Symbolic Simulation of Real-Time Concurrent Systems *

Farn Wang and Geng-Dian Hwang
Institute of Information Science, Academia Sinica
Taipei, Taiwan 115, Republic of China
+886-2-27883799 ext. 1717; FAX +886-2-27824814; farn@iis.sinica.edu.tw
Tools available at: http://www.iis.sinica.edu.tw/ farn/red

Abstract

We introduce the symbolic simulation function imple-
mented in our model-checker/simulator RED 4.0 for
dense-time concurrent systems. By representing and
manipulating state-spaces as logic predicates, the tech-
nique of symbolic simulation can lead to high per-
formance by encompassing many, even densely many,
traces in traditional simulation into one symbolic trace.
We discuss how we generate traces with various policies,
how we handle the issue of code coverage and functional
coverage, how we manipulate the state-predicate, and
how we manage the trace trees. Finally, we report ex-
periment with our simulator in the verification of the
Bluetooth baseband protocol.

Keywords: assertions, specification, state-based,
event-driven, model-checking, verification

1 Introduction

Traditional simulation[8, 14, 18] uses memory to record
the variable values in a state along a trace and makes it
possible for engineers to visualize the behaviors of the
system design even before the hardware prototypes are
put into reality. For many decades, simulation has been
the major tool for engineers to successfully guarantee
the quality of system designs in early cycles of system
development. But for the new system designs in the
new century, e.g. System-on-a-Chip (SOC) with tens
of millions of gates, there will not be enough time and
manpower to run enough number of simulation traces to
gain enough functional coverage and confidence of the
system designs. The complexity incurred by the system
designs in the next few years simply overwhelms the
capability of traditional simulation technology.

On the other hand, model-checking technology[12, 2]
has promised to mathematically prove the correctness
of system design. The development of model-checking
with symbolic manipulation techniques[11, 5] has made
the full verification of many non-real-time industrial
projects into reality. The symbolic manipulation tech-
niques do not record the exact values of variables explic-

*The work is partially supported by NSC, Taiwan, ROC under
grants NSC 90-2213-E-001-006, NSC 90-2213-E-001-035, and the
by the Broadband network protocol verification project of Insti-
tute of Applied Science & Engineering Research, Academia Sinica,
2001.

itly. Instead, sets of states are succinctly represented
and manipulated as logic constraints on variable val-
ues. For example, we have procedure to compute the
state-predicate at the next-step from the current state-
predicate. Such succinctness not only saves the memory
space in representation but also allows us to construct
a huge (or even dense) set of states in a few symbolic
manipulation steps.

But even with such powerful techniques of symbolic
manipulation, the verification task of real-time concur-
rent system still demands tremendous resources beyond
the reach of current technology. The reachable state-
space representations in TCTL model-checking[2] tasks
usually demand complexity exponential to the input
system description sizes. Usually, verification tasks blow
up the memory usage before finishing with answers.

In a sense, traditional simulation and model-checking
represent two extremes in the spectrum. Traditional
simulation is efficient (you may only have to record the
current state) but the number of traces to cover full
functionality of a system is usually forbiddingly high.
On the other hand, model-checking can achieve func-
tional completeness in verification but usually requires
huge amount of system resources. Thus it will be help-
ful and attractive if a technique that makes a balance
between the two extremes can be developed.

The technique of symbolic simulation represents such
a balance[28]. The technique was originally introduced
and proved valuable for the verification of integrated cir-
cuits. While traditional simulation runs along a trace of
precise state recordings, symbolic simulation runs along
a trace of symbolic constraints, representing a (convex
or concave) space of ”current states.” In metaphor, tra-
ditional simulation is like a probe while the new sym-
bolic simulation technique is like a searchlight into the
space and can monitor a set of state-traces at the same
time. With proper choice of the caliber of the search-
light, we have much better chance to discover the im-
minent risk and potential threats in the immense sky.

We have implemented a symbolic simulator, for
dense-time concurrent systems, with GUI (Graph-
ical User-Interface), convenient facilities to gener-
ate and manage the traces, options for cover-
age estimations. The simulator is now part of
RED 4.0 (http://val.iis.sinica.edu.tw), a model-
checker /simulator for real-time systems. In the develop-
ment of the symbolic simulation function, we encounter
the following many challenges and opportunities.

What is the model we adopt for real-time
concurrent systems 7

In simulation, we construct a mathematical model for
a system design (and the environment) with computer
programs and observe how the model behaves in com-
puter’s virtual world. The semantics of the model will
determine how precise we can approximate the sys-
tem/environment interaction and how efficient we can
compute the traces.

Symbolic simulation has gained much success in the
verification of VLSI circuits, which are usually syn-
chronous. We plan to extend the success in the area of
real-time concurrent systems, like communication pro-
tocols, embedded softwares, ..., etc. For such systems,
the assumption of the existence of a global clock is inap-
propriate and the synchronous discrete-time model can
lead to imprecise simulation. In a real-world real-time
concurrent system, each hardware module may have its
own clock. Even the new SOC can have multi-clocks
in the same chip. Based on all these consideration, we
adopt the well-accepted timed automata[3], with multi-
ple dense-time clocks, as our system model.

The input language of RED 4.0 allows the descrip-
tion of a timed automaton as a set of process automata
communicating with each other through synchronizers
(namely, input/output events through channels in [21])
and global variables. Users may use binary synchroniz-
ers to construct legitimate global transitions (to be ex-
plained in section 3) from process transitions. RED also
allows users to control the ”caliber of the searchlight”
to better monitor a user-given goal (or risk) condition
along traces.

How do we know when to stop ?

In order to gain sufficient confidence in the system de-
sign, we have to know how well the simulation traces
have helped us in observing the behaviors we need
to observe. Traditional simulation has the concept of
coverage, like code coverage, path coverage, functional
coverage, ..., developed for the verification of VLSI
circuits[7]. The concept of coverage is to estimate how
much percentage of the behaviors, which users are in-
terested at, has been observed. Such a concept is im-
portant because engineers and their companies need a
metric to tell them when they can be confident enough
in their products.

But it can be difficult in general to design such met-
rics and make precise estimation for dense-time systems.
The challenge comes from the known high complexity of
the state-space representations of dense-time systems.
According to [2], we can partition the state-space of
dense-time systems into small behaviorally equivalent
spaces of states, called regions. The number of such re-
gions is exponential to the size of input description sizes.
It is very difficult to guess in advance which regions will
be reachable from the initial states. An imprecise esti-
mation of the whole reachable state-space may lead to
very low percentage in coverage while actually enough
traces have been generated to cover the whole reachable
state-space.

To cope with the challenge, we propose two ap-
proaches. First, we developed a metric corresponding

to the traditional metric of code coverage, which means
how much percentage of program codes the simulation
traces have used. We propose to use the total number
of legitimate global transitions to measure the code cov-
erage. In this approach, the exact percentage of code
coverage can be derived.

Second, we develop a technique, based on abstract
image functions of state-spaces, to estimate the func-
tional coverage of simulation traces. Functional cov-
erage is specific to the functions, which users want to
verify. Our simulator will keep on computing how much
percentage of the interesting state-space has been cov-
ered for the verification of the relevant functionalities of
the systems.

How do we construct and manage traces
2

The traces can be constructed randomly or with a pol-
icy. Random traces are computed with random number
generators without the bias of the designers and verifica-
tion engineers. Many people do not feel confident with
a design until it has been verified with random traces.
On the other hand, directed traces are constructed with
built-in or user-given policies. Directed traces can help
in guiding the simulators to program lines which are
suspicious of bugs or whose effects need to be closely
monitored. With directed traces, the simulators can
better efficiently construct the traces that are of inter-
est to the verification engineers.

Symbolic simulation actually adds one more dimen-
sion to the issue of random vs. directed traces. Since we
can use complex logic constraints to represent a space
of states, from steps to steps, we are actually building
traces of state-spaces, instead of a single precise state.
So it is more like (even densely) many traces are con-
structed simultaneously. Symbolic simulation thus add
the dimension of "width” to a trace of state-spaces. In
section 5, we shall discuss how to control the width of
traces with the many options supported by our simula-
tor.

Organizations of the paper

In the following sections, we first review some related
work (section 2), describe our system models (section 3),
and give a brief overview of what we have achieved in our
implementations (section 4). Then we delve into more
details of our achievements (sections 5, 6, and 7). Fi-
nally, we report our experiments with our implementa-
tions and the Bluetooth baseband protocol (section 8).
We were able to verify that under some parameter-
settings, the protocol guarantee that one device will
eventually discover the frequency of its peer device. The
experiment is also interesting since we have not heard
of any similar result on the full model-checking of the
protocol.

2 Previous work

Symbolic Trajectory Evaluation(STE)[28], or called
symbolic simulation, is the main alternative to symbolic

model checking[5], in formal hardware verification. STE
can be considered a hybrid approach based on symbolic
simulation and model checking algorithms and can ver-
ify assertions, which express safety properties.

STATEMATE[19] is a tool set with a heavy graphical
orientation and powerful simulation capability. Users
specify systems from three points of view: struc-
tural, functional, and behavioral. Three graphi-
cal languages, includes module-charts, activity-charts,
and state-charts, are supported for the three views.
The STATEMATE provides simulation control lan-
guage(SCL) to enable user to program the simulation.
Breakpoints can also be incorporate into the programs
in SCL. It may cause the simulation to stop and take cer-
tain actions. Moreover, the simulation trace is recorded
in trace database, and can be inspected later. The users
may view a trace as a discrete animation of state-charts.

The MT-Sim[8] provides simulation platform for the
Modechart toolset(MT)[14], which is a collection of inte-
grated tools for specifying and analyzing real-time sys-
tems. MT-Sim is a flexible, extensible simulation en-
vironment. It supports user-defined viewers, full user
participation via event injection, and assertion checking
which can invoke user-defined handlers upon assertion
violation.

UPPAAL[26] is an integrated tool environment for
modeling, validation and verification of dense-time sys-
tems. It is composed of the system editor, the sim-
ulator, and the verifier. The behavior of simulated
systems can be observed via the simulator, which can
display the systems in many level of details. Be-
sides, the simulator can load diagnostic trace gener-
ated by the verifier for further inspection. One techni-
cal difference between RED and UPPAAL is that RED
uses a BDD-like data-structure, called CRD (Clock-
Restriction Diagram)[31, 32, 33, 34], for the representa-
tion of dense-time state-space while UPPAAL uses the
traditional DBM (Difference-Bounded Matrix)[15]. A
CRD can represent disjunction and conjunction while
a DBM can only represent a conjunction. With this
advantage, CRD is more convenient and flexible in ma-
nipulating the "width” of simulation traces. Also in pre-
vious experiments[31, 32, 34], CRD has shown better
performance than DBM w.r.t. several benchmarks of
dense-time concurrent systems.

In[18], IOA language and IOA toolset, based on 10
automaton, are proposed for designing and analyzing
the distributed systems. The toolset can express de-
signs at different levels of abstraction, generate source
code automatically, simulate automata, and interface to
existing theorem provers. The IOA simulator solves the
nondeterminism in IOA language by user-defined deter-
minator specification, random-number generator, and
querying the user. IOA simulator provides paired simu-
lation to check the simulation relationship between two
automata. It simulates an automaton normally and exe-
cutes another automaton according to user-defined step
correspondence. It is useful in developing systems using
levels of abstraction.

Figure 1: the model of bus-contending systems

3 Synchronized concurrent

timed automata

A timed automaton[3] is a finite-state automaton
equipped with a finite set of clocks that can hold non-
negative real-values. At any moment, the timed au-
tomaton can stay in only one mode (or control loca-
tion). In its operation, one of the global transitions can
be triggered when the corresponding triggering condi-
tion is satisfied. Upon being triggered, the automaton
instantaneously transits from one mode to another and
resets some clocks to zero. In between global transitions,
all clocks increase their readings at a uniform rate.

In our input language, users can describe the timed
automaton as a synchronized concurrent timed automa-
ton (SCTA)[31, 32, 33]. Such an automaton is in turn
described as a set of process automata (PA). Users can
declare local (to each process) and global variables of
type clock, integer, and pointer (to identifier of pro-
cesses). Boolean conditions on variables can be tested
and variable values can be assigned. Process automata
can communicate with one another through binary syn-
chronizations. One of the earliest devices of such syn-
chronizations are the input-output symbol pairs through
a channel, in process algebra[21]. Similar synchroniza-
tion devices have been used in the input languages to
HyTech[4], IO Automata[25], UPPAAL[9], Kronos[16],
VERIFAST[37], SGM[22, 35, 36], and RED[29, 30, 31,
32, 33].

In figure 1, we have drawn three process automata,
in a bus-contending systems. Two process automata are
for senders and one for the bus. The circles represent
modes while the arcs represent transitions, which may
be labeled with synchronization symbols (e.g., 'begin,
?end, lcollision, ...), triggering conditions (e.g., z <
5), and assignments (e.g., = := 0;). Each transition (arc)
in the process automata is called a process transition.
For convenience, we have labeled the process transitions
with numbers. In the system, a sender process may
synchronize through channel begin with the bus to start
sending signal on the bus. While one sender is using the
bus, the second sender may also synchronize through
channel begin to start placing message on the bus and
corrupting the bus contents. When this happen, the bus
then signals bus collision to both of the senders.

We adopt the standard interleaving semantics, i.e.,
at any instant, at most one legitimate global transi-

tion (LG-transition) can happen in the SCTA. For for-
mal semantics of the systems, please check out ap-
pendix A. A process transition may not represent an
LG-transition and may not be executed by itself. Only
LG-transition can be executed. Symbols begin, end,
and collision, on the arcs, represent synchronization
channels, which serve as glue to combine process tran-
sitions into LG-transitions. An exclamation (question)
mark followed by a channel name means an output (in-
put) event through the channel. For example, !begin
means a sending event through channel begin while
?begin means a receiving event through the same chan-
nel. Any input event through a channel must match, at
the same instant, with a unique output event through
the same channel. Thus, a process transition with an
output event must combine with another process tran-
sition (by another process) with a corresponding input
event to become an LG-transition.

Thus the synchronizers in our input language are pri-
marily used to help users in decomposing their programs
into modules and to help the simulators to glue process
transitions in constructing LG-transitions. For exam-
ple, in figure 1, process transitions 1 and 7 can com-
bine to be an LG-transition. Also process transitions
3, 6, and 9 can make an LG-transition since two out-
put events matches two input events through channel
collision.

In the following, we illustrate how to reason in one
step of our simulator engine to construct the state-
predicate of the next-step. Intuitively, in one step, the
system will progress in time and then execute an LG-
transition. For example, we may have a current state-
predicate

p=1Ag=2)V(g=4n1<2<3) (P)

and an LG-transition expressed as the following guarded
command:

(p=1Az>5) —x:=0;p:=3; (X)
which means

"when (p =1 Az > 5) is true with z as a clock,
reset = to zero and assign 3 to p.”

In a step of the simulation engine, we first calculate the
new state-predicate obtained from states in (P) by let
time progress. This affects the constraint on clock z
and yields

(p=1Aqg=2)V(¢g=4N1<x) ()

Then we apply the LG-transitions, selected by the users,
to (P’) to obtain the state-predicate representing states
after the selected transitions. Suppose the only selected
LG-transition is (X). Then the state-predicate at the
next-step is

p=3Az=0A(¢g=2Vqg=4)

Details can be found in [20].

4 Overview of our simulator

We have incorporated the idea in this report in
our verification tool, RED 4.0, a TCTL model-
checker /simulator[29, 30, 31, 32, 33]. The tool can be
activated with the following command in Unix environ-
ment:

$ red [options] InputFileName OutputFileName

The options are

e -Sp: symmetry reduction for pointer data-

structure systems|[38]

e -Sg: Symmetry reduction for zones[17, 33],

e -c: Counter-example generation

e -s: Simulator mode with GUI
Without option -s, the tool serves as a high-
performance TCTL model-checker in backward analy-
sis. When the simulation mode GUI is activated, we will
see the window like figure 2 popping up. The GUI win-
dow is partitioned into four frames respectively of trace
trees (on the upper-left corner), current state-predicates
(on the bottom), command buttons (in the middle), and
candidate process transitions (PT-frame, on the upper-
right corner) to be selected and already been selected.

Users can construct LG-transitions by selecting pro-
cess transitions step-by-step in the PT-frame. At each
step, the PT-frame displays all process transitions that
can be fired at the current state-predicate in the upper-
half of the PT-frame. After the selection of a process
transition (by clicking the process transition and then

clicking on button), our simulator is intelligent
enough to eliminate those process transitions not syn-
chronizable with those just-selected ones from the dis-
play of PT-frame.

After the selection of many process transitions, for
the construction of the next-step state-predicate along
the trace, users can click button to command the
simulator to step forward and compute the new current
state-predicate at the next step with the LG-transitions
constructable from the selected process transitions. If
there are many process transitions waiting to be selected

at the time button is depressed, all those process
transitions will be selected. Since these process transi-
tions may belong to different LG-transitions, the new
current state-predicate may represent the result of exe-
cution of more than one LG-transitions. This capability
to manipulate a state-space represented in a complex
state-predicate in symbolic steps is indeed the strength
of symbolic simulation.

The architecture of our implementation is shown in
figure 3. We explain briefly its components in the fol-
lowing:

e RED symbolic simulation engine: This is actually
the timed-transition next-step state-predicate cal-
culation routine in forward analysis. Symbolic algo-
rithm for this next-step state-predicate calculation
routine is explained at the end of last section and
can also be found in [20].

e assertion monitoring: In the input language to the
simulator, users can also specify a goal predicate for
the traces. This goal predicate can be a risk con-
dition, which the users want to make sure that it
cannot happen. Or it can be a liveness condition,

K —'RED 4.0 <Symbolic Simulator
File Edit Yiew Seftings Help

D

(1,43

| Fi [%]

Pracess Transitiohs

(3,123

1

3
3

5 when lcd:d mode[1]=2 and %[1]<26 may «[1]: 12 |[=
when focd mode 0; 1

g when Ycd mode[3]=3 may =[3]:=0;mode[3]:=5 1

11 when 7cd mode[3]=4 and «[3]<52 may «[3]:= 1

[4]

] I x|

- Resetlnext

=12 11 when 7cd mode[2]=4 and ®[2]<52 may =[Z]:= 1 ;
hd _vJ
4|] |] |_L1<|] | *
initial | Previous] Mewxt |Random Step|Game Step|Goal Step|odel Check| -
#ssign| Eliminate | Restrict] &bstract Break Display

(0ymode[1];6208a48;1C=1;[hus_collision] 5116 adf;
(1)(0-%[1]);81 fBadd;C=1,<=0:620000;
(2)(<[1]- 0); 5200001 C=1;+26:6203d68;
(3imode[2];8203d65;1C=1;[sender_transm]d200ack;
{4)(x[2]- 0);8200acE;IC=1,<52:5201045;
{5)[1]-#[2]);5201 048, C=1;<=0:5200f40;
(B)=E]-=[1];8200f40,1C=1;<26:5201078;

()] 0y;8200a98;1C=1;<26:61 ebad0;
(1 0)(1]-=[4]);61 eBadl;IC=1;<=0:818323
{113(%j4]-#[1]5;613230,1C=1;<=0.TRUE;
{(8) (<3~ 0);8203756;1C=1;<26:62005a0;
{1]- (3,8 2005a0,1C=1;<=0:6203cd0;
(1 0)a]-=[1];8203c00;1C=1;<=0:8207 0k

(Fimode[3];5201078;1C=3;[sender_wait]§200300;[sender_transm]&203758;[sender_retry]5206230;
(Bimode[d];3200300;1C=1;[sender_transm]d200a95;

0;

8;

I»

[«

4]

1]

GAME: 15/30

Figure 2: the GUI of RED 4.0

which the users want to see that it can happen. Af-
ter each step of the simulation engine, our RED 4.0
will check if the intersection of the goal predicate
and the next-step state-predicate is nonempty. If it
is, the sequence of LG-transitions leading from the
initial state to this goal predicate can be displayed.
Such a capability is indispensable in helping the
users debugging their system designs.

trace computation: This component uses user-
guidance, randomness, and various policies to se-
lect LG-transitions, according to some metrics of
coverage if any, in the generation of traces by repet-
itive invoking the RED symbolic simulation engine.
Functional and code coverage can not only be com-
puted for a trace and but also used to automati-
cally direct the generation of traces. More details
is given in section 5.

state manipulation: This includes facilities to inject
faults, to either relax or restrict the current state-
space, and to set symbolic breakpoints.

trace tree management: (See the frame at the
upper-left corner.) This component is for the main-
tenance of the trace tree structure and movement of
current state nodes in the tree. Users can click but-
ton M to step forward and button

to backtrack. After a few times of these forward-
backward steps, a tree of traces is constructed and
recorded in our simulator to represent the whole
history of the session. The node for the current

state-predicate is black while the others are white.
Users can also click on nodes in the trace tree and
jump to a specific current, state-predicate. On the
arcs, we also label the set of pairs of processes and
process transitions used in the generation of the
next state-predicate.

e GUI (graphical user-interface: A user-friendly win-
dow for easy access to the power of formal verifica-
tion.

e RED symbolic TCTL model-checker: With a sin-

gle click on button |model-check|, the high per-

formance backward analysis power of RED can be
activated to check if the system model satisfies the
assertion.

5 Trace computations

As mentioned in the introduction, symbolic simulation
adds one new dimension of trace "width” in the con-
struction of traces. With Red 4.0, users may choose
from various options to construct traces with appro-
priate randomness, special search policy, and enough
width. The options are:

e plain interaction: With button | next |, | previous |,

and selection of process transitions from the PT-
frame, users have total control on how to select
process transitions to make LG-transitions in the

SCTA GUI
Description

State) TCTL
Manipulation | | Model-checker

Assertion Trace Trace Tree
Monitoring Computation | | Management
RED Engine
Figure 3: the architecture of RED

model-checker/simulator

construction of the next-step state predicates along
the current trace.

e random steps: By clicking button , the
simulator will randomly choose an LG-transition
in each step. Users can command the autonomous
execution of a given number of random steps.

e game-based policy: This option can be activated

by clicking button . We use the term

”“game” here because we envision the concurrent
system operation as a game. Those processes,
which we want to verify, are treated as players while
the other processes are treated as opponents. In the
game, the players try to win (maintain the speci-
fication property) under the worst (i.e., minimal)
assumption on their opponents.

A process is a player iff its local variables appear in
the goal state-predicate. Intuitively, the simulator
constructs a trace segment with all possible reac-
tions of the players in response to random behaviors
of the opponents. With this option, we can observe
the behavior of players’ response to opponents’ ac-
tion. According to the well-observed discipline of
modular programming[27], the behavioral correct-
ness of a functional module should be based on min-
imal assumption on the environment. If we view
the players as the functional module and the op-
ponents as the environment, then this game-based
policy makes a lot of sense.

It can be useful when we try to verify the design of
the player processes. In other words, at each step,
the simulator is growing the trace with a width
enough for one process transition from each oppo-
nent and all firable process transitions from players.
Users can again command the autonomous execu-
tion of a few steps with this game-based policy.

e goal-oriented policy: This option can be activated

by clicking button | goal-step|. It makes the sim-

ulator to generate fast traces leading to the goal
states. This can be useful in debugging the system
designs, when users have observed some abnormal
states. The users can specify the abnormal states
as the goal assertions.

RED 4.0 achieves this by defining the heuristic dis-
tance estimation (HD-estimation) from one state to
the other (to be explained in the following). Then
process transitions which can the most significantly
reduce the HD-estimation from any states in the
current state-predicate to any states in the goal
state-predicate will be selected in the hope of a
short trace to the goal states can be constructed.
The HD-estimation from one (global) state s to an-
other s’ is defined as follows. Suppose we have m
processes and s(p) is the mode in process p’s au-
tomaton in state s. Then HD-estimation from s to
s’ is the sum, over all processes p, of the shortest
path distance from s(p) to s'(p) in the graph (con-
structed with modes as nodes and process transi-
tions as arcs) of process p’s automaton.

For VLSI, usually people adopt the estimation of
Hemming distance, which measures the number of
bit-differences. But for dense-time concurrent sys-
tems, state-predicates are loaded with clock con-
straints and Hemming distance can be difficult to
define in a meaningful way.

6 When to stop simulation ?

In RED 4.0, users can choose two options to estimate
whether enough number of traces have been generated.

Users can pull down the top menu item and

choose either code coverage or full functional coverage.
The current chosen coverage option is also displayed in
the status line at the bottom of the window. In sub-
sections 6.1 and 6.2, we first discuss how to estimate
the code and full functional coverages. Then in subsec-
tion 6.3, we discuss how to use the coverage estimation
to automatically generate traces.

6.1 Code coverage

We correspond the traditional code coverage[7] to the
coverage of LG-transitions. That is, we think LG-
transitions are equivalent to code lines as far as coverage
is concerned. We argue for this correspondence because
in state-transition systems, the LG-transitions act like
program statements. Thus code coverage in our frame-
work means how many LG-transitions have been tried
in previous trace computation.

In our implementation, RED 4.0 will construct a
BDD (Binary Decision Diagram [11]) for the legitimate

combinations of process transitions for LG-transitions.
This BDD is called XSync in our implementation. The
maximum of LG-transitions triggerable in all traces is
equal to the number of root-terminal paths in XSync.
After LG-transitions have been selected (with plain in-
teraction, random steps, ..., etc.), we will save these
combinations in another BDD called CCoverage. The
percentage of code coverage can be computed as the ra-
tio of the number of LG-transitions in CCoverage over
that of XSync. When option code coverage is selected,
the ratio will be displayed in the status bar at the bot-
tom of RED 4.0 window.

6.2 Detection of full functional coverage
w.r.t. assertions

We resort to the development of various abstraction
techniques to determine when enough number of traces
have been generated to cover the functions users want
to monitor. We need two BDD-like data structure FFC
(for full functional coverage) and FCoverage. After the
generation of a state-predicate, say 1, we will first com-
pute its abstract image, say g(n) and calculate

FFC := FFC V g(n) A XSync

In this way, FFC will always record the set of firable LG-
transitions with their corresponding state-space reach-
able so far (at the current step).

Then from g(n) A XSync, we will only choose some
set, say representable with BDD 7/, of LG-transitions
from it, according to various optional policies or user-
guidance, to construct the state-predicate for the next-
step. Be fore the computation of the next-step state-
predicate, we shall calculate

FCoverage := FCoverage V 1’.

In this way, FCoverage will always record the set
of fired LG-transitions with their corresponding state-
space reachable so far (at the current step). The per-
centage of code coverage can be computed as the ratio
of the number of LG-transitions in FCoverage over that
of FFC.

The options for the abstract image functions are:

e Zone-coverage: This is the case where no abstrac-
tion is performed. The next-step state-predicate
is directly unioned with FCoverage. This provides
the ultimate and costly precision but makes the
simulation session somewhat equivalent to forward
reachability analysis.

e (Game-coverage: Asin the paragraph of game-based
policy in page 6, we view the behavior of the target
system as a game process and players, opponents
can be identified. The game-coverage abstract im-
age function will eliminate the state information of
the opponents from its argument.

e Game-discrete-coverage: This abstract image func-
tion will eliminate all clock constraints for the op-
ponents in the state-predicate.

e Game-magnitude-coverage: A clock constraint like
x—12' ~ cis called a magnitude constraint iff either
x or x' is zero itself (i.e. the constraint is either
x ~ ¢ or —z' ~ ¢). This abstract image function
will erase all non-magnitude constraints of the op-
ponents in the state-predicate.

Then with different implementation of the abstract im-
age functions, we have an array of functional coverage
measures with different precisions. Obviously, the zone-
coverage image function is the most precise, while the
game-coverage is the least precise. To achieve full zone-
coverage can be very costly, in fact, of the same com-
plexity as forward reachability analysis. On the other
hand, the coverage-scheme with abstract image func-
tions are less precise but can be less expensive to achieve
their respective full coverage than zone-coverage.

6.3 Directed trace generation with
coverage-based policy

If a trace will not increment the percentage of coverage,
whether code or functional, it will be better if we can
skip the trace since it does not increase users’ confidence
of their design. In addition to the trace-generation poli-
cies in section 5, we also have the option based on cov-
erage. For example, in the case of functional coverage,
after the generation of next-step state-predicates, say
D, only the part of D which are not already included in
FCoverage will be used as the state-predicate for new
current state. This is technically achieved by the fol-
lowing three statements.

1) compute the abstract image D' of D;

2) assign FCoverage := FCoverage U D;

3) compute the new current state-predicate

as D N —FCoverage.

In the choice of random traces, we can also opt for the
choice of traces which leads to the greatest increment in
functional coverage based on greedy method.

7 Manipulation of current state-
predicate

Our simulator allows for the modification of the cur-
rent state-predicate before proceeding to the next-step.
The following four buttons in figure 2 can be used to
manipulate the current state-predicate and control the
"width” of traces.

° : clicked to assign a new value to a state-

variable. This can be used to change the behavior
of the systems and insert faults.

° : clicked to eliminate all constraints

w.r.t. a state-variable. This is equivalent to broad-
ening the width of the trace on the dimension of
the corresponding state-variable. We can observe
the system behavior with less assumption on state-
variables.

. : By clicking this button, users can type
in a new predicate and conjunct it with the current
state-predicate. With this capability, we can nar-
row the width of the trace and focus on the inter-
esting behaviors.

° : By clicking this button, users can

choose to apply one of the three abstract image
functions in subsection 6.2 to the current state-
predicate. This is also equivalent to broadening
the width of the trace.

Note that these four buttons can significantly simplify
the representation of the current state-predicate. This
also implies that the time and space needed to cal-
culate the next-step state-predicates can be reduced.
For example, we may have clocks 1, x5 as local clocks
of processes 1 and 2 respectively. After applying the
game-magnitude-coverage abstract image function to
X1 Z 4/\5[72 Z 3/\(371 — T2 S —2\/372—371 S —1),
we get £1 > 4 A z2 > 3 and have changed a concave
state-space down to a convex state-space. This kind of
transformation usually can significantly reduce the time
and space needed for the manipulations.

In addition, by clicking button [break], the tool will
prompt for the process transitions to set breakpoints.

Then whenever at a current state-predicate the corre-
sponding process transitions can be triggered, the simu-
lator will notify the users. This is also an indispensible
function in debugging.

8 Experiments on Bluetooth

baseband protocol

In the following, we first give a brief introduction to the
Bluetooth baseband protocol[23]. Then we present our
model of baseband protocol in SCTA in subsection 8.2.
The model will be used in two ways:bug-inserted and
bug-free. We use two bug-inserted models in subsec-
tion 8.3 and 8.5 respectively, and show how to quickly
find the bugs with symbolic traces of Red 4.0. In sub-
sections 8.3 and 8.4, we also demonstrate how to gener-
ate traces to observe system behaviors step by step and
to gain enough confidence with options of coverage. Fi-
nally, in subsection 8.6, we use the bug-free model to re-
port the performance in full verification of the Baseband

protocol with a single click on button | model-check|.

8.1 Bluetooth baseband protocol

Bluetooth is a specification for wireless communication
protocols[23]. Tt operates in the unlicensed Industrial-
Scientific-Medical (ISM) band at 2.4 GHz. Since ISM
band is open to everyone, Bluetooth uses the frequency
hopping spread spectrum (FHSS) and time-division du-
plex (TDD) scheme to cope with interferences. Blue-
tooth divides the band into 79 radio frequencies and
hops between these frequencies. It is a critical issue for
Bluetooth devices to discover the frequencies of other
Bluetooth devices since FHSS and TDD scheme are
used.

A Bluetooth unit that wants to discover other Blue-
tooth units enters an INQUIRY mode. A Bluetooth
unit that allows itself to be discovered, regularly enters
the INQUIRY SCAN mode to listen to inquiry mes-
sages. Figure 4 shows the INQUIRY and INQUIRY
SCAN procedures. All Bluetooth units in INQUIRY
and INQUIRY SCAN share the same hopping sequence,
which is 32 hops in length. The Bluetooth unit in IN-
QUIRY SCAN mode hops every 1.28 sec. Although a
Bluetooth unit in INQUIRY mode also uses the same
inquiry hopping sequence, it does not know which fre-
quencies do receivers listen to. In order to solve this

INQUIRY SCAN state

! ! ! J
i i i i

A A A) INQUIRY SCAN
STANDBY state

Train A repeats Ninquiry times

Figure 4: mode sequences of processes INQUIRY and
INQUIRY SCAN in baseband protocol

uncertainty, a Bluetooth unit in INQUIRY mode hops
at rate of 1600 hop/sec, and transmits two packets on
two different frequencies and then listens for response
messages on corresponding frequency. Besides, the in-
quiry hopping sequence is divided into train A and B of
16 frequencies and a single train is repeated for Ninquiry
(which is 256 in specification) times before a new train is
used. In an error-free environment, at least three train
swi[tcl]les must have taken place. Details can be found
in |23];

8.2 The system model

In this subsection, we will introduce our system model
briefly. For more details, the timed automata are shown
in Appendix B. For convenience, we have labeled the
process transitions with numbers.

Every Bluetooth unit has a system clock. When
the clock ticks, the Bluetooth unit updates its inter-
nal timer and frequency. So in our model, there are
two clocks, tick_clk scan and tick_clk_ing, for IN-
QUIRY and INQUIRY SCAN processes, respectively.
Every time unit, the processes loop through the modes
to update the variables. For the INQUIRY SCAN proce-
dure, there are two important variables, ingscanTimer_
and mode_scan. Variable ingscanTimer_, which is a
timer updated in transitions 6 to 9, is used to deter-
mine when to enter INQUIRY SCAN mode. Variable
mode_scan records the current mode of the process per-
forming the INQUIRY SCAN procedure, and its value
may be INQUIRY_SCAN or STANDBY.

For the INQUIRY procedure, when the value of
variable clkmod, in transitions 13 to 16, is less than
2, the process transmits packets. Otherwise, it lis-
tens for response messages. The process sends pack-
ets via synchronization channel in transitions 19 and
20. If a packet is received successfully, it means that
the frequency, through which the packet is received, is
discovered and the process goes to SUCCESS mode.
Otherwise, in transitions 21 to 24, variables id_sent,
train_sent, and train_switch are changed. Variable
id_sent records the packets sent in current train; vari-
able train_sent records the number of repeat of a single
train; variable train_switch represents how many train
switches have taken place. After three train switches,

the process goes to TIMEOUT mode via transition 25.

Our task is to verify whether two Bluetooth units in
complementary modes will hop to the same frequency
before timeout, so that the INQUIRY and INQUIRY
SCAN procedures can go on. One can think of a printer
equipped with Bluetooth in INQUIRY SCAN mode.
When a notebook equipped with Bluetooth has data
to print, it will inquiry nearby printers. We anticipate
that the notebook can learn the existence of the printer
with the Bluetooth protocols.

8.3 Using ”width” of simulation traces
for advantage

In this subsection, a bug is inserted in the INQUIRY
SCAN process in the model. We demonstrate how
to properly control the ”width” of symbolic traces to
quickly discover the bug, and manipulate the state-
space predicate to pseudo-correct the bug. In the end

of the simulation, we click button to auto-

matically trace to our goal states.

We use the step sequence shown in the second row
of table 1 to experiment with RED and the Baseband
protocol. A pair like (p, z) in the row means that process
p executes transition x. When several of these process
transition execution pairs are stacked, it means that we
select all these process transitions to broaden the trace
width of simulation.

In our scenario with notebook and printer, the printer
regularly enters the INQUIRY SCAN mode to listen
to inquiry messages. The printer will periodically ex-
ecute in mode INQUIRY SCAN and mode STANDBY
in sequence (See the upper mode-sequence in figure 4).
In the implementation of Baseband protocol, the al-
ternation between these two modes is controlled with
counter ingscanTimer_, which increments at every
clock tick. When ingscanTimer_. < TwIngScan_c
(TwIngScan_c is a macro constant defining the scan win-
dow size), the printer stays in mode INQUIRY_SCAN.
At the time when ingscanTimer_ = TwInqScan c, the
printer changes to mode STANDBY. When counter
ingscanTimer_increases to macro constant TinqScan._c
(the time span between two consecutive inquiry scans),
it is reset to zero. We want to make sure that an IN-
QUIRY SCAN process will periodically execute in the
two modes of

ingscanTimer_< TwInqgScan_c

A mode_scan = INQUIRY_SCAN
and

ingscanTimer_ > TwInqScan_c
A mode_scan = STANDBY

in sequence. Thus a risk condition saying that this se-
quence is violated is the following.

ingscanTimer_ < TwIngScan_c
A mode_scan # INQUIRY_SCAN
ingscanTimer_ > TwIngScan_c

A mode_scan # STANDBY

We want to use our model-checker/simulator to gain
confidence that this risk will never happen.

When the notebook starts to inquiry, the printer may
be in mode INQUIRY_SCAN or mode STANDBY. With
traditional simulation[8, 14, 18], a precise initial state,
such as

ingscanTimer_= 0 Amode_scan = INQUIRY_SCAN

must be chosen to start the simulation. And the chosen
initial state may either never reach the risk states or
have a long way to do it. But in RED 4.0, we can start
our simulation from the whole state-space represented
by the following state-predicate.

mode_scan = INQUIRY_SCAN
(ingscanTimer_ > TwIngScan_c >
v A

(ingscanTimer_ < TwIngScan_c >
A

mode_scan = STANDBY

By starting simulation with this big state-space, we are
actually using a great "width” of the symbolic trace and
should have much better chance in detecting bugs.

By clicking | next | to execute the first five steps in the
sequence of table 1, we simulate the model step by step
to observe if the system acts according to our expecta-
tion. At the fifth step, we have four executable process
transitions, including transitions 6, 7, 8, and 9 (see the
arc labels in figures in figure 5 in appendix B) of process
INQUIRY SCAN. With RED 4.0, we can simulate all
these possibilities in a single step.

Now we want to demonstrate what we can do with
the discovery of bugs. After the fifth step, we reach
a risk state. Inspecting the trace, we find a bug in
transition 7 (see figure 5). According to Bluetooth
specification[23], when counter ingscanTimer_ incre-
ments from TwIngScan c-1 to TwIngScan_c, process IN-
QUIRY SCAN should change from mode INQUIRY
SCAN to mode STANDBY. And transition 7 in figure 5
is supposed to model this mode change. The bug is in-
serted by changing the triggering condition of process
transition 7 from ingscanTimer_ = TwIngScanc — 1
to ingscanTimer_ = TwIngScan_ c. It means that the
printer enters mode STANDBY one tick too late and
the system reaches the risk state of

ingscanTimer_—= TwIngScan_c A mode_scan =

INQUIRY_SCAN

In order to pseudo-correct the bug, we want to
test what will happen if the mode change does
happen in time. To do this what-if analysis, we
first restrict our attention to the state-predicate with
ingscanTimer_ = equals TwIngScan.c. We do this

by first click on button and keying state-

predicate inqscanTimer_= equals TwIngScan_c to re-
strict the current state-predicate.
Now the new current state-predicate satisfies

ingscanTimer_< TwIngScan_c

A mode_scan = INQUIRY_SCAN

We want to see whether by correcting the bug of the
late mode-change, we can indeed get the correct behav-
ior (i.e. both parties hop to the same frequency). We do

step 1 2 3 4 5 6 7 8
process transitions (I,13) (I,17) (IS,5) (IS,1) (1S,6) restrict | assign | | game-step |
(1,20) (1S,2) (1S,7)
(IS,3) (IS,8)
(IS, 9)
code coverage 1/23 2/23 3/23 6/23 10/23 10/23 10/23 21/23
fun. coverage estimation || 56/112 | 728/1568 | 1196/1736 | 1352/1892 | 2276/3086 | 2276/3086 | 2276/3086 2643/4424

I: process INQUIRY; IS: process INQUIRY_SCAN; (p,x): process p executing process transition x.
¢/d: c is the current coverage, d is the whole coverage.

Table 1: the step-by-step coverages during simulation

this by clicking button and changes the value
of mode_scan from INQUIRY_SCAN to STANDBY.
Then we click button to generate trace au-

tomatically and see if we can see any faulty behaviors in
the traces constructed with the game-based policy (i.e.,
all process transitions for players (process INQUIRY
SCAN) and random transitions for opponents (process
INQUIRY). In our experiment, RED 4.0 constructed a
symbolic trace leading to SUCCESS mode. This give
users confidence that the both parties indeed can hop
to the same frequency.

8.4 Coverage for confidence

In the 3rd and 4th rows of table 1, we respectively show
the code and functional coverage percentages of the sim-
ulation traces used in subsection 8.3. These coverage
percentages will be displayed at the bottom of our win-
dow when appropriate options for coverage are selected.
The percentage of code coverage grows monnotonously.
There are 23 LG-transitions in total. At the end of
simulation at step 8, only two LG-transitions have not
been covered by the symbolic trace. So in the end of the
simulation session of last subsection, we have achieved
21/23 in code coverage.

On the other hand, the percentage of functional cov-
erage estimation may increase and decrease during the
simulation. This is due to that the number of paths
in FCoverage and FFC may both increase in a step.
Nonetheless it still gives us a strong hint about the
progress of our simulation. In the end of the simulation
session of last subsection, we have achieved 2643 /4424 in
functional coverage. The number is lower than the num-
ber for code coverage simply because functional cover-
age is more precise.

8.5 Fast debugging with

Here we show how to find bugs in our Baseband model

with our . The bug is inserted as follows.

In transitions 19 and 20, variable id-sent is now in-
cremented when a packet is sent. However, this in-
crement is redundant because variable id_sent has al-
ready been incremented with variables train_sent and
train_switch together in transitions 21 to 24. This bug

10

would make id_sent to be incremented by 2 for each
packet sent, and causes the INQUIRY process timeout
quickly.

We generate directed traces with . The

simulator selects transitions that minimize the HD-
estimation to the goal state. For example, transition 20
which leads to TIMEOUT mode would be taken rather
than transition 19 that leads to SUCCESS mode, since
our goal state is TIMEOUT mode which means the ex-
istence of a bug. In our first trial, we generate a trace
that reaches the TIMEOUT mode, and fix the bug by
observing the trace. It costs RED 4.0 8.21 seconds on
an Pentium 1.7G MHz desktop with 256 MB memory
to generate the directed trace. However, if we do full
verification to generate a counter-example trace, it costs
RED 4.0 137.78 seconds.

With random traces, the time needed to find a bug
depends on how fast the random traces hit the bug. In
our experiment, we generate a random traces, but it
does not reach the TIMEOUT mode. Then we have to
generate a new trace from the step that may lead to the
TIMEOUT mode. Repeating this trial-and-error iter-
ations for six times, we finally reaches the TIMEOUT

mode. Our experiment shows that the is

more efficient in debugging the model as compared with

and full verification.

8.6 Full verification with [model-check |

Finally, we have finished simulating and debugging our
model, and gained confidence in the correctness of our
system. We can now proceed to the more expensive step

of formal model-checking with button |model-check

to see whether two Bluetooth units in complementary
modes will hop to the same frequency before timeout.
RED 4.0 uses 197 seconds on an Pentium 1.7G MHz
desktop with 256 MB memory to check this model.

9 Conclusion

This paper has described RED 4.0, a symbolic simulator
based on BDD-like data-structure with GUI for dense-
time concurrent systems. RED 4.0 can generate sym-
bolic traces with various policy, compute the coverage,

and manipulate the state-predicate. By properly con-
trol the width of symbolic traces, we have much better
chances in observing what we are interested. The use-
fulness of our techniques can be justified by our report
on experiment with the Bluetooth baseband protocol.
Future work may proceed in several directions. First,
we hope to derive new HD-estimation functions used
in directed trace generation, and support customized
automatic trace generation policy. These would help
users finding bugs with fewer simulation traces. Second,
the improvement on the precision of coverage estimation
is also an important issue in our future work. Finally,
we plan to make our GUI more friendly so that users
can have easy access to the power of formal verification.

References

[1] Asaraain, Bozga, Kerbrat, Maler, Pnueli, Rasse.
Data-Structures for the Verification of Timed Au-
tomata. Proceedings, HART’97, LNCS 1201.

[2] R. Alur, C. Courcoubetis, D.L. Dill. Model Check-
ing for Real-Time Systems, IEEE LICS, 1990.

[3] R. Alur, D.L. Dill. Automata for modelling real-
time systems. ICALP’ 1990, LNCS 443, Springer-
Verlag, pp.322-335.

[4] R. Alur, T.A. Henzinger, P.-H. Ho. Automatic

Symbolic Verification of Embedded Systems. in

Proceedings of 1993 IEEE Real-Time System Sym-

posium.

JR. Burch, E.M. Clarke, K.L. McMillan, D.L.Dll,
L.J. Hwang. Symbolic Model Checking: 102° States
and Beyond, IEEE LICS, 1990.

M. Bozga, C. Daws. O. Maler. Kronos: A model-
checking tool for real-time systems. 10th CAV,
June/July 1998, LNCS 1427, Springer-Verlag.

Bening, L. and Foster, H., i. Principles of Verifiable
RTL Design, a Functional Coding Style Supporting
Verification Processes in Verilog,li 2nd ed., Kluwer
Academic Publishers, 2001.

M. Brockmeyer, C. Heitmeyer, F. Jahanian, B.
Labaw. A Flexible, Extensible Simulation Environ-
ment for Testing Real-Time, IEEE, 1997.

J. Bengtsson, K. Larsen, F. Larsson, P. Pettersson,
Wang Yi. UPPAAL - a Tool Suite for Automatic
Verification of Real-Time Systems. Hybrid Control
System Symposium, 1996, LNCS, Springer-Verlag.
[10] G. Behrmann, K.G. Larsen, J. Pearson, C. Weise,
Wang Yi. Efficient Timed Reachability Analysis
Using Clock Difference Diagrams. CAV’99, July,
Trento, Italy, LNCS 1633, Springer-Verlag.

[11] R.E. Bryant. Graph-based Algorithms for Boolean
Function Manipulation, IEEE Trans. Comput., C-
35(8), 1986.

11

[12] E. Clarke, E.A. Emerson, Design and Synthesis of
Synchronization Skeletons using Branching-Time
Temporal Logic, in ”Proceedings, Workshop on
Logic of Programs,” LNCS 131, Springer-Verlag.

E. Clarke, O. Grumberg, M. Minea, D. Peled.
State-Space Reduction using Partial-Ordering
Techniques, STTT 2(3), 1999, pp.279-287.

P. Clements, C. Heitmeyer, G. Labaw, and A. Rose.
MT: a toolset for specifying and analyzing real-
time systems. in IEEE Real-Time Systems Sympo-
sium, 1993.

[13]

[14]

D.L. Dill. Timing Assumptions and Verification of
Finite-state Concurrent Systems. CAV’89, LNCS
407, Springer-Verlag.

C. Daws, A. Olivero, S. Tripakis, S. Yovine. The
tool KRONOS. The 3rd Hybrid Systems, 1996,
LNCS 1066, Springer-Verlag.

[15]

[16]

[17] E.A. Emerson, A.P. Sistla. Utilizing Symmetry
when Model-Checking under Fairness Assump-
tions: An Automata-Theoretic Approach. ACM

TOPLAS, Vol. 19, Nr. 4, July 1997, pp. 617-638.

S.J. Garland, N.A. Lynch. The IOA Language and
Toolset: Support for Designing, Analyzing, and
Building Distributed Systems. Technical Report
MIT/LCS/TR.

D. Harel et al., STATEMATE: A Working Envi-
ronment for the Development of Complex Reac-

tive Systems. IEEE Trans. on Software Engineer-
ing, 16(4) (1990) 403-414.

T.A. Henzinger, X. Nicollin, J. Sifakis, S. Yovine.
Symbolic Model Checking for Real-Time Systems,
IEEE LICS 1992.

[18]

[19]

[20]

[21] C.A.R. Hoare. Communicating Sequential Pro-
cesses, Prentice Hall, 1985.

[22] P.-A. Hsiung, F. Wang. User-Friendly Verifica-
tion. Proceedings of 1999 FORTE/PSTV, October,
1999, Beijing. Formal Methods for Protocol Engi-
neering and Distributed Systems, editors: J. Wu,
S.T. Chanson, Q. Gao; Kluwer Academic Publish-
ers.

[23] J. Haartsen. Bluetooth Baseband Specification,

version 1.0. http://www.bluetooth.com/

[24] K.G. Larsen, F. Larsson, P. Pettersson, Y. Wang.

Efficient Verification of Real-Time Systems: Com-

pact Data-Structure and State-Space Reduction.

IEEE RTSS, 1998.

[25] N. Lynch, M.R. Tuttle. An introduction to In-

put/Output automata. CWI-Quarterly, 2(3):219-

246, September 1989. Centrum voor Wiskunde en

Informatica, Amsterdam, The Netherlands.

P. Pettersson, K.G. Larsen, UPPAAL2k. in Bul-
letin of the European Association for Theoretical
Computer Science, volume 70, pages 40-44, 2000.

[26]

[27] R.S. Pressman. Software Engineering, A Practi-
tioner’s Approach. McGraw-Hill, 1982.

[28] C.-J.H. Seger, R.E. Brant Formal Verification by
Symbolic Evaluation of Partially-Ordered Trajec-
tories. Formal Methods in System Designs, Vol. 6,
No. 2, pp. 147-189, Mar. 1995.

[29] F. Wang. Efficient Data-Structure for Fully Sym-
bolic Verification of Real-Time Software Systems.
TACAS’2000, March, Berlin, Germany. in LNCS
1785, Springer-Verlag.

[30] F. Wang. Region Encoding Diagram for Fully Sym-
bolic Verification of Real-Time Systems. the 24th
COMPSAC, Oct. 2000, Taipei, Taiwan, ROC,
IEEE press.

[31] F. Wang. RED: Model-checker for Timed Au-
tomata with Clock-Restriction Diagram. Workshop
on Real-Time Tools, Aug. 2001, Technical Report
2001-014, ISSN 1404-3203, Dept. of Information
Technology, Uppsala University.

[32] F. Wang. Symbolic Verification of Complex Real-
Time Systems with Clock-Restriction Diagram, to
appear in Proceedings of FORTE, August 2001,
Cheju Island, Korea.

[33] F. Wang. Symmetric Model-Checking of Concur-
rent Timed Automata with Clock-Restriction Dia-
gram. RTCSA’2002.

[34] F. Wang. Efficient Verification of Timed Automata
with BDD-like Data-Structures. Technical Report,
ITS, Academia Sinica, 2002.

[35] F. Wang, P.-A. Hsiung. Automatic Verification on
the Large. Proceedings of the 3rd IEEE HASE,
November 1998.

[36] F. Wang, P.-A. Hsiung. Efficient and User-Friendly
Verification. IEEE Transactions on Computers,
Jan. 2002.

[37] F. Wang, C.-T. Lo. Procedure-Level Verification
of Real-Time Concurrent Systems. International

Journal of Time-Critical Computing Systems 16,
81-114 (1999).

[38] F. Wang, K. Schmidt. Symmetric Symbolic Safety-
Analysis of Concurrent Software with Pointer
Data Structures. IIS Technical Report, 2002, IIS,
Academia Sinica, Taipei, Taiwan, ROC.

[39] S. Yovine. Kronos: A Verification Tool for Real-
Time Systems. International Journal of Software
Tools for Technology Transfer, Vol. 1, Nr. 1/2, Oc-
tober 1997.

APPENDICES

A Definition of SCTA

A SCTA (Synchronized Concurrent Timed Automaton
is a set of finite-state automata, called process automata,
equipped with a finite set of clocks, which can hold non-
negative real-values, and synchronization channels. At
any moment, each process automata can stay in only
one mode (or control location). In its operation, one of
the transitions can be triggered when the corresponding
triggering condition is satisfied. Upon being triggered,
the automaton instantaneously transits from one mode
to another and resets some clocks to zero. In between
transitions, all clocks increase their readings at a uni-
form rate.

For convenience, given a set () of modes and a set
X of clocks, we use B(Q,X) as the set of all Boolean
combinations of inequalities of the forms mode = ¢ and
x — 1’ ~ ¢, where mode is a special auxiliary variable,
g€ Q,z,z' € XU{0}, “~” is one of <, <,=,>, >, and
c is an integer constant.

Definition 1 process automata A process automa-
ton A is given as a tuple (X, E,Q,I,u,T,\, 7,m) with
the following restrictions. X is the set of clocks. FE
is the set of synchronization channels. (@ is the set
of modes. I € B(Q,X) is the initial condition on
clocks. p: @ — B(0,X) defines the invariance con-
dition of each mode. T C @) x () is the set of transi-
tions. A : (E x T) + Z defines the message sent and
received at each process transition. When A(e,t) < 0,
it means that process transition ¢ will receive |\(e,)|
events through channel e. When A(e,t) > 0, it means
that process transition ¢ will send A(e, t) events through
channel e. 7: 7T + B(,X) and 7 : T +~ 2% respec-
tively defines the triggering condition and the clock set
to reset of each transition. [

Definition 2
SCTA (Synchronized Concurrent Timed Automata) An

SCTA of m processes is a tuple, (E, A1, As,..., Ap)
where FE is the set of synchronization channels and for
each 1 <p<m, A, = (Xp, E,Qp, Lp, ttp, Tpy Ap, Tp, Tp)
is a process automaton for process p.

A waluation of a set is a mapping from the set to
another set. Given an n € B(Q,X) and a valuation v
of X, we say v satisfies n, in symbols v |= 5, iff it is
the case that when the variables in 7 are interpreted
according to v, n will be evaluated true.

Definition 3 states Suppose we are given an SCTA
S =(E,A1,As, ..., Ap) such that for each 1 < p < m,
Ay =(Xp, B,Qp, Ip, tp, Tpy Ap, Tp, mp). A state v of S is
a valuation of {J, < ,,<,,, (Xp U {mode, }) such that
e v(mode,) € (), is the mode of process i in v; and
o for each € U <,pcpn Xp» v(z) € RT such that
R is the set of nonnegative real numbers and v =

A1 <p<m Ho(v(modey)). |

For any t € R™, v+t is a state identical to v except
that for every clock = € X, v(z)+t = (v+t)(z). Given

X C X, vX is a new state identical to v except that for
every ¥ € X, vX(z) =0.

Now we have to define what a legitimate synchroniza-
tion combination is in order not to violate the widely
accepted interleaving semantics. A transition plan is a
mapping from process indices p, 1 < p < m, to elements
in T, U {1}, where L means no transition (i.e., a pro-
cess does not participate in a synchronized transition).
The concept of transition plan represents which process
transitions are to be synchronized in the construction of
an LG-transition.

A transition plan is synchronized iff each output event
from a process is received by exactly one unique corre-
sponding process with a matching input event. For-
mally speaking, in a synchronized transition plan @,
for each channel e, the number of output events must
match with that of input events. Or in arithmetic,
Zlgpgm;é(p)#L)\(6, (}(p)) =0.

Two synchronized transitions will not be allowed to
occur at the same instant if we cannot build the syn-
chronization between them. The restriction is formally
given in the following. Given a transition plan @, a
synchronization plan ¥e for ® represents how the out-
put events of each process are to be received by the
corresponding input events of peer processes. Formally
speaking, ¢ is a mapping from {1,...,m}?> x E to N
such that Uq(p,p’, e) represents the number of event e
sent form process p to be received by process p’. A syn-
chronization plan ¥4 is consistent iff for all pand e € E
such that 1 < p < m and ®(p) #L, the following two
conditions must be true.

° Zlgp’gmﬁb(p’);éJ_ ‘Il‘b(papla 6) =)\((I)(p))y

o Zlgpgmﬁb(p)#L \I/.:p(pl,p, 6) = _A((}(p)))

A synchronized and consistent transition plan @ is
atomic iff there exists a synchronization plan ¥4 such
that for each two processes p, p’ such that ®(p) #L and
d(p') #L, the following transitivity condition must be
true: there exists a sequence of p = p1,p2,...,pr =
such that for each 1 < i < k, thereis an e; € E such that
either Wg(p;, pit1,ei) > 0 or W (pig1,piei) > 0. The
atomicity condition requires that each pair of meaning-
ful process transitions in the synchronization plan must
be synchronized through a sequence of input-output
event pairs. A transition plan is called an IST-plan
(Interleaving semantics Transition-plan) iff it has an
atomic synchronization plan.

Finally, a transition plan has a race condition iff two
of its process transitions have assignment to the same
variables.

Definition 4 runs Suppose we are given an SCTA § =
(E, A1, As, ..., Ap) such that foreach 1 <p <m, A, =
(Xp, E,Qp, I, pip, Tp, A\p, Tp, Tp). A run is an infinite se-
quence of state-time pair (vo,%0)(v1,%1) ... (Vg tk) - - - ..
such that vy = I and toty ...t isa monotonlcally

increasing real-number (tlme) divergent sequence, and
for all £ > 0,

e for all ¢t € [0,tp41 — k], v + t [
Algpgm I’L(Vk (mOdep)); and
e cither

— vg(mode,) = vpi1(modey) and v + (tg41 —
tk) = Vk41; OF

ii

— there exists a race-free IST-plan ® such that
forall 1 <p<m,
% either vj(mode,) = vjy;(mode,) or
(vk(mode,), v+ (mode,)) € T, and

* U + (tk—i-l — tk) ':
1<p<m;(p)L Tp(Vi(modep), Vi1 (modep))
an
* (Vg (tht1 -

tk))Concatlgpgm;é(p);éLﬂ-p(Vk (mOdep)7 Vi1 (mOdep)) =

Vg+1. Here concat(yy,...,7yn) is the new

sequence obtained by concatenating se-

quences vi, ..., in order. [

We can define the TCTL model-checking problem of

timed automata as our verification framework. Due to

page-limit, we here adopt the safety-analysis problem

as our verification framework for simplicity. A safety

analysis problem instance, SA(A,n) in notations, con-

sists of a timed automata A and a safety state-predicate

n € B(Q,X). Ais safe w.r.t. ton, in symbols A |= n, iff

for all runs (vo,t0)(v1,t1) - (Vk,th) .- . .. ,forallk >0,

and for all ¢ € [0,tg+1 — tg], vk + t =1, i.e., the safety
requirement is guaranteed.

B Model of Bluetooth baseband
protocol

Figures in the next two pages.

4| when ?signal_packet !signal_success mode_scan==INQUIRY_SCAN and fre_scan==fre_inq

when tick_clk_scan==1 and phase_clk_scan!=PhaseChange_c may tick_clk_scan=0l phase_

/_ when tick_clk_scan==1 and phase_clk scan==PhaseChange_c an@(base_scamMax_Fre
may tick_clk_scan=0; phase_clk_scan=0; fre_base_scan++1;

when tick_clk_scan==1 and phase_clk_scan==PhaseChange_c and fre |base_scame=Max_F
may tick_clk_scan=0; phase_clk_scan=0; fre_base_scan=0;

when ?signal_packet mode_scan!=INQUIRY_SC

update_fre_base_scan | o fre scani=fre_inq update_state_span
tick_clk_scan<=1

5

when ingscanTimer_<TwlngScan_c-1 may ingscanTimer_++1;

\ when ingscanTimer_==TwInqScan_c—1 may ingscanTimer_++1; r‘nod/eLscan:CONNECTE

K when TwingScan_c<ingscanTimer_+1 and inqscanTimer_<Tincha9§y ingsecanTime

when ingscanTimer_==TinqScan_c may inqscanTimer_=0; mode_scan=INQUIRY ;SCAN
fre scan=fre base scan:

Figure 5: INQUIRY SCAN

iii

when phase_clk_ing==PhaseChange_c and fre_base_inqg<Max_Fre may phase_clk_ing=0;

when phase—tlk_inq!=PhaseChange_c may phase_clk_ing++1; 10

update_fre_base_ing update_clkmod_ing

vhien phase_clk_ing==PhaseChange_c and fre_base_inq==Max_
prase —1nq=0;

when clkmod==2 may clkmod++1;

21

)) when clkmod==3 may clkmod=0;
when id_sent<IDSent may id_sent+

15
when clkmod==0 may clkmod++1;
22 fre_ing=fre_base_ing+offset+id_sent;
when id_sent£=IDSent and train_sent<TrajnSent
may id_sent#0; train /sent++1; 16
when clkmod==1 may clkmod++£1;

23 fre_ing=fre_base_ing+offset+id/sent;

when [d_sent==|DSent and train_sent==TrainSent and
train_pwitch<TrainSwitch and ofiset==TRAIN_A
may id_sent=0; train_sent=0; trajn_switchi++1;
offset=TRAIN_B;

25

when iq_sent_zleSenF and.train_sentzzTrainSe tfre_mod_inq
and train_switch==TrainSwitch

train_switch<TrainSwitch and offsetS=TRAIN/B when fre_ing<=Max_Fre may 17
may id_sent=0; train_lsent=0; train . fre_ing=fre_base_ing+offset+id_sent;

offset=TRAIN_A;

18
when fre_ing>Max_Frg may
fre_indcfre_base_ingfoffset+id_sent—4;

when Isignal_packet ?signal_success
may id_sent++1;

check_timeout_in Isi ; .
! _INQ \ o9 when Isignal_packet true may id_sent++1, send_ing

Figure 6: INQUIRY

iv

