSubtract(D},2Y — 2', (<, —C4), (~,c))) U D?;

[ — ! ! .
else D; := DMz — ' ~; ¢;;
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else D} :=DiMx —z' ~; ¢;;
D' :=D'U Dj;

}
else if ' = ZY, /* Type Il DRE */
for i :=nto 1, do {
D} := EliminateOneGroupDRE(D;));
if v —2' <q o —ZX, {
(~,c) := ZoneLbSubtract((~;, ¢;), ZB);
if (N)C) | (<;_CA) A (Niaci) C (<,OO), {
D? := DiffExtract(D}, z — ZX, (<, —C4), (~,¢));
D! := (z — 2’ ~; ¢; MDiffSubtract(D},z — ZX, (<, —C4), (~,c))) U D?;

[ — ! ! .
else D} := DNz —x' ~; ¢;;

else D} :=DiMx — ' ~; ¢;;
D' := D'U Di;

else /* No DRE applicable */ for i :=n to 1, D' := D' UU(x — 2’ ~; ¢; M EliminateOneGroupDRE(D;));
else /* D = (v, ([, 1], D1),-- ., ([ln, un], Dn)), */

fori:=ntol, D':=D"U(l; <v <u;MEliminateOneGroupDRE(D;));
R' := R U{(D,D'")}; return D';

In section 9, we shall report experiments on various canonical forms and the MD&DRE techniques.

7 Variable ordering in CRD+BDD

The manipulation efficiency of BDD-like data-structure is strongly related to the variable evaluation ordering. Tradi-
tional wisdom is that we should place two strongly related variables close to each other in the ordering. We consider
three possibilities of variable-ordering to test how CRD+BDD reacts to variable orderings.

e NIL, with no interleaving between discrete variables and clock constraints in the ordering.

e HIL, only with interleaving between discrete variables and magnitude clock constraints, and

e FIL, with full interleaving between discrete variables and clock constraints.
When interleaving is implemented, we consider the precedence of process identifiers and variable declaration ordering
to define the interleaving ordering. For example, we may have a system with two processes with global discrete
variable u, global clock z, local discrete variable w; and local clock z; for process 1, and local discrete variable ws
and local clock x5 for process 2. The evaluation orderings among u, wy,w=2,0 —x,0 —y1,y1 — 0,2 — y1,0 — y2 are

NIL: w <nrp w1 <n1p w2 <N1L 0 — 2 <Nn12 0 — 91 <n12 Y1 — 0 <n1p ¢ — y1 <n10 0 — 92
HIL: w <pgrr 0—2 <grp w1 <L 0 —y1 <#grr y1 — 0 <pgrr w2 <grr 0 —y2 <grn ¢ — 1
FIL: w <pr, 0—2 <prr w1 <pr 0 —y1 <rin Y1 — 0 <prr @ —y1 <rrr w2 <prn 0 — gy

Our experiments show performance data very compatible with the traditional wisdom. That is, FIL is more efficient
than HIL, which is in turn more efficient than NIL. Due to page-limit, we shall leave the details of the three ordering
definitions and their experiment data to appendix E.

8 Implementation

We have implemented our CRD-technology in version 3.1 of our tool red, whose previous version (versions 1.0,
2.0, and 3.0) was announced in [18, 19, 20, 21]. red 3.1 supports TCTL-model-checking of real-time systems with
multiprocesses, pointer data-structures, and synchronizations (synchronous send and receive) from one process to
another. The new version, together with benchmarks, will soon be available at:

http://www.iis.sinica.edu.tw/farn/red

Each process can use global and local variables of type clock, discrete, and pointer. Pointer variables either contain
value NULL or the identifiers of processes. Thus in the models input to red, we allow complicate dynamic networks
to be constructed with pointers.
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At this moment, red runs with backward reachability analysis, evaluation ordering FIL, and MD&DRE normal-
izations by default. We have also implemented the reduction by elimination of inactive variables[14, 22], which is
always executed. A variable is inactive in a state iff it is not read in any computation from the state before its
content is overwritten. Contents of inactive variables can be omitted from state information without any effect on
the computations.

9 Experiments

We carried out three experiments to see in reality how well MD&DRE performs compared to other tools and other
implementation strategies of CRD-technologies. We choose the following nine targets for comparison.

e Kronos[5, 11, 24] (version 2.4 release 4), which supports forward and backward model-checking of TCTL[2].

e UPPAALZ2K6] (version 3.2.4), which supports on-the-fly forward analysis with reduced zone representations
and various searching and reduction strategies.

CRD/Closure+FIL: CRD in closure form with evaluatoin ordering FIL,

CRD/Cascade+FIL: CRD in cascade form[20] with evaluation ordering FIL,

CRD/Closure+DRE+FIL: DRE after computing closure form CRD with evaluation ordering FIL,
CRD/MD&DRE+FIL: MD&DRE of CRD with evaluation ordering FIL,

CRD/NC/MD&DRE+FIL: MD&DRE of CRD with evaluation ordering FIL but without contained zone elim-
ination (see subsection 5.3),

e CRD/MDE&DRE+HIL: MD&DRE of CRD with evaluation ordering HIL, and

e CRD/MDE&DRE+NIL: MD&DRE of CRD with evaluation ordering NIL.

Kronos and UPPAAL2k are perhaps the two best-known model-checkers for real-time systems with DBM-technology.
We choose UPPAAL2k and Kronos because first, DBM is now generally considered as the best data-structure for
timed automata verification, and second, these two tools are mature and have been very successful. Also comparison
with these two tools also gives us some rough feeling about how well CRD-technology performs against DBM-
technology with both forward analysis (i.e. UPPAALZ2k), and backward analysis (i.e. Kronos).

In subsection 9.1, we observe the performances of some targets w.r.t. to the number of clocks. In subsections 9.2,
we compare the performances of Kronos, UPPAAL2k, CRD with Cascade+FIL, and CRD with MD&DRE+FIL
w.r.t. to timing-constant magnitude complexity respectively. Due to page-limit, the report on experiment with
different variable orderings is left to appendix E.

We use six benchmarks to compare the performance.

o Fischer’s timed mutual exclusion algorithm [3, 14, 18, 22]: The algorithm relies on a global lock and a local
clock per process to control access to the critical section. Two timing constants used are 10 and 19. The
property to be verified is that at any moment, no more than two processes are in the critical section.

e CSMA/CD benchmark[24]: Basically, this is the ethernet bus arbitration protocol with the idea of collision-
and-retry. The timing constants used are 26, 52, and 808. We want to verify that at any moment, at most one
process is in the transmission mode for no less than 52 time units.

e FDDI token-ring mutual exclusion protocol [11, 5]: We need one process to model the network and the other
processes to model the stations. For each station process, two local clocks are needed. Each station process
can use the token to transmit message in mandatory synchronous mode and optional asynchronous mode. The
biggest timing constant used is 50¥*m+20, where m is the number of stations. We want to verify that at any
moment, at most one stations is holding the token.

e Scheduling problem of real-time operating system (PATHOS)[3]: In the system, each process runs with a distinct
priority in a period equal to the number of processes. Priority among processes must be observed by the
scheduling policy. We want to verify that no deadlines will be missed.

e Safeness of a leader-election algorithm: Each process has a local pointer parent and a local clock. All processes
initially come with its parent = NULL. Then a process with its parent = NULL may broadcast its request
to be adopted by a parent. Another process with its parent = NULL may respond. Then the process with
smaller identifier will become the parent of the other process in the requester-responder pair. The biggest
timing constant used is 2. We want to verify that at any moment, there is at least a process who is a child to
no other processes.

e Bounded liveness of a leader-election algorithm: It is the same systems used in the fifth benchmark. But we
assume that a process with parent = NULL will finish an iteration of the algorithm in 2 time units. We want
to verify that after 2[log, m] time units, where m is the number of processes, the algorithm will finish.
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9.1 Performance w.r.t. number of clocks

The first experiment compares the performace, w.r.t. number of clcoks, of the following six targets: Kronos 2.4.4,
UPPAAL2k 3.2.4, CRD/Closure+FIL, CRD/Cascade+FIL, CRD/Closure+DRE+FIL, CRD/NC&MD&DRE+FIL
CRD/MD&DRE+FIL. Table 2 shows performance data. The data in the second column to the right is collected
with NC&MD&DRE, where NC means that no contained zones are detected and eliminated. Except for the FDDI
benchmark, UPPAAL is invoked with forward analysis and options “-aSOWD.” For the FDDI benchmark, UPPAAL
is invoked with options “-~S0TDda.” Kronos is invoked with backward analysis.
Discussion The performance data shows that CRD-technologies are more space-efficient and scales better w.r.t.
number of clocks than the DBM-technologies. The comparison between the rightest two column also implies that
zone-containment relation and contained zone elimination can indeed enhance verification performance. For time
complexities, MD&DRE is only outperformed in the following two cases.
e By DBM-technologies against leader election bounded liveness with small number of clocks. DBM-technologies
usually have good time complexities with its cubic complexity all-pair shortest-path algorithm on matrices.
e By CRD/Closure+DRE+FIL against Pathos. This happens because of the strict timing precedence among the
clocks imposed by the strict priority structure among the processes.
But in average, CRD/MD&DRE+FIL outperforms the other targets. Thus the reasoning behind the design of
techniques MD&DRE seems justified.
The experiment helps us to better understand the issues raised in section 5. For example, the performance data
falls very compatible with our arguments in section 5.

9.2 Performance w.r.t. timing constant magnitude complexity

The performance of some previous technologies, e.g. NDD and RED, does not scale very well to the magnitude
of timing constant. The data in table 3 is collected by runnning Kronos, UPPAAL2k, CRD/Cascade+FIL, and
CRD/MD&DRE+FIL against Fischers’ mutual exclusion algorithm with various timing constant magnitudes. The
table shows that CRD is at least as good as DBM technology as long as performance scalability with respect to
timing constant complexity is concerned. In fact, the data may imply that the performance of CRD-technology can
be irrelevant to the timing constant complexity in average cases.

9.3 Performance with representation fragmentation

To observe the effect of representation fragmentation phenomenon of CDD, we have endeavored to implement some
CDD manipulation routines. This enables us to collect data, in table 4, of sizes of reachable state-space representa-
tions in CDD and CRD for the six benchmarks used in subsection 9.1. The state-space representation of benchmarks
leader election safeness and liveness are very similar except that one more global clock is used for the liveness
benchmark. This blow-up is attributed to the representation fragmentaion phenomenon of CDD.

From the table, we observe that CDD demonstrates exponential blow-up for three of the benchmarks (Fischer’s,
FDDI, pathos) in comparison with CRD. For the other three benchmarks (CSMA/CD, leader election safeness,
liveness), CDD performs better than CRD with a nearly constant factor. This is understandable because in CDD,
both lowerbound and upperbound are specified with the same CDD variable while in CRD, two separate variables
have to be used. For instance, the constraint of 3 < 1 — x2 < 5 can be specified with one variable in CDD. But
in CRD, it is specified with two variables as 1 — x5 < 5 A 22 — x; < —3. This explains why when CDD performs
better, it only performs better by a constant factor.

From the experiment, we argue that when the representation fragmentation phenomenon does not happen, CDD
performs roughly the same as CRD (within a constant factor). But when the phenomenon happens, it takes a big
toll out of the CDD space consumption. This experiment report justifies our proposal of the new data-structure of
CRD.

10 Conclusion

To efficiently model-check timed automata, it takes deep understanding of the subtle interaction between data-
structures and algorithms. We feel that previous BDD-like data-structures did not perform as well as DBM because
such subtlety has not been paid proper attention. We have identified some of the issues in the design of efficient BDD-
like data-structures and manipulation algorithms for timed automata state-spaces. We have carried out extensive
experiments to justify our arguments. We have also developed techniques MD&DRE for CRD normalization. We
believe the experience reported in this manuscript will be very valuable toward the implementation of industry-usable
model-checkers for real-time systems.
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benchmarks concurrency [[Krono§UPPAATLJCRD/ RD/Closure |[CRD/ [CRD/NC/ ICRD/
S’ ‘ 2.4.4’U 3.2.4‘ Closure+FIL| +DRE+FIL Cascade+FIL| MD&DRE+FIL| MD&DRE+FIL|
[Fischer’s 3 processes 0.02s| 0.015| 0.2s/17K 0.21s/17K| 0.66s/47K| 0.27s/18K| 0.2s/18K
mutual 4 processes 0.20s| 0.09s| 1.28s/41K 1.26s/43K]| 3.87s/166K| 1.85s/52K]| 1.23s/43K]|
exclusion 5 processes 3.875 2.97¢ 5.41s/94K 5.14s/90K| 18.84s/467K| 9.88s/148K| 5.03s/94K|
6 processes O 292.565| 17.11s/181K 16.50s/165K] 74.12s/1129K| 56.38s/431K| 15.99s/191K]
7 processes O O 53.76s/341K| 49.17s/332K| 251.02s/2510K] 358.88s/1522K] 47.46s/384K|
8 processes O/M] O/M] 168.2s/812K]| 143.16s8/757 783.0s8/5289k| 2060.75s/5309K]| 139.98s/851K]|
9 processes O/M] O/M] 493.68/1875K| 431.7s/1783 N/AJ10874.58s/18153K] 417.00s/2032K|
10 processes O O N/A| N/A] N/A] N/Al 1160.17s/4736K
11 processes [©) [©) N/A] N/A] N/A] N/A| 3178.93s/10897K
12 processes O/M] O/M] N/A] N/A] N/A] N/A] 8684.63s/24802K]
13 processes O/M] O/M] O/M| O/M| O/M| N/A23599.32s/55978K]
[CSMA/CD |bus+3 senders|| 0.01§ _ 0.013 0.10s/103K] 0.10s/103K] 0.43s/103K] 0.15s/103K] 0.09s/103K]
bus+4 senders|| 0.02s| 0.045| 0.21s/181K| 0.21s/181K| 1.33s/181K] 0.31s/180K| 0.20s/181K|
bus+5 senders|| 0.12s| 0.465| 0.43s/292K| 0.43s/292K| 4.05s/292K| 0.66s/291K| 0.41s/292K|
bus+6 senders 0.86s| 13.875| 0.92s/580K| 0.92s/568K| 14.54s/470K]| 1.38s/455K]| 0.84s/458K|
bus+7 senders O/M| 752.42f 2.62s/1496Kk]| 2.54s/1472K]| 50.14s/974Kk]| 2.99s/1015Kk]| 1.88s/723K]|
bus+8 senders O/M] O/M] 5.93s/3834Kk]| 6.09s/3779Kk]| 158.67s/2048K]| 6.86s/2350Kk]| 4.65s8/1681K|
bus+9 senders|| O [©) 16.61s/9709k] 15.52s/9578K  466.48s/4344K 16.48s/5416K| 12.45s8/3971K|
us+10 senders]| O [©) 46.98s/24232k| 43.48s/23994K 1325.93s/9277K N/A] 35.86s/9284K
bus+11 senders|| O/M] O/M| 165.51s/59762k| 156.29s/59194k| 3679.13s/19869K| N/A] 115.14s/21470K|
bus+12 senders|| O/M] O/M]|830.59s/145366Kk[808.24s/144452K[10107.70s /42575K| N/A] 424.69s/49198K]
bus+13 senders]| O/M] O/M] O/M| O/M]28039.41s/91093K| N/A[1892.97s/111699K
us+14 senders]| O O O O N/A] N/A| N/A|
FDDI 11 stations |[[175.61¢ 30.965 1.215/345]( 1.215/345k 1.225/345k 1.905/366k 1.195/345k
token-ring 12 stations O/M] 118.35§ 1.82s/456K| 1.86s/456K]| 1.85s/456K]| 2.60s/501K| 1.79s/456K]|
passing 20 stations O/M] O/M] 16.90s/1311K]| 16.98s/1311K 16.88s/1311K]| 19.63s/1430K]| 16.59s/1311K]|
30 stations O/M] O/M| 81.66s/2893k 81.57s/2893K| 81.37s/2893k  111.23s/3030K 81.95s/289K]
40 stations [©) [©) 265.43s/5962k 265.45s/5926k]  266.02s/5962k] 358.44s/6406k] 266.85s/5962K
50 stations [©) [©) 705.6s/9902k  710.4s/9902K N/A| 865.265/10588k] 652.85s/9903K
60 stations O/M] O/M] N/A] N/A] N/A] 1403.60s/14726K 1263.30s/14018K]
pathos 3 processes 0.0 0.014| 0.07s/25K 0.08s/25K] 0.45s /44K 0.08s/25K] 0.07s /25K
4 processes O/Mj 0.115| 0.33s/52K| 0.34s/52K 4.28s/113K| 0.39s/51K 0.28s/52K|
5 processes O 8.02¢ 1.37s/99K| 1.25s/89K]| 49.55s/299K| 1.47s/89K| 1.06s/89K]|
6 processes O O 5.91s/284K| 4.7s/194K| 718.52s/1103K] 5.71s/231K 3.97s/218K|
7 processes O/M] O/M] 36.89s/894K| 23.99s /580K O/M| 26.41s/668K| 21.12s/636K|
8 processes O/M] O/M| 195.04s/2960K| 123.3s/1878K| O/M| 123.04s/2110K]| 109.25s8/1972K]|
9 processes O/M] O/M| 922.52s/9915K  520.25/6276K| O/M| 527.72s/6803k 508.73s/6267K
10 processes O O 3473s/33498K 1991s/21375K O N/Al 2259.6s/20241K
11 processes O O 17248s/112971K O O N/A] 8898s/65243K]
12 processes O/M] O/M] O/M| O/M| O/M| N/A] O/M|
leader 3 processes 0.064| 0.005| 0.04s /46K 0.04s/46K 0.05s /46K 0.18s/67K 0.05s /46K
4 processes 2.19s| 0.015| 0.15s/94K| 0.15s/94K 0.15s/94K 0.73s/218Kk| 0.15s/94K
5 processes O 0.095| 0.41s/165K 0.40s/165K] 0.40s/165K| 2.88s/753K| 0.42s/165K|
6 processes O 0.745| 1.19s/2632K 1.19s/263K]| 1.21s/263K]| 9.455/2389K]| 1.28s/263K]|
7 processes O/M] 3.349 3.52s/479K| 3.46s/479K| 3.47s /479K 29.72s/7161K| 3.54s/479K|
8 processes O/M] O/M] 8.66s /819K 8.65s/819K| 8.67s/819K| 89.13s/20882Kk]| 8.82s/819K|
9 processes [©) [©) 19.09s/1366k] 19.17s/1366K 19.07s/1366k| 297.34s/57298K| 19.21s/1366K|
10 processes O O 37.88s/21K| 38.01s/2130K 38.11s/2130K]| N/A| 38.14s/2130K]|
11 processes O/M] O/M] 70.14s/3280K| 69.67s/3280Kk| 69.84s/3280K| N/A] 70.32s/3280K|
12 processes O/M] O/M] 122.4s/4806K]| 122.8s/4806K| 122.8s/4806k]| N/A] 124.2s/4806k]|
13 processes O/M] O/M] 210.3s8/6946K| 206.6s/6946k| 206.9s/6946K| N/A] 207.9s/6946K|
14 processes [©) [©) 342.1s/9683k 342.25/9683K 294.3s/8430K N/A] 340.2s/9683K
Ibound 3 processes 0.064 0.004 0.24s/67K 0.23s /58K 1.08s/75K 0.25s /60K 0.17s/45K
4 processes 2.144 0.02s| 2.62s /308K 1.97s/233K]| 15.21s/313K] 1.75s/208K]| 1.24s/172K]|
5 processes O/M] 0.08s| 26.88s/1239K| 16.38s/1149K 237.8s/1770K| 10.99s/862K] 10.78s/846K]
6 processes O/M] 0.65s| 130.1s/4959K] 78.30s/4744K| 2188s/6691 61.96s/3336K| 78.24s/3312K|
7 processes [©) 3.14¢] 1518s/19614K 708.28s/19006k] 10981s/21800k] 290.82s/11042k] 458.5s5/11693K
8 processes [©) [©) 6370s/68952k 3341s/67471K| N/A[ 1285.945/33079K 2756s/37977K|
9 processes O/M] O/M] O/M| O/M| N/A] 6676.47s/93042K] 19289s/114418K|

data collected on a Pentium 4 1.7GHz with 256MB memory running LINUX;
s: seconds; k: kilobytes of memory in data-structure; O/M: Out of memory; N/A: not available;

Table 2: Performance data of scalability w.r.t. number of processes
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Tools | # proc || Cy =38

Ca=T76] Ca=152 ] Ca=304 ] Ca=608 [ Cy=1216

Kronos 3 0.04s 0.03s 0.03s 0.03s 0.03s 0.04s

4 0.21s 0.20s 0.20s 0.21s 0.21s 0.21s
UPPAAL 3 0.01s 0.01s 0.01s 0.01s 0.01s 0.01s

4 0.09s 0.09s 0.09s 0.09s 0.09s 0.09s
Cascade 3 0.65s/46k 0.69s/46k 0.67s/46k 0.67s/46k 0.66s/46k 0.68s/46k
+FIL 4 3.89s/166k | 3.89s/166k | 3.86s/166k | 3.96s/166k | 3.92s/166k | 3.91s/166k
MD&DRE 3 0.22s/18k 0.20s/18k 0.21s/19k | 0.215s/18k 0.21s/18k 0.20s/18k
+FIL 4 1.25s/43k 1.24s/43k 1.24s/43k 1.23s/43k 1.23s/43k 1.23s/43k

data collected on a Pentium 4 1.7GHz with 256 MB memory running LINUX;
s: seconds; k: kilobytes of memory in data-structure; O/M: Out of memory; N/A: not available;

Table 3: Performance data of scalability w.r.t. timing-constant magnitude
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benchmarks concurrency || CDD [ CRD Size Ratio
| #nodes ] #arcs | size [| #nodes | #arcs | size || CDD/CRD
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6 processes 276 620 896 311 599 910 0.985
7 processes 429 977 1406 438 854 1292 1.088
8 processes 673 1545 2218 591 1162 1753 1.265
9 processes 1088 2508 3596 772 1527 2299 1.564
10 processes 1834 4234 6068 983 1953 2936 2.067
CSMA/CD bus+3 senders 38 52 90 46 53 99 0.909
bus+4 senders 48 67 115 54 63 117 0.983
bus+5 senders 58 82 140 62 73 135 1.037
bus+6 senders 68 97 165 70 83 153 1.078
bus+7 senders 78 112 190 78 93 171 1.111
bus+8 senders 88 127 215 86 103 189 1.138
bus+9 senders 98 142 240 94 113 207 1.159
bus+10 senders 108 157 265 102 123 225 1.178
FDDI 3 stations 46 62 108 59 72 131 0.824
token-ring 4 stations 92 128 220 115 140 255 0.863
passing 5 stations 226 390 616 204 250 454 1.357
6 stations 851 1667 2518 418 501 919 2.740
7 stations 4640 10051 14691 876 1026 1902 7.724
8 stations 32404 75098 107502 1858 2133 3991 26.936
pathos 3 processes 26 34 60 27 32 59 1.017
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liveness 6 processes 5033 6785 11818 4596 5618 10214 1.157
7 processes 9952 13803 23755 8737 10922 19659 1.208
8 processes 17064 24089 41153 14543 18385 32928 1.250
9 processes 41011 58941 99952 29662 37223 66885 1.494
data collected on a Pentium 4 1.7GHz with 256 MB memory running LINUX;
#node: number of nodes; #arcs: number of arcs; sizes = #node + #arcs;
Table 4: Representation complexity of reachable state-spaces in CDD and CRD

17




[15] K.G. Larsen, F. Larsson, P. Pettersson, Y. Wang. Efficient Verification of Real-Time Systems: Compact Data-
Structure and State-Space Reduction. IEEE RTSS, 1998.

[16] J. Moller, J. Lichtenberg, H.R. Andersen, H. Hulgaard. Difference Decision Diagrams, in proceedings of Annual
Conference of the European Association for Computer Science Logic (CSL), Sept. 1999, Madreid, Spain.

[17] J. Moller, J. Lichtenberg, H.R. Andersen, H. Hulgaard. Fully Symbolic Model-Checking of Timed Systems using
Difference Decision Diagrams, in proceedings of Workshop on Symbolic Model-Checking (SMC), July 1999,
Trento, Italy.

[18] F. Wang. Efficient Data-Structure for Fully Symbolic Verification of Real-Time Software Systems. TACAS’2000,
March, Berlin, Germany. in LNCS 1785, Springer-Verlag,.

[19] F. Wang. Region Encoding Diagram for Fully Symbolic Verification of Real-Time Systems. the 24th COMPSAC,
Oct. 2000, Taipei, Taiwan, ROC, IEEE press.

[20] F. Wang. RED: Model-checker for Timed Automata with Clock-Restriction Diagram. Workshop on Real-Time
Tools, Aug. 2001, Technical Report 2001-014, ISSN 1404-3203, Dept. of Information Technology, Uppsala Uni-
versity.

[21] F. Wang. Symbolic Verification of Complex Real-Time Systems with Clock-Restriction Diagram, to appear in
Proceedings of FORTE, August 2001, Cheju Island, Korea.

[22] F. Wang, P.-A. Hsiung. Automatic Verification on the Large. Proceedings of the 3rd IEEE HASE, November
1998.

[23] F. Wang, A. Mok, E.A. Emerson. Symbolic Model-Checking for Distributed Real-Time Systems. In proceedings
of 1st FME, April 1993, Denmark; LNCS 670, Springer-Verlag.

[24] S. Yovine. Kronos: A Verification Tool for Real-Time Systems. International Journal of Software Tools for
Technology Transfer, Vol. 1, Nr. 1/2, October 1997.

18



A Procedure M()

We assume two basic routines

e CRD(z — ', (~,¢), D) construct the single arc CRD of (z — z', ((~, ¢), D)).

e BDD(v,[l, ] D) construct the single arc BDD whose root variable is v, arc label is [I, u], and whose only child

is CRD+BDD D.

set R
n(D, D) {

}

’

return rec M (D, D);

recr(D, D) {

if var(D) is true, return D;
else if var(D) is true, return D;

else if AD', (D, D, D') € R, returnl D} .. ..ot

else if vap(D) <0 var(D) '
if var(D) is like x — 2’ and D = (z — ', ((~1,¢1), D1), ..., ((~n,¢n), Dpn)), {
l= Ul_gign CRD(z — 2', (~, ¢;), recr(D;, D)),
else if var(D) is a discrete variable like v and D = (v, ((l1,u1),D1),..., ((In,un), Dy)), then
"= Ulgign BDD(v, [I;, u], recn(D;, D));
}
else if var(D) »q var(D)
if var( ) is like z — &’ and D = (z — 2, ((~15¢1), D
= Ul__gign CRD(z — 2/, (~, ¢;), recn(D, D;));
else if var(D) is a discrete variable like v and D = (v, ((Iy,u1), D1), .., ((ln,un), Dy)), then
D" :=,<;<, BDD(v,[l;, u;],recn1(D, D;));

)7 R ((Nn,cn),Dn)), {

}
else if var(D) is like z — 2', D = (2 — 2, (%1, ¢1), D1), . . ., (%n,¢n), Dy)),
and D = (z —a',((%1,¢1),D1), ..., ((®m, €m), D)), then {
i:=n;j :=m; D' := false; L := false; L := false;;
whilei > 1or j > 1, do {
if 7 >1Ag > ]./\f;Ji,C.i) = (f:Jj,éj, {
L::LuDi;E::iuDj;
D' := D' UCRD(z — 2/, (~i,¢é;),recn(L, L));
1i=1—1;5:=5—-1;

elseif i =0V (i >1Aj>1A~6) C(%5,6), {

L —LUD],

D' := D' UCRD(z — z', (%, ¢;),recn(L, L));

j=3-1
elself]—OV(z>1/\]>1/\~],c])g( irCi)y {

L= Lub;;

D' := D' UCRD(z — z', (%}, ¢;),recn(L, L));

1:=1—1;

}
}
} . o . .
else if var(D) is a discrete variable like v, D = (v, ((iy, 1), D1), ..., ((Iln, @), Dy)),
and D = ( ((Iy,4i1), D), ..., (I, i), D)), then {
i:=mn;j:=m;D' '—false
Whilei210rj21,d0 )
ifi=0V(@i>1Aj>1A10; <l;),then j:=j—1;



elseif j =0V (i >1Aj>1Al; >iij), then i :=i — 1;
else { o
I = max(l;,1);u := min(d;,4;); D' := D" UBDD(v, [I, u], recni(D;, D;));
ifl; =1,theni:=i—1;else j:=j—1;
}
} .
R:=RU{(D, D, D)}, o e e e
return D';

}

B Procedure VariableEliminate()

clock MID;
set R;
VariableEliminate(D, w) {
MID := w; R := ()
return recVariableEliminate(D);

}

recVariableEliminate(D) {
if either var(D) is true or var(D) »=q MID, return D;
else if AD', (D, D") € R, 1eturnl D’; .. .ot e e
else if var(D) is like  — 2’ and D = (z — 2', ((~1,¢1), D1), ..., ((~nycn), D)),
if MID is « — 2', D" = J, <;<,, Di; else D' := |J; <;<,,(x — &’ ~ ¢; M recVariableEliminate(D;));
else if var(D) is a discrete variable like v and D = (v, ((I1,u1), D1), .., ((In, un), Dy)), then
if MID is v, D" = U, <;<,, Di; else D" := J, <;<,,(li < v < wu; MrecVariableEliminate(D;));
R:= RU(D, D)y oo e e
return D’;

C Procedure ClockEliminate()

clock MID;
set R;
ClockEliminate(D, z) {
MID := z; R := 0);
return recClockEliminate(D);

}

recClockEliminate(D) {

if either var(D) is true, return D;
else if AD' (D, D") € R, returnl D’; .. .
else if var(D) is like 1 — x5 and D = (1 — x2, ((~1,¢1),D1), ..., ((~n,cn), Dn)),

if MID is 2, or MID is 2, D' = J, <;<,, Di; else D" :={J; ;<,, (1 — 22 ~ ¢; MrecClockEliminate(D;));
else if var(D) is a discrete variable like v and D = (v, ((I1,u1), D1), ..., ((ln,%n), Dy)), then

D" :=J;<;<,(li <v < u; MrecClockEliminate(D;));
R = RU{(D, D)y o e e e e
return D';

D Procedure Bypass()

Given two (~1,¢1), (~2,¢2) € Be,, we define (~,¢) = (~1,¢1) + (~2,¢2) such that
e if ¢; + 3 > Cy, then (~,c) = (<, 00);
e clseifc; +ep <—Cporeg+c=—-C4sNA(~1="<V ~y="<), then (~,c) = (<, —00);
e else ¢ = ¢ + o, ~= "<’ when ~1=~y="<", and ~= "<’ when ~;= "<V ~y="<’,
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Bypass(D, 7) {
for all z; € X — {z}, D := BypassRight(BypassLeft(D, z1, ), z, z1);
return D;

}

clock LEFT, MID, RIGHT;

int B;

set R;

BypassLeft(D, z1,x) {
LEFT := z;; MID :=z; B := o0; R := {;
return recBypassLeft(D);

}

recBypassLeft(D) {
if var(D) is true, return D;
else if AD' (D, B, D') € R, return D', .. . e (1)a
D' := false;
if var(D) is like z — 2’ and D = (z — 2', ((~1,¢1), D1), ..., ((~n,¢n), D)), {
if x = LEFT and z' = MID, then
fori:=1ton,{B:=0;; D':=D'U (z —2' ~; ¢; MrecBypassLeft(D;)); }
else if x = MID and =’ # LEFT,
fori:=1ton,{(~,¢): =B+ f; D':=D"U(x —z' ~cNrecBypassLeft(D;)); }
else for i :=1ton, D' := D'U (z — 2’ ~ cMrecBypassLeft(D),));

}
else if var(D) is a discrete variable like v and D = (v, ((I1,u1), D1), .., ((In, un), Dy)), then
D" :=;<;<,(li <v < wu;NrecBypassLeft(D;));
R = RU{(D, B, D )} oottt (2)a
return D';

}

BypassRight(D, z, z2) {
MID := z; RIGHT := z5; B := 00; R := 0;
return recBypassRight(D);

}

recBypassRight(D) {
if var(D) is true, return D;
else if AD' (D, B, D') € R, return D' .. . e ()b
D' := false;
if var(D) is like z — 2’ and D = (z — 2', ((~1,¢1),D1), ..., ((~n,¢n), Dyn)), {
if = MID and z’ = RIGHT, then
fori:=1ton,{B:=0;; D':=D'U(z —2' ~; ¢; MrecBypassRight(D;)); }
else if z # RIGHT and z' = MID,
fori:=1ton,{(~,¢):=B+p;; D':= D' U(x—a' ~ cMrecBypassRight(D;)); }
else for i := 1 ton, D' := D' U (z — 2’ ~ ¢MrecBypassRight(D;));

else if var(D) is a discrete variable like v and D = (v, ((I1,u1), D1), ..., ((In, un), Dy)), then

D" :=;<;<n(li <v < u; MrecBypassRight(D;));
R = RU (D, B, D) ittt et e e e e e (2)b
return D’;

Note that in lines (1)a, we test if the same computation has been done before. The computation can be identified
by the current CRD and the bound on the arc LEFT — MID. If it has been done before, then we can save the
computation power and return the recorded result value. If it has not been done before, then we will have to do it
and record the result value in line (2)a. Similar remarks for line (1)b and (2)b.
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E Definitions of the three evaluation orderings

To avoid confusion, we shall carefully distinguish between the declared variables (DV) in automata and the evaluation
variables (EV) in the corresponding CRD+BDDs. Here, we consider the evaluation ordering of EVs of systems with
concurrent processes with local and global DVs. For non-clock DVs, the same variable names are used as the EV
names in the CRD+BDD. For clock DVs z,2’ € {0} U X, the relevant EVs in the CRD+BDD are clock difference
EVs with names like z — 2’. Given a timed automaton A, we let A 4 be the set of non-clock EVs and I"4 be the set
of clock difference EVs.

Let us define the following notations before we present our schemes of variable ordering. For convenience of
discussion, we shall have the following notations. The input language of our implementation allows the declaration
of processes with corresponding local variables. The processes are labeled with process identifier 1...m. For each
local nonclock DV u (or local clock DV x), we let proc(u) (or proc(z) respectively) be the identifier of the process to
which u (or ) is local. For each global nonclock variable u (or global clock ), we let proc(u) = 0 (or proc(z) = 0).
Also proc(0) = 0. Given a clock difference EV z — 2’ in a CRD+BDD, we let proc(z — z') = max(proc(z), proc(z')).
We here extend the meaning of evaluation index () in section 4 to both clock difference EVs and discrete EVs. For
any two EVs w,w' € Ay UT 4, we write w <q w' to denote that w precedes w' in evaluation ordering Q.

According to the ordering a DV is declared in the input, we also define attribute offset(). Given two DV w,u/,
offset(u) < offset(u') iff u is declared before v’ in the input file. Note that two distinct DVs u,u’ may be declared
with the same local name. Given a clock difference EV z — 2', we let offset(z — z') = max(offset(z), offset(z')).

We shall experiment with three variable-ordering: NIL (with no interleaving between discrete EVs and clock EVs),
HIL (with half interleaving between discrete EVs and clock EVs), and FIL (with full interleaving between discrete
EVs and clock EVs). We have general rules and special rules for the decision of precedence relation among EVs.

General rules

There are two general rules applied to all these three ordering.
e For every two distinct clocks z,z’, we put clock difference variable like ' — x immediately after z — z' in the
variable ordering. This arrangement allows us to efficiently check for some trivial negative cycles.
e Given two EVs w,w’, if the precedence ordering cannot be determined by the following special rules, then
w <o w' iff offset(w) < offset(w’) for all @ € {NIL, HIL, FIL}.

Special rules

Given a clock difference EV z—z' in a CRD+BDD, we let proc,;,(x—=') = min(proc(z), proc(z')). Also, offsetmin(z—
z') = min(offset(z), offset(z')). For discrete variables w, proc;,(w) = proc(w) and offsetmi, (w) = offset(w). Given
two EVs v and v', we write v C v' iff one of the following four condition is true: (1) proc(v) < proc(v'), (2) proc(v) =
proc(v') A proc,,;, (v) < proc,;,(v'), (3) proc(v) = proc(v') A proc,,;, (v) = proc,,;, (v') A offset(v) < offset(v'), or (4)
proc(v) = proc(v') A proc,;n(v) = proc,;,(v') A offset(v) = offset(v") A offsetymin(v) < offsetyin (v'). Intuitively v C o'
means that v precedes v’ according to the process ordering and the syntax ordering.
The special rules for the three orderings are as follows.
NIL: (1) Vu € AaVx — 2" € Ta(u <njr © — '), that is, all discrete EVs precede those clock difference EVs.
2)Ve—a',y—y €eTale—2' <nrpy—y iffz—a' Ty—y').
HIL: (1) Vu € AgVe —2' €Tyqst. . =0o0r ' =0( u <grr v — ' iff proc(u) < proc(z — z')).
2)Ve—-0,0—z,y—y €last. 0¢{y,y} e —0=<piLy—y' ANO—z <grLy—1y').
@) Ve —a',y—y €Tast. 0 {x, 2"y, v}z —a' <pgrpy—y iffc—2' Cy—1vy).
FIL: (1) Yu € AgVe — ' € Tg(u <prr ¢ — 2’ iff proc(u) < proc(z — z')).
@) Ve —a'y—y €eTalr—2' <prpy—y iffz—2'Cy—y').

E.1 Performance w.r.t. variable-ordering

We compare the performance of red with MD&DRE techniques w.r.t. the three variable-ordering discussed in
section 7. The benchmarks used are the same as the six used in the last subsection. The performance data is in
table 5 and is very compatible with the traditional experience about BDD-like data-structures. That is, variables
with strong relation should be placed near to each other. Ordering NIL does not abide by this experience and places
all clock constraints together. Ordering HIL only places magnitude constraints close to their corresponding local
discrete variables. Ordering FIL is the most compatible with the experience and places local cock constraints like
x1 — Tz ~ ¢ close to their corresponding local discrete variables of process max(proc(zy ), proc(zz)).
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| benchmarks concurrency || -Ob | -Oh | no |

Fischer’s 3 processes 0.21s/18k 0.21s/19k 0.2s/18k
mutual 4 processes 1.50s/55k 1.30s/57k 1.23s/43k
exclusion 5 processes 7.723/150k 5.67s/174k 5.03s/94k
6 processes 40.60s/438k 22.87s/495k 15.99s/191k

7 processes 199.61s/1255k 91.98s/1348k 47.46s/384k

8 processes 840.44s/3542k 383.57s/3518k 139.98s/851k

cline2-5 9 processes 2812.61s/9971k 1362.88s/8897k 417.00s/2032k
10 processes 9299.48s/28271k Oo/M 1160.17s/4736k

11 processes Oo/M O/M 3178.93s/10897k

12 processes O/M Oo/M 8684.63s/24802k

CSMA/CD | bus+3 senders 0.10s/98k 0.10s/103k 0.09s/103k
bus+4 senders 0.325/180k 0.25s/181k 0.20s/181k

bus+5 senders 0.97s/312k 0.61s/292k 0.41s/292k

bus+6 senders 3.70s/783k 1.68s/724k 0.84s/458k

bus+7 senders 12.61s/2039k 5.78s/2021k 1.88s/723k

bus+8 senders 38.06s/5267k 17.19s/5550k 4.65s/1681k

bus+9 senders 113.00s/13536k 52.87s/15500k 12.45s/3971k

bus+10 senders 318.80s/34637k 194.47s/42439k 35.86s/9284k

bus+11 senders 988.90s/91881k | 1062.61s/113657k 115.14s/21470k

bus+12 senders O/M Oo/M 424.69s/49198k

bus+13 senders O/M O/M | 1892.97s/111699k

FDDI 11 stations 258.78s/34202k 1.19s/345k 1.19s/345k
token-ring 12 stations O/M 1.85s/456k 1.79s/456k
passing 20 stations Oo/M 16.70s/1311k 16.59s/1311k
30 stations O/M 81.96s/2893k 81.95s/2893k

40 stations Oo/M 264.86s/5962k 266.85s/5962k

50 stations Oo/M 705.46s/9902k 652.85s/9903k

60 stations O/M N/A 1263.30s/14018k

pathos 3 processes 0.06s/26k 0.06s/25k 0.07s/25k
4 processes 0.28s/54k 0.31s/52k 0.28s/52k

5 processes 1.18s/103k 1.17s/116k 1.06s/89k

6 processes 5.94s/268k 5.27s/394k 3.97s/218k

7 processes 36.98s/872k 32.21s/1478k 21.12s/636k

8 processes 198.62s/2944k 182.39s/5762k 109.25s/1972k

9 processes 892s/10273k 999s/22245k 508.73s/6267k

10 processes 3532.70s/35435k 5177.02s/85218k 2259.6s/20241k

11 processes 19430.84s/122775k O/M | 88975.46s5/65243k

leader 3 processes 0.04s/46k 0.04s/46k 0.05s/46k
4 processes 0.14s/98k 0.14s/94k 0.15s/94k

5 processes 0.45s/197k 0.43s/165k 0.42s/165k

6 processes 2.253/476k 1.18s/263k 1.28s/263k

7 processes 9.65s/1138k 3.45s/479k 3.54s/479k

8 processes 34.49s/2767k 8.68s/819k 8.82s/819k

9 processes 112.85s/6790k 19.17s/1366k 19.21s/1366k

10 processes 357.17s/16888k 37.86s/2130k 38.14s/2130k

11 processes 1136.94s/42108k 69.62s/3280k 70.32s/3280k

12 processes 4003.46s/106543k 121.43s/4806k 124.16s/4806k

13 processes Oo/M 208.14s/6946k 207.84s/6946k

14 processes O/M 335.88s/9683k 340.13s/9683k

Ibound 3 processes 0.18s/51k 0.25s/57k 0.17s/45k
4 processes 1.41s/198k 2.26s/292k 1.24s/172k

5 processes

12.95s/816k

19.50s/1540k

10.78s/846k

6 processes

66.04s/3167k

103.92s/6894k

78.24s/3312k

7 processes

500.38s/ 12206k

1018.21s/28552k

158455/ 11693k

8 processes

2130.12s/45965k

6039.28s/117430k

2755.94s/37977k

9 processes

O/M

O/M

19288.73s/114418k

data collected on a Pentium 4 1.7GHz with 256 MB memory running LINUX;
s: seconds; k: kilobytes of memory in data-structure; O/M: Out of memory; N/A: not available;

Table 5: Performance data w.r.t. variable-ordering
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