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Abstract

This paper studies statistical database problems for two-dimensional tables whose
regular cells, row sums, column sums and table sums may be suppressed. Using graph-
theoretical techniques, we give optimal or efficient algorithms for the query system
problem, the adversary problem and the minimum complementary suppression prob-
lem. The three problems are considered for the case of protecting a single cell or a sum
of cells against exact or interval disclosures in a positive or general table.

Previously, graph-theoretical techniques are known for the three problems when the
row, column and table sums are not suppressed, and when the data are being protected
against exact disclosures. This paper provides two generalized graph-theoretical tech-
niques, which unify previous results, to solve the three statistical database problems
without the above constraints.

Keywords: statistical databases, cell suppression, exact disclosure, interval disclosure,
graph theory, complementary suppression.
1 Introduction

In many applications [AW89, C082, Cox81, Cox80, Cox95, dCDASO94, DS83, Den83, 1J94,
KGA92], it is a common practice to organize data in a two-dimensional table. In addition to

*An extended abstract of part of an earlier version of this paper appears in [HK97].
tSupported in part by NSC Grant 88-2213-E-001-026.
tSupported in part by NSF Grant CCR-9531028.



lindex || 1] 2| 3] 4] 5| 6 sum |
1 2 4 7 3 3 2 21
2 4 3 9 4 2 4 26
3 1 81 6| 5| 7| 3 30
4 81 9| 7| 6] 9| 5 44
5 41 4| 5| 9| 8| 2 32

| sum [ 1928 [34[27[29[16] 153 |

Table 1: A complete table. The row sums are recorded in the last column, the column sums
in the last row, and the table sum at the bottom rightmost cell. The upper and lower bounds
of cells are omitted here.

regular cells, a table often includes the marginal cells, i.e., the row, column and table sums.
For security reasons, some cells in a published table may be suppressed. However, if the
values of enough cells are reported, the exact or bounds of value of a suppressed cell may be
determined from the published data. For example, if a cell is the only suppressed cell in a
given row, then its value can be deduced by subtracting the total value of the un-suppressed
cells in that row from the row sum. Therefore, to achieve desired security, we may need to
suppress additional cells so that the values of the original suppressed cells are protected.

This example addresses the problem of whether leaked information can be found in
individual cells. More generally, a piece of sensitive information can be defined as a function
f of suppressed cells. If the value or bounds of f can be determined by the values and
bounds of un-suppressed cells, then the information f is leaked. Larger classes of functions
correspond to tighter security requirements. For example, linear combinations of suppressed
cells contain more information than sums of suppressed cells. Thus, protecting the former
class of functions provides a higher level of data security than protecting the latter. In this
paper, we focus on when f is a sum of individual cells [Cox80], though our method can be
extended for f to be an arbitrary analytic function®.

Example I A complete table is illustrated in Table 1 and its published version in Table 2.
Let T'(i,j) be the cell at the intersection of the ith row and the jth column. The function
T(2,3)+7T(2,6), a sum combination of suppressed cells in Table 2, can be uniquely evaluated
in Table 2 because T'(2,2) always equals 3, T'(2,4) always equals 4 and T'(2,2) + 7(2,3) +
T(2,4) +T(2,6) always equals 20. Hence the information represented by 7°(2, 3) +7°(2, 6) is

'We say that f is an analytic function of (T,X,Y) if it is a power series of the cells z; such that the
convergence radius is co [Kao97b]. For example, sin(z;-z2 — 6.5-23) + 24 is an analytic function.



‘indexH 1‘ 2‘ 3‘ 4‘5‘ 6Hsum‘

1 41 71 3|3 21
2 4 2 26
3 81 6] 5|7 30
4 81 9 6 3

3 41 41 5 9 2 32

| sum [[19]28[34[27] [16] 153 ]

Table 2: The published version of Table 1. Each blank cell is a suppressed cell. The upper
and lower bounds of the cells are omitted here.

not protected.

We investigate the following three statistical database problems.

e The query system problem. This detection problem is of concern to the table maker,
who has the complete version of a table and the set of cells to be suppressed.

Input: A security requirement, a table with the values and bounds of all cells, and the set
of all suppressed cells in the published version of the table.

Output: We wish to decide if any nontrivial information as defined by the given security
requirement are protected in the published version of the table.

e The adversary problem. This detection problem is of concern to an adversary who only
has the published version of a table and desires certain nontrivial information.

Input: A function on values of suppressed cells which has an undisclosed value, and the
published version of a table where the values of some cells are suppressed.
Output: We wish to find out certain nontrivial information of the given function.

e The minimum complementary suppression problem. This protection problem is also of
concern to the table maker.

Input: A security requirement, a table with the values and bounds of all cells, and the set
of all sensitive cells in the published version of the table.

Output: We wish to report a set of the smallest number of additional cells, which are called
complementary suppressed cells, whose suppression protects all the nontrivial information as
defined by the security requirement in the published version of the table.

These three problems have been extensively studied for the case where row, column
and table sums are not allowed to be suppressed [Gus87, Gus88, HK96, Kao95, Kao97a,
Kao97b, KG93]. Some work explored the case where row, column and table sums may be
suppressed [AW89, MM96, MM97, MMRO1]. It is further argued [MMR91] that it may be

3



best to suppress only additional row and column sums to solve the minimum complementary
suppression problem because such data are derived data and thus the table maker is more
comfortable with suppressing them.

Using graph-theoretical techniques, this paper studies these three database security prob-
lems. Our work subsumes most of the best previous results by obtaining optimal or more
efficient algorithms for general problems. Detailed comparisons are given throughout the pa-
per and a summary is given in Section 2.2. Our graph-theoretical techniques are of interest
in their own right and may be useful for studying other database security problems.

The rest of this paper is organized as follows. Section 2 presents definitions, summary
of results, a useful data structure and general properties. Section 3 discusses the query
system problem. Section 4 tackles the adversary problem. Section 5 solves the minimum
complementary suppression problem. Section 6 considers additional security requirements.

2 Preliminaries

2.1 Definitions

Let T denote a two-dimensional table with n rows and m columns. The rows and columns
are indexed from 1 to n and from 1 to m, respectively. Let T'(i,j) denote the value of the
cell at the intersection of row 7 and column j. Such cells are called the regular cells. Let
row sum i refer to the total value of regular cells in the ith row, i.e., >7* | T'(4, k); similarly,
column sum j is the total value of regular cells in the jth column. The table sum is the total
value of all regular cells in 7". The row, column and table sums are the marginal cells. For
this paper, we assume each cell value is an integer. It can be easily extended to the case
when each cell value is a floating-point number with a fixed precision.

A table with suppressions, denoted by (T, X,Y"), consists of T" as well as a set X of regular
cells and a set Y of marginal cells whose values are suppressed in the published version of
T. As part of (T, X,Y), for each cell a lower bound and an upper bound are also given to
indicate the possible range of the value that cell may have. A cell is unbounded if its lower
and upper bounds are —oo and +oo, respectively. A cell that is not unbounded is bounded.
A cell is positive if its lower bound is at least 0. A table with a bounded cell is called a
bounded table. Tt is called positive if all the cells are positive. If all cells have no bounds (or
equivalently with the lower bound —oo and the upper bound +o0), then it is called general.

Let Tx,y denote the published version of (7, X,Y’), where the information of whether



it is bounded, general or positive, and the bounds of all suppressed cells are also given in
addition to the values of all the un-suppressed cells.

A legal assignment for (T, X,Y) is an assignment of values to all the cells in 7" such that
(1) the assigned value for an un-suppressed cell equals its value in 7', (2) the assigned value
for a suppressed cell is within its specified lower and upper bounds, (3) the total assigned
value of regular cells in a row (respectively, column) equals its row (respectively, column)
sum, and (4) the total assigned value of marginal cells in the table equals the table sum.
Note that the cell values in T form a legal assignment for (T, X,Y). A legal value for a
suppressed cell in (7, X,Y") is the value of this cell in a legal assignment. Let f be a function
on suppressed cells. A legal value for f is the value of f by assigning the legal values of the
suppressed cells in f in some legal assignment.

Let T be the value of f in T. We say that f is protected in (T, X,Y) against ezact
disclosure if there is a legal assignment for (7', X,Y’) such that the legal value of f in this
assignment is not 7. That is, the information represented by f cannot be uniquely deter-
mined using published information. Let low; and high; be two positive numbers. Given an
open interval (T — lows, Ty + highy), we also say that f is protected in (T, X,Y) against
interval disclosure in (T — lows, Ty + highy), if there is a legal assignment such that the
legal value of f in this assignment is not in the open interval (T — lowy, Ty + highy). Note
that the exact disclosure protection is a special case of the interval disclosure. It is usual the
case that the interval is specified in a percentage over Ty [Cox95], e.g., an interval of 60%
means lowy = highy = T * 60%.

The following fact can be easily verified.

Fact 1

1. If a function is protected against interval disclosure, then it is also protected against
exact disclosure.

2. If a function is not protected against exact disclosure, then it is also not protected
against any interval disclosure.

A security requirement is specified by the the set or type of functions as well as whether
it is exact or interval disclosure that we desire to protect. This paper focuses on functions
that are sum combinations, i.e., in the form of Y%, d;-z; of (T, X,Y) where for all 4, d; is 0
or 1, and z; is a cell of (T, X,Y"). This paper also studies functions that are single cells, i.e.,
in the form of z where z is a cell of (T, X,Y).
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Example IT A complete table T is illustrated in Table 1 and its published version in Table 2.
Let T(i,7) be the cell at the intersection of the ith row and the jth column. Assume that T’
is a positive table. The function f = T'(3,6) is protected against exact disclosure in Table 2
as its value can be 1, 2, 3 or 4. However f is not protected against interval disclosure in the
interval (0, 6).

2.2 Summary of Results

For the query system problem, Gusfield [Gus88| gives an algorithm for checking whether a
single cell in a positive table is protected against interval disclosure by computing a max flow
in a flow network which runs in time O((n + m)3). In his setting, no suppressed marginal
cell is allowed. In this paper, we show an algorithm to check the same protection for a sum
combination in a positive table with suppressed marginal cells by computing a max flow in a
simpler bipartite flow network?, which takes time O(a-|X |+ a?-1/| X|) where o = min{n, m}
and X is the set of suppressed cells.

Duarte de Carvalho et al. [dCDdS094] first shows that in a general table, a single cell is
protected against exact disclosure if and only if it is protected against any interval disclosure.
They give an O((n + m)?)-time algorithm to check whether a single cell is protected in a
general table. Kao [Kao096] solves the same problem in O(n + m + |X|) time, where X is
the set of suppressed cells. Malvestuto, Moscarini, and Rafanelli [MMR91| and Malvestuto
and Moscarini [MMO97] give algorithms to check whether a sum combination in a positive or
general table is protected against exact disclosure in time that is linear in the input size.
In this paper, we show a linear-time algorithm to check whether a sum combination in a
bounded table is protected against exact disclosure. A summary of results on the query
system problem is shown in Table 3.

Note that for the adversary problem, the values of the suppressed cells are not part of
the input. However, they are inputs for solving the query system problem. There are two
versions of the adversary problem. Given T’xy and a sum combination S of suppressed cells,
the adversary problem of evaluating invariants is to test whether S is protected against exact
disclosure and to compute its exact value if it is not so. The adversary problem of finding
bounds is to find tight lower and upper bounds of S. It is trivial that the adversary problem
of evaluating invariants is a special case of the adversary problem of finding bounds. We
are unaware of any result for solving the adversary problem of finding bounds. We show a

2The definition of a bipartite flow network is given in Section 3.1.



interval disclosure exact, disclosure

previous | in a positive table, in a positive or general table,
without suppressed marginal cells, | a sum combination,
a single cell, linear time [MM97, MMRI1];
max flow time [Gus88];

ours in a positive table, in a bounded table,
a sum combination, a sum combination,
bipartite max flow time; linear time;

Table 3: A summary of results on the query system problem.

finding bounds evaluating invariants

previous | unknown; in a bounded table without
suppressed marginal cells,

a set of row/column combinations,
linear time [Kao97al;

ours in a positive table, in a bounded table,

a sum combination, a set of row/column combinations,
bipartite max flow time; | linear time;

Table 4: A summary of results on the adversary problem.

polynomial-time algorithm to solve this problem for a sum combination in a positive table
by finding a max flow in a bipartite flow network. For the adversary problem of evaluating
invariants, Kao [Kao97a] shows a linear-time algorithm when S is a sum of cells in the same
row or column of a bounded table without suppressed marginal cells. We extend his result
by allowing suppressed marginal cells. A summary of results on the adversary problem is
shown in Table 4.

For the minimum complementary suppression problem, results are known only for pro-
tecting single suppressed cells against exact disclosure. Malvestuto and Moscarini [MM97]
and Malvestuto, Moscarini, and Rafanelli [MMR91] consider the case when the additional
complementary cells are all marginal cells. Their algorithms run in linear time on a positive
table for protecting all suppressed cells against exact disclosure. We show a linear-time al-
gorithm that protects a selected subset of suppressed cells in a general table. Our algorithm
also solves the problem of deciding whether it is possible to protect the given suppressed
cells by only adding complementary marginal cells.

Gusfield [Gus87] solves the minimum complementary suppression problem when the ta-
ble is strictly positive, i.e., all cell values are greater than 0, and the additional complemen-
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suppress only additional may suppress any additional cells
marginal cells

previous | in a positive table, (1) in a strictly positive table,
protect all suppressed cells, without suppressed marginal cells,
linear time [MM97]; protect all suppressed cells,

linear time [Gus87];

(2) in a general table,
protect only one cell,
min-cost flow time [Cox95];

ours in a general table, in a general table,
protect selected suppressed cells, | protect selected suppressed cells,
deal with a special case, deal with a special case,
linear time; linear time;

Table 5: A summary of results on the minimum complementary suppression problem.

tary cells are all regular cells. He gives a linear-time algorithm to protect all suppressed
cells when there is no suppressed marginal cell. Cox [Cox80] gives an algorithm to pro-
tect only one suppressed cell in a general table without suppressed marginal cells. His
algorithm needs to find a minimum-cost flow in a constructed flow network, which takes
O((|X|-log(n+m))-(|X |+ (n+m)-log(n+m))) time [AMO93], where X is the set of origi-
nally suppressed cells. Duarte de Carvalho et al. [dCDdS094] assigns positive weights to all
potential complementary cells. They show a heuristic algorithm based on branch-and-bound
to find a set of complementary cells in a general table with the minimum sum of weights.
This paper shows a linear-time algorithm to find a minimum set of complementary cells to
protect a subset of suppressed cells in a general table that may has suppressed marginal
cells. We also show an algorithm to deal with the special case that the table sum cannot be
a complementary cell. A summary of results on the complementary suppression problem is
shown in Table 5.

2.3 Extended Tables

Previously, graph-theoretical techniques [Gus87, Gus88, HK96, Ka095, Kao97a, Kao97b,
KG93] are developed for solving security problems on a statistical table without suppressed
marginal cells. Here we provide the following transformation from a table with suppressed
marginal cells to an equivalent table without suppressed marginal cells. Through the trans-
formation and additional graph-theoretical properties, we can apply previous techniques to



‘indexH 1‘ 2‘ 3‘ 4‘ 5‘ 6‘ 7Hsum‘
1 2 4 7 3 3 2| —21 0
2 4 3 9 4 2 4| —26 0
3 1 8 6 5 7 31 -30 0
4 8 9 7 6 9 5| —44 0
5 4 4 5 9 8 2| —32 0
6 —-19 | —28 | =34 | =27 | —29 | —16 | 153 0

[sum | O] of of 0] 0] 0] Of 0}

Table 6: The extended table of Table 1.

‘indexH 1‘ 2‘ 3‘ 4‘ 5‘ 6‘ 7Hsum‘
1 4 7 3 3 -21 0
2 4 2 —26 0
3 8 6 5 7 -30 0
4 8 9 6 5 0
5 4 4 5 9 2| —32 0
6 —-19 | —28 | =34 | =27 —-16 | 153 0

[sum | O] of of 0] 0] O] Of O]

Table 7: The extended table with suppressions of Table 2.

solve database security problems where the input table has suppressed marginal cells.
The extended table T' for T consists of n + 1 rows and m + 1 columns, where

T(i,j) 1<i<n&l1<j<m
—Yp o T(k,j) i=n+1&1<j<m
-SSP TG k) 1<i<n&j=m+1;
Tn+1,m+1) i=n+1&j=m+1.

T'(i, ) =

The row, column and table sums in 7" are always 0 regardless the cell values in 7.

Example III Table 6 gives the extended table of Table 1. Table 7 is the extended table
with suppressions of Table 2.

Let min7” be the minimum value of all cells in an extended table 7”. Given a table T
and its extended table T”, the positive extended table T" is

T"(i,7) =T'(4,7) —minT" 1<i<n+1&1<j<m+1.



lindex || 1| 2] 3] 4| 5] 6] 7] sum]
1 46 | 48 | 51| 47| 47| 46| 23 308
48 | 47| H3 | 48| 46| 46| 18 308
45| 52| 48| 49| 51| 47| 14 308
52| 53| b1 50| 53| 49 0 308
48 | 48 | 49| 53| 52| 46| 12 308
251 16| 10| 14| 15| 28| 197 308

| sum || 264 | 264 [ 264 | 264 | 264 | 264 | 264 || 1848

O O x| W N

Table 8: The positive extended table of Table 1.

lindex || 1] 2] 3] 4] 5] 6] 7] sum

1 48 | 51 | 47| 47 23 || 308
2 48 46 18 || 308
3 52| 48| 49| 51 14 | 308
4 22| 53 20 49 308
) 48 | 48 | 49| 53 46 | 12 || 308
6 25| 16| 10| 14 28 | 197 || 308

| sum || 264 | 264 [ 264 | 264 | 264 | 264 | 264 || 1848 |

Table 9: The positive extended table with suppressions of Table 2.
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The row, column and table sums in 7" are then computed. It is a fact that the value of each
cell in T" is positive.

Let £(Y) denote the set of cells in 7" that correspond to the suppressed marginal cells
in T. For (T, X,Y) (respectively, Tx y), the corresponding extended table with suppressions
(respectively, extended published table) is (1", X U &(Y),0) (respectively, T ¢yyg)- The
bounds for each suppressed cell in 7" are the same as those of its corresponding cell z in
T if z is a regular cell or the table sum. If z is a row or column sum in 7°, then the lower
(respectively, upper) bound of z in 7" equals the upper (respectively, lower) bound multiplied
by —1. Note that since z is a cell in 7', z cannot be corresponding to a row, column or table
sum in T”. We similarly define a positive extended table with suppressions.

Let T)’(Ué(y),@ be an extended published table with finite lower bounds on all suppressed
cells. Let minT% ¢ g be the minimum value of the values of all un-suppressed cells and
the lower bounds of all suppressed cells. The positive extended published table is

Yuen),0 (5 7) = Txoepny oty 7) — min Ty ey g for all un-suppressed cells (3, 7).

The bounds for each suppressed cell in T)’éug(y),@ are similarly defined as the ones for positive
extended tables.

Example IV Table 8 gives the positive extended table of Table 1. Note that the extended
table of Table 1 is shown in Table 6 whose minimum cell value is —44. Table 9 illustrates
the positive extended table with suppressions of Table 2.

A function f'(24,...,z,) over suppressed cells in (7", X U&(Y),0) is equivalent to a
function f(z1,...,2x) over the suppressed cellsin (7, X,Y) if (1) z; = z, where z; is a regular
cell or the table sum in 7" and (2) z; = —z] where z; is a row or column sum in 7. A function
(Y, ..., 2z}) over regular suppressed cells in (7", X U&(Y),0) is equivalent to f'(z1, ..., z})
over regular suppressed cells in (77, X U£(Y),0) if 2! = 2z — min7". The function f” is also
equivalent to f.

Example V Let T be the published table in Table 2. Let 7" be the extended table of T’
as shown in Table 7. Then min7" = —44. Let T(i,sum) and 7T'(sum,j) denote the ith
column sum and the jth row sum of 7', respectively. Let 7'(sum,sum) denote the table sum
of T. The function f =T(1,1) +T(2,4) + T'(4,sum) is a sum combination over suppressed
cells in 7. The function f" = T'(1,1) +7"(2,4) — T'(4,7) is equivalent to f. The function
ff=T"1,1)+T7"(2,4) —T"(4,7) + min 7" is equivalent to both f’ and f.

11



Intuitively, (7, X,Y), (T, X U&(Y),0) and (T", X UE(Y), D) contain essentially the same
information, which is characterized formally in the next lemma.

Lemma 2

1. Assume that T is a general table. A function over suppressed cells of (T,X,Y) is
protected in (T, X,Y) if and only if its equivalent function is protected in (T', X U
§(Y), 0).

2. Assume that T is a positive table. A function over suppressed cells of (T,X,Y) is
protected in (T,X,Y) if and only if its equivalent function is protected in (T", X U
(Y),0).

Proof. Straightforward. O

2.4 Suppressed Graphs

A mized graph is one where each edge (u,v) may be directed from u to v, directed from v to
u, or undirected. The suppressed graph Gr x of a table T' with regular suppressed cells X is
a bipartite mixed graph with the following two sets A and B of vertices and the following set
E of edges. The vertices in A = {ry,...,r,} are called the row vertices, where r; corresponds
to row ¢; the vertices in B = {cy,...,cn} are the column vertices, where c; corresponds to
column j. For each T'(7,j) € X, there is an edge e = (r;,¢;) € E. If the value T'(4, j) equals
its lower bound, then e points from r; to c¢;, denoted by <7;,c;>. We say that <r;,c;>
is an incoming edge for the vertex c; and an outgoing edge for the vertex r;. If the value
T(i,j) equals its upper bound, then e points from ¢; to r;, denoted by <c;,;>. Otherwise,
e is undirected and is denoted by (r;,c;) or (¢;,r;). Note that if T is general, then Gr x is
undirected. We define the undirected version of Gr, x, denoted by u(G)r x, by replacing each
directed edge of G x with an undirected edge with the same endpoints. For convenience,
an edge is identified with its corresponding cell, and a vertex with its corresponding row or

column.

Example VI Figure 1 shows the suppressed graph of Table 2. We assume that all the
suppressed marginal cells are unbounded and that the lower and upper bounds of every
suppressed regular cell are 1 and 9, respectively. Thus Figure 1 shows a mixed graph.

Figure 2 shows the suppressed graph of Table 2 if there is no bound on the cells. Since
the table is general, the suppressed graph is undirected.
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Figure 1: The suppressed graph of Table 2. We assume that all the suppressed marginal
cells are unbounded and that the lower and upper bounds of every suppressed regular cell
are 1 and 9, respectively.

Figure 2: The suppressed graph of Table 2 if there is no bounds on the cells. Since the table
is general, the suppressed graph is undirected.

Throughout the paper, (T, X,Y) is an input to the query system problem and the mini-
mum complementary suppression problem, while T’x y is an input to the adversary problem.
However, since G1 x, G717 xug(y) and Grr xuey) usually have smaller representations than
(T, X,Y) and Tx y, we always convert the tables into their suppressed graphs, where appro-
priate, to obtain sharper complexity bounds.

2.5 Properties

In a mixed graph, a cycle of length k is a sequence of vertices vy, v, ..., vx_1 such that for
each i, either (i, Vit1 mod k) OF <Uj, Vit1 mod £> is an edge of the graph, which is called the
ith edge of the cycle. A simple cycle is one such that v; # v, unless ¢ = j. It is well-known
that each cycle in a bipartite graph has an even number of edges.

Lemma 3 [Gus87] Given a general table (T, X,0), if an edge of u(G)r.x is not contained
i any cycle, then it s not protected against exact disclosure.

Remark: Lemma 3 is true regardless the lower and upper bounds of each cell in 7.
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Given G x, its undirected version u(G)r, x, an edge e of u(G)r x and a cycle C containing
e, an edge €' € C is the same parity with e if e and €' are both either odd numbered or
even numbered in C. Let e* be an edge of u(G)rx and let C(e*) be a cycle of u(G)r x
containing e*. Let C;(e*) (respectively, Cy(e*)) be the set of edges of C'(e*) that are the same
(respectively, different) parity with e*. Let U, (respectively, Le-) be the upper (respectively,
lower) bound of the cell corresponding to e*. Let T,+ be the value of ¢* in 7.

o C(€")inc = min{min.cc, () {Ter — Ler }, Mineccy(er){Uer — Tev}} and €*(C)mae = Ter +

)
)
)
)

mc

dec — min{mineecl(e*){Ue* — Te*}, mineecz(e*){Te* — Le*}} and 6*(0):”“” = ex —

dec

Lemma 4

1. There is a legal assignment for (T, X,0) such that the value of e* in the assignment is
e*(C)maz-

2. There is a legal assignment for (T, X, () such that the value of e* in the assignment is

3. For each value w in the close interval [€*(C)min, € (C)maz], w is a legal value for the

cell corresponding to e*.

Proof. Note that e* € Cy(e*). Let A be the legal assignment for (T, X, () whose assigned
values for each suppressed cell equals its that of its corresponding cell in 7. Let w be
a positive integer. Let A’ be the legal assignment of (7, X, () by applying the following
modifications to A:

e The value of a cell corresponding to an edge in C;(e*) is decreased by w.
e The value of a cell corresponding to an edge in Cs(e*) is increased by w.

e The value of a cell not corresponding to an edge in C(e*) is unchanged.

It is trivial to see that if the value of each cell in A’ is within the bounds of this cell, then A’ is
also a legal assignment for (T, X, (). It is also trivial to see that if —C'(e*)gee < w < C'(€")ine,
then the value of each cell in A’ is within the bounds of this cell. Hence this lemma, follows.
0

Remark: For the extremal case in Lemma 4(3), the close interval can be chosen as [—o0, +00].
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Lemma 5 Let A be a legal assignment for (T, X,0). Given a suppressed cell e € X, let A,
be the value of e in A. Let T, be the value of e in T. For each value w in the close interval
min{A,, T.}, max{A., T.}|, there is an legal assignment for (T, X, () whose assigned value
for e isw'.

Proof. In order for A to be a legal assignment, if A, > T, (respectively, A, < T.),
then there is a a cell e; € X such that e and e; are in the same row or column and
A, < T, (respectively, Ao, > T,,). This lemma is trivially true when A, = T,. Assume
without loss of generality, A, > T.. Hence there is a cell e; € X such that A, < T,,.
Following the same reasoning, there is a cell e, € X such that such that e; and ey are in
the same row or column and A., > T,,. Thus we can find ej,es,..., e, = e all satisfying
the above. This corresponds to a cycle in the suppressed graph. Hence k is even. Let
—T,.}. Note that § > 0. We perform the following
modifications to the original legal assignment to obtain a new assignment:

0= m1n1§i§k/2{Te2.r1 - Ae2.i,1;Ae2.i

e for each ¢ such that 1 < ¢ < k/2, replace the assigned value for es;_1 by A, o+ 6
e for each i such that 1 < ¢ < k/2, replace the assigned value for es; by A,,, —J in A.

It is clear the resulting set of assigned values still forms a legal assignment. Thus for each
value w' in [A, — 0, A.|, there is a legal assignment such that the value of e in this assignment
is w'. By applying the same argument, we can find §; > 0 such that for each value w” in
[Ae — 0 — 61, Ae — ¢, there is a legal assignment such that the value of e in this assignment
is w”. By repeatedly applying this argument, this lemma follows. 0O

Theorem 6 Let e be an edge of u(G)r,x. There exists a close interval [emin, €maz] Such that
a value w is a legal value of e if and only if w is in [emin, €maz)-

Proof.  The only if part follows from Lemma 5. Let C be the set of cycles containing
the edge e. Let emar = maxcec €(C)maz and let epy, = mingee €(C)pmin. Hence the if part
follows from Lemma 4. O

3 The Query System Problem

Recall that given (7, X,Y") and a set S of sum combinations of (T, X,Y), the query system
problem is to find the sum combinations in S that are not protected against exact or interval
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disclosure. We fist give a result for checking a sum combination of suppressed cells in a
positive table against arbitrary interval disclosure. We then give a faster algorithm for
checking a set of sum combinations of suppressed cells in a bounded table against exact
disclosure.

3.1 Protected Against Interval Disclosure

This section assumes positive tables. The row residual for a row whose row sum is not
suppressed equals the the total value of the suppressed regular cells in that row. We similarly
define column residuals. Note that all the row and column residuals are defined in the positive
extended T ¢yg- Let mr,x be the sum of the row residuals in (7", X U{(Y'),0). The flow
graph of uw(G)rm xuey)y with lower bounds, denoted as Fr» xyg(v), is a directed graph defined
as follows:

e The vertex set is the vertex set of u(G)q, xue(y) Plus two additional vertices s and t.

e The edge set is the union of {<s,r>| r is a row vertex}, {<c,t>| ¢ is a column vertex}
and {<r,c>| (r,c) is an edge of u(G)r» xuev)}-

Note that s has no incoming edges and ¢ has no outgoing edges. Note that u(G)7r» xuey)
is bipartite network [AMO93] as each of the edges, excluding those starts s or ends ¢, has
an endpoint being row vertex and has the other endpoint being a column vertex. In a flow
graph, a lower bound and a capacity are assigned to each of its edges as follows:

e Given an edge in the form of <s,r;>, let its lower bound and capacity both be the row

residual of row 7;.

e Given an edge in the form of <¢;,t>, let its lower bound and capacity both be the

column residual of column c;.

e Given an edge in the form of <r;, ¢;>, let its lower bound (respectively, capacity) be
the lower (respectively, upper) bound of its corresponding cell in 7.

Example VII The flow graph for the positive extended table with suppression in Table 9
is shown in Figure 3. The capacities of the edges <s,r1>, <s,7r9>,..., <s,76> are 92, 194,
92, 104, 52 and 15, respectively. Note that these values equal the row residuals of rq, ...,
re, respectively. The capacities of the edges <ci,t>, <co,t>,...,<cr, t> are 91, 47, 104,
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Figure 3: The flow graph of Table 9.

48, 120, 139 and 0, respectively. Note that these values equal the column residuals of ¢q,
..., c7, respectively. The lower bounds of these edges equal their capacities. For the rest of
the edges, their lower bound and capacity are the same with the lower and upper bounds of
their corresponding cells in Table 9.

A flow in the flow graph with lower bounds is an assignment of non-negative weights to
the edges such that

e For each edge, the weight is at most its capacity and at least its lower bound.

e For each vertex that is neither s nor ¢, the sum of the weights of its incoming edges
equals that of its outgoing edges.

e The sum of the weights of the outgoing edges of s equals that of its incoming edges of
t. This value is called the value of this flow.

A maz flow is a flow with the maximum value among all flows.

Lemma 7 A maz flow of Frn xue(y)y whose value to be equal to wpn xugyy corresponds to a
legal assignment of (T", X U&(Y),0) and vice versa.
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Proof. We assign the value of a cell equals the assigned weight of the corresponding edge
in the found max flow. It corresponds to a legal assignment of (7", X U £(Y), () since each
assigned value is within the lower and upper bound of each suppressed cell. Further, the
constraints imposed on the flow forces the values in a row (respectively, column) to add up
to be equal to its corresponding row (respectively, column) sum. Using a similar argument,
it is trivially to see a legal assignment corresponds to a max flow with the value mr» xue(v)-
0

Given a sum combination S, Fir» xuevy and a value k, the k,S-flow graph Fr» xuevy (K, S)
is a flow graph obtained by revising Fr» xyugy) as follows:

e We add two new vertices r and c.

e We add two new edges <s,r> and <c,t> whose lower bound and capacities are both

k.

e For each edge <r;,c;>€ S, we remove the edge <r;,c;> and then add the two edges
<r;,c> and <r,c¢;>. The capacity and lower bound of <r;,c> equal the upper and
lower bounds of <r;, ¢;>, respectively. The capacity and lower bound of <r,¢;> also
equal the upper and lower bounds of <r;, ¢;>, respectively. For any fixed ¢, if there are
multiple edges of the form <r;, ¢> or <r, ¢;> added, then we keep only one copy whose
lower bound (respectively, capacity) equals the sum of the lower bounds (respectively,
capacities) of all of the copies.

Example VIII Let (7", X', () be Table 9. Let £ = 101 and S = T"(2,3)+7"(2,4). Figure 4
shows the k, S-flow graph of Table 9. The lower bound and the capacity of the edges <s, r>
and <c¢,t> are both 0 and k, respectively. The lower bound (respectively, capacity) of
the edge <7y, c> equals the sum of the lower bounds (respectively, capacities) of the edges
<rg,c3> and <ry, ¢s> in Figure 3. The lower bounds (respectively, capacities) of the edges
<r,c3> and <r,cs> equal the lower bounds (respectively, capacities) of the edges <rg, c3>
and <ry, c4>, respectively.

Lemma 8 There exists a maz flow of Frn xuevy(k,S) whose flow value is k + mr x if and
only if there is a legal assignment of (T, X,Y") such that the legal value of S in the assignment
15 k.
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Figure 4: Let (T", XUE(Y'), @) be Table 9. Let £ = 101 and S = 77(2,3)+7"(2,4). Illustrating
the k, S-flow graph for (7", X U£(Y), 0).

Proof. We first use the positive extended table technique if Y # (). Hence we can assume
Y = 0 in the discussion. First we see that a max flow f' in Frv xuev)(k, S) with the flow
value k + mp x corresponds to a max flow f in Fprn xyey) with the flow value 77 x, and vice
versa. Hence this lemma follows from Lemma 7. O

Theorem 9 Given an open interval (w1, ws) and a sum combination S of suppressed cells in
a positive table (T, X,Y), we can check whether it is protected against interval disclosure in
the open interval (wy, wy) in O(a-(|X|+|Y]) + /| X| + |Y|) time, where & = min{n, m}.

Proof. Let Ts be the value of S in T. Note that Ts € (w;,ws). By Theorem 6,
if there is a legal assignment whose legal value for S is w, then for each value w' in
min{w, Ts}, max{w, Ts}|, there is a legal assignment whose legal value for S is w'.

Hence we first use Lemma 8 to check whether there is a legal assignment such the legal
value of S in it equals wy. If there is a legal assignment A such that the legal value of S in
A is wy or wy, then A can be found using Lemma 8. If A exists, then S is protected against
interval disclosure in the open interval (wy, wsy). Note that by our definition, the legal value
of S'in T is in the open interval (wy, ws). If there is no such A, then by Theorem 6 S is not

protected against interval disclosure in (wy, ws).
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The time to find a max flow with lower bounds in a bipartite network with | F| edges and
V1| + |Va| vertices is O(min{|V4|, [Va|}-|E| + min{|V4|,|Vz|}2-4/|E|) time [AMO93], where
Vi and V5 are the two disjoint sets of vertices in the network. Since the constructed
Frn xuevy(k, S) has | X| + |Y| edges and |n| + [m| 4 4 vertices, this theorem follows. O

3.2 Protected Against Exact Disclosure

We now show a fast algorithm to decide whether a set of sum combinations in a bounded
table is protected against exact disclosure.

There is a linear-time algorithm to test whether a sum combination of suppressed cells
in a positive table is protected against exact disclosure [MM97, MMROI1]. There is also a
linear-time algorithm to test whether a linear combination® (and therefor a sum combination)
of cells in a general table is protected against exact disclosure when marginal cells are not
allowed to be suppressed [KG93].

Using extended tables with suppressions, we have the following theorem.

Theorem 10 Given a sum combination S and G xue(y)p), the query system problem of
testing where the sum combination S is protected against exact disclosure can be solved in
optimal O(n + m + |X|) time no matter (T, X,Y) is a positive or general table.

Proof. Using the notion of an extended table with suppressions, we can obtain an equivalent
table without suppressed marginal cells. Hence we can apply the techniques in [KG93] to
solve the query system problem when the table maker wants to know whether sensitive
information defined by linear combinations of suppressed cells is protected. 0O

Example IX Table 7 gives the extended table of Table 2. Figure 5 gives its suppressed
graph where all the suppressed marginal cells are unbounded, and the lower and upper
bounds of every suppressed regular cell are 1 and 9, respectively. Since there is no suppressed
marginal cell, we can apply previous graph-theoretical techniques in [KG93] to solve the query
system problem.

Remark: Note that it is possible to speed up the testing whether several linear combinations
are protected against exact disclosure to be linear in the total number of terms in the given set
of linear combinations and n+m+|X| using advanced data structures and graph-theoretical
techniques as the ones used in [KG93]. Details are omitted.

3We say that a function is a linear combination of (T,X,Y) if it is Ele d;-z; for some constants d;,
where z; is a suppressed cell of (T, X,Y).
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Figure 5: The suppressed graph of Table 7. We assume that all the suppressed marginal
cells are unbounded and that the lower and upper bounds of every suppressed regular cell
are 1 and 9, respectively.

4 The Adversary Problem

This section addresses the adversary problem. Hence the input is the publish version of the
suppressed table Txy. Given a sum combination, we first show an algorithm to solve the
adversary problem of finding bounds in a positive table. We then show a faster algorithm,
in a positive or general table, to solve the adversary problem of evaluating invariants.

4.1 Finding Bounds

We assume suppressed tables in this section are positive. If there are suppressed marginal
cells, i.e., Y # (), then we can apply the positive extended table technique to convert Ty to
an equivalent positive table T)Iéug(y),(o- Hence we can assume without loss of generality that
Y =40.

From Txp, we can construct its flow graph Fr x. By Lemma 7, a max flow in Fr x
corresponds to a legal assignment for T'x 3. Let S be a given sum combination.

Lemma 11 The upper bound for the legal value of S in T'xy can be obtained by finding a
maz flow in Frx (400, S).

Proof. Note that the capacities of the edges <s, 7> and <c, t> are both +o00 in Fr x(+00, S).
We find a max flow in Fr x(+00,S5). The lower bounds and capacities of the edges ensure
any flow in Fp x(400,S) corresponds to a flow in Fr x, and vice versa. By Lemma 7, a
flow in Fr x(+00,S) corresponds to a legal assignment for Tx g, and vice versa. Let Ts be
the legal value for S in T. Note that the flow value in Fr x(+00, S) is at least Ts + 71 x-
Further, any flow with the value ¢ + 71 x corresponds to a legal assignment such that the
legal value of S in this assignment is ¢, and vice versa. Hence a max flow in Fr x (400, S)
finds the largest possible legal value for S 0O
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Lemma 12 The lower bound for the legal value of S in Tx gy can be obtained by finding a
maz flow in Frx(0,S5).

Proof. Note that the capacities of the edges <s,r> and <c,t> are both 0 in Fr x(0,.5).
A flow f in Fp x with the flow value 77 x corresponds to a flow in Fr x(0,.S) with the flow
value mp x — ¢ where ¢ is the legal value of S in the legal assignment corresponding to f,
and vice versa. Let w be the value of a max flow in Fr x(0,S). Thus the lower bound for
the legal value of S is mp x —w. O

Theorem 13 The lower and upper bounds of a sum combination in a positive table (T, X,Y)
can be found in O(a-(|X |+ |Y]) + a?+/|X| +|Y]) time, where oo = min{n, m}.

Proof. TfY # (), then we first apply the positive extended table technique. Hence we
assume without loss of generality Y = (). The theorem follows from Lemmas 11 and 12. 0O

4.2 Evaluating Invariants

This section assumes that the suppressed table is general. This section focuses on the case
of evaluating row and column invariants.

A cut in a graph is a minimal subset of edges whose removal separates a connected
component into two new connected components. Let G* = u(G)x xuev)0)- Let W be a
cut in G*. Let K; and K5 be the two connected components of G* created by removing W.
Let U; be the set of endpoints of W in K;. W is called a bipartite cut if U; consists of only
row vertices and U, consists of only column vertices. Note that a cut edge forms a bipartite
cut. Let R(W) (respectively, C(W)) be the set of endpoints of the edges in W that are row
(respectively, column) vertices. W is a y-cut if |[R(W)| = 1 or |C(W)| = 1. Note that a
v-cut is a bipartite cut.

Lemma 14 Let W be a bipartite cut in Grxp). Let K\ be the connected component in
G(r,x0—W that contains C(W). If W, Ky, and all the row and column residuals for vertices
in K are given, then the total value of the cells in W can be computed in O(|W|+ |K;|)
time.

Proof. We partition K; into a set R of row vertices and a set C of column vertices. Let
U(C) be the set of edges that are incident to the column vertices in C. We define similarly
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Figure 6: The suppressed graph of Table 7 when the table is general. Since the table is
general, the suppressed graph is undirected.

U(R) for R. Then U(C)UW = U(R). Hence X, cw value(r) = 3, cc column_residual (v) —
Y uer row residual(u). O

Remark that a version of this lemma without the time complexity analysis is also in [Ka097a,
Mal93].

Example X Let G be the graph in Figure 6. Then {(r3,c1), (r1,¢6)} is a cut in G but is
not a bipartite cut. The set {(r1,cs), (73,¢6)} is a bipartite cut but is not a row or column
cut. The set {(r1,¢1), (r3,c¢1)} is a y-cut, and {(r2, cs) } is also a y-cut. The row residuals for
Trows 71,...,7¢ are 4, 20, 4, —28, 8, and —29, respectively. The column residuals for columns
c1,...,cy are 3, 3, 16, 4, —12, 9, and —44, respectively.
The cell corresponds to the y-cut {(r2,c6)} in Table 2 is T'(2,6). Note that 7(2,6)

(T(1,1) + T(3,1) + T(L,6) + T(2,6) + T(3,6)) — (T(1,1) + T(L,6) + T(3,1) + T(3,6)
column_residual(c;) + column_residual(cg) — (row_residual(r,) + row_residual(rs)) = 4.

For brevity, we say that a sum combination of (T, X,Y") corresponds to the set of edges
in G(7 xue(y),0) that appear as the nonzero terms in that combination, and vice versa.

Theorem 15 A sum combination is protected in a general table against any interval disclo-
sure if and only if it is not the disjoint union of bipartite cuts.

Proof. By Lemmas 4 and 14 and the fact that a general table has no lower or upper bounds
for each cell. D

Theorem 15 is well-known when the sum combination has only one term, i.e., a single cell,
and the security requirement is against exact disclosure [Gus87].

Theorem 16 Assume that (T, X,Y) is general. Let S be a set of row and column invariants
of (T, X,Y). Given S and G xug(v)p), the adversary problem of evaluating invariants can
be solved in O(n+m + |X| + ||S||) time, where ||S|| is the number of nonzero terms in S.
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Proof. It is shown in [Kao97a, Mal93] that given G (7 x gy, every invariant in a set .S of row
and column invariants of (7, X, () can be expressed as a linear combination of sum invariants
corresponding to y-cuts in G(z,x,p) in O(n+m+ | X| + ||S||) time, where ||S]| is the number
of nonzero terms in S. Using this fact and Lemma 14, the theorem holds. O

5 Minimum Complementary Suppression Problems

Throughout this section, we assume that (7', X,Y) is general and S C X UY. This section
studies the following two versions of the minimum cell suppression problem for general tables.

e The minimum marginal cell suppression problem. Given S and (T, X,Y), find a set Y’
of marginal complementary suppressed cells with the minimum cardinality such that
every cell in S is protected in (7, X, Y UY").

e The minimum general cell suppression problem. Given S and (7,X,Y), find a set
X'UY' of complementary suppressed cells with the minimum cardinality such that
every cell in S is protected in (7, X UX', Y UY’), where X' is a set of regular cells and

Y' is a set of marginal cells.

The minimum general cell protection problem has been studied for the case where Y =Y’ =)
[Gus87, Gus88]. The minimum marginal cell suppression problem has been studied for the
case where Y only consists of the table sum [MMRI1] and is extended in [MM97, MM96] to
a table with a lower bound 0 for all cells.

Note that a solution to the minimum marginal cell suppression problem depends on
whether the table sum is allowed to be suppressed. If the table sum is not allowed to be
suppressed, then it may be the case that no matter how many additional marginal cells are
suppressed, some suppressed cells are still unprotected, as in the case where the table has
only one suppressed cell.

In [Gus87, Gus88|, it is proved that a suppressed cell is protected in a general table
(T,X,0) if and only if it is a cut edge in G(r,x,9). Hence we transform our problem into
the following graph-theoretical problem. The smallest augmentation problem [Esw73] is
that of adding a set of edges with the minimum cardinality to a graph such that each
added edge satisfies a given constraint and the resulting graph satisfies a given connectivity
requirement. Depending on the edge constraint and the connectivity requirement, we have
different versions of the smallest augmentation problem [Hsu93, Fra94].
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Input: A graph G = (V, E), ' C E and A C {(w1,ws) | wy,wy € V}.
Output: A smallest subset of edges D C A such that no edge in I' is a cut edge
in GUD.

Let 2eaug(G, ', A) denote this augmentation problem. A solution to 2eaug(G, I', A) refers
to a correct output as specified. We say that an instance of this problem is solved if either
we determine that it has no solution or we find one of its solutions. Intuitively, we want to
add edges to the suppressed graph such that the resulting graph contains no cut edge. If we
are solving the minimum marginal cell suppression problem, then the added edges should
correspond to marginal cells. For the minimum general cell suppression problem, the added
edges may correspond to any un-suppressed cells.

Recall that rq, ..., r, (respectively, ci, ..., cp) are the row (respectively, column) vertices
in G(rx,y). Let G* = G(1v xue(v),0)- G* has one extra row vertex r,;1 and one extra column
vertex cpi1. Let @ = {(ci; 7n+1), (€mt1,75) | 1 < i <mand 1 < j < n}. By Lemma 2, the
minimum marginal cell suppression problem is equivalent to 2eaug(G*, S, ®). Similarly, let
O ={(¢,rj)) |1 <i<m+1land1<j<n+1}. The minimum general cell suppression
problem is equivalent to 2eaug(G*, S, ®').

5.1 The Minimum Marginal Cell Suppression Problem

To solve 2eaug(G*, S, ®) and thus the minimum marginal cell suppression problem, we first
simplify the structure of G* via contractions. A 2-edge-block in G* is a maximal induced
subgraph of G* in which every pair of two distinct edges are contained in some cycle. Note
that a cut edge is not in any 2-edge-block. The 2-edge-block forest F' [Har69] for G* is the
forest constructed from G* by contracting each 2-edge-block of G* into a single super vertex.
For convenience, we identify the vertices in F' with their corresponding 2-edge-blocks in G*,
and the edges in F' with the cut edges in G*.

Two 2-edge-blocks are adjacent if their corresponding vertices in F' are adjacent. A
2-edge-block is a leaf-block if it is adjacent to exactly one 2-edge-block, i.e., the degree
of its corresponding vertex in F'is 1. A 2-edge-block is hybrid if it contains both row and
column vertices. A 2-edge-block is row-only (respectively, column-only) if it contains only row
(respectively, column) vertices. Note that a row-only or column-only 2-edge-block consists
of a single vertex because G* is bipartite. Hence a row-only or column-only 2-edge-block is
also called a singular 2-edge-block.

Let b, and b. be the vertices in F' corresponding to the 2-edge-blocks that contain the
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Figure 7: The 2-edge-blocks of Figure 2.

Figure 8: The 2-edge-block forest of Figure 2.

vertices 7,11 and c¢p,41, respectively. The intuition here is to add edges to F' such that one
of the endpoints of each added edge is a degree 1 vertex in F' and the other endpoint is
either b, or b.. The added edges are added in two phases. First, we add those edges that
must be added, i.e., one of whose endpoints is a degree 1 vertex in F' that is row-only or
column-only and b,. For a degree-1 vertex p in F' that is hybrid, we can either add (p, b,)
or (p,b.). For each added edge (V',0"), we make sure that & and b"” are not both row-only
or both column-only. Hence for (b',b") we can find a corresponding bipartite edge (u',v") in
G* whose addition has the same effect of adding (¥,"”), where u' and u" are vertices in ¥
and b”, respectively.

Example XTI The 2-edge-blocks of Figure 2 are shown in Figure 7. Eight of the nine 2-
edge-blocks consists of a single vertex. The only 2-edge-block with more than one vertex is
the one consists of vertices r1, r3, ¢; and c¢g and is hybrid. All the other 2-edge-blocks are
singular, e.g., ry is row-only and ¢, is column-only.

The 2-edge-block forest of Figure 2 is shown in Figure 8. In the figure, the 2-edge-block
containing the vertices ry, r3, c¢; and cg are contracted into a super vertex K. Degree-1
vertices in this 2-edge-block forest are S, ¢y, c4, ¢7, r5 and rg. In Figure 8, b, is r¢ and b, is
cr.

For a column-only (respectively, row-only) degree-1 2-edge-block w in F, let legal(w)
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‘indele‘Z‘ 3‘4‘5‘ 6Hsum‘

] I] 7133 21
I 2 26
3 8] 657 30
1 8|9 [6] |5
5 [4]4] 5]9] | 2

[sum [ | [34] [ [16] 152]

Table 10: A minimum marginal cell protection solution for Table 2.
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Figure 9: The 2-edge-block forest of Figure 8 after adding the set of edges
{(CQ; Tﬁ)’ (047 T6)ﬂ (7'5, 67)}'

denote b, (respectively, b,).

Theorem 17 Given S and G(1 xug(v),0), the minimum marginal cell suppression problem
can be solved in O(n+m+ |X|) time.

Proof. We solve the minimum marginal cell suppression problem with the following steps.

1. Let @ be the set of 2-edge-blocks in P(F,n(S)) that are both singular and of degree-1.
Let Dy = {(¢,1egal(q)) | ¢ € Q}. Add Dy to F to eliminate all singular 2-edge-blocks
in F' that are of degree-1. Let F' be the 2-edge-block forest of F' U Dj.

2. Let @ be the set of degree-1 2-edge-blocks in F’. Let D; be the set of edges {(w, b,) |
w € Q1 \ {b-}}, where \ denotes the set difference operator. Add D; to F’ to eliminate
all degree-1 2-edge-blocks in F”.

3. We output Dy U D; as a solution to the given instance of the minimum marginal cell

suppression problem.

27



Example XII The first set of edges added to the F' in Figure 8 is Dy = {(c2,76), (c4,76),
(r5,c7)}. After adding Dy, vertices cg, c3, ¢4, C5, C7, T2, T4, 75 and 7¢ are in the 2-edge-block
represented by the super vertex 7. The 2-edge-block forest F' of FUDy is shown in Figure 9.

Hence D; = {(K,T)}. A set of edges corresponds to Dy U D; in the graph shown
in Figure 2 is thus {(co,76), (c4,76), (r5,¢7), (c1,76)}- This is a solution for the minimum
marginal cell protection problem. Table 10 gives the table obtained from Table 7 after

suppressing {(cg,76), (c4,76), (75, ¢7), (c1,76)}-

Remark 1: If we are required to protect only a selected subset of original suppressed cells,
we can prune vertices in F' such that all degree-1 vertices in the pruned forest are incident
to a cut edge in S before we apply the algorithm in Theorem 17.

Remark 2: The minimum marginal cell suppression problem may have no solution, i.e.,
it is not feasible to protect some sensitive suppressed cells by only suppressing additional
marginal cells. We have proved that the minimum marginal cell suppression problem has
no solution if and only if there is a 2-edge-block that is singular, of degree-1 in F', and it is
adjacent to the vertex b, or b.. Intuitively, if the column (respectively, row) sum is the only
cell that is suppressed in the column (respectively, row), then the minimum marginal cell
suppression problem has no solution.

Theorem 17 subsumes the result in [MMRO91]| which only deals with the case where no
marginal cell needs protection.

5.2 The Minimum General Cell Suppression Problem

Before we proceed, we define a cut vertex in a graph to be a vertex whose removal disconnects
two vertices that are originally connected. In [HK96|, a linear-time algorithm is given to
find a smallest set of complementary suppressed cells whose addition makes the resulting
graph biconnected. The algorithm uses a data structure similar to the 2-edge-block forest
F used here. We note that by changing every cut edge e = (u,v) in F' to a cut vertex c,
and two additional edges (ce,u) and (ce, v), we obtain a data structure that is equivalent to
the one used in [HK96]. By using this new data structure in the algorithm in [HK96], we
can solve the minimum general cell suppression problem. We also note that the number of
complementary suppressed cells so obtained is minimum.

This result assumes that there is no suppressed marginal cell. Using our extended table,
we can create an equivalent table without suppressed marginal cells. Hence the following
theorem holds.
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‘indexH 1‘ 2‘ 3‘ 4‘5‘ 6Hsum‘

1 70 3|3 21
2 4 2 26
3 81 6] 5|7 30
4 81 9 6 3

5 41 41 5 2 32

| sum [[19]28[34[27| |16 |

Table 11: A solution for the minimum general cell suppression problem of Table 2.

Theorem 18 Given S and G xuey)p), the minimum general cell protection problem can
be solved in O(n +m + | X|) time.

Example XIII The set {(r¢,c7), (11, ¢2), (5, ¢4)} is an example of a set of edges added for
Figure 2. The protected suppressed table is shown in Table 11 for the minimum general cell
suppression problem. Note that it takes one fewer complementary suppressed cell than the
solution found for the minimum marginal cell protection problem as shown in Example XII.

There is a subtle complication with the algorithm in Theorem 18. The algorithm may
suppress the table sum of 7. If the table sum is not allowed to be suppressed, then the
following lemma can be used to enforce this constraint for the case when S C X.

Theorem 19 Assume that S C X and that m > 2 orn > 2. Let H be a set of cells in
(T, X,Y) satisfying the output specification of the minimum general cell suppression problem
and |H| > 1. Then, there exists some set H' with |H'| = |H| such that H' also satisfies the
output specification of the problem but does not contain the table sum of T.

Proof. We assume without loss of generality that H contains the table sum of 7. Our goal
is to construct a desired H' from H.

Recall the definition of a 2-edge-block forest and related concepts from §5.1. Also recall
that \ is the set difference operator. Note that the table sum of T corresponds to the edge
(Pnt1, Cme1) in G. Let G' = GUH\ {(rn41, ¢ma1)}. By the minimality of H, the 2-edge-block
forest of G’ contains a path with the two endpoints b. and b,, where b. contains ¢, 1 and b,
contains r,,1. There are two cases.

Case 1: b, and b, are not both singular. We assume without loss of generality that b,
is non-singular. Let H' = H U {(rp11,¢)} \ {(na1, ¢ma1)}, where ¢; is a column vertex in
be — {Cm+1}. It is easily verified that H' is as desired.
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‘indexH 1‘ 2‘ 3‘4‘5‘ 6Hsum‘

1 7[3]3 21
2 4 2 26
3 8] 6[5]7 30
4 8] 9 6 5
5 Al 4] 5]9 2

| sum [19]28 34| | [16] 152 ]

Table 12: A solution for the minimum general cell suppression problem for Table 2 without
suppressing the table sum.

Case 2: b. and b, are both singular. Since |H| > 1, let e = (r*,¢*) be an edge in H
such that e # (r,41, Cme1). Since b, and b, are both singular, ¢* # ¢, 11 and 7* # r,41. Let
H' = HU{(rpy1,¢), (7", cme1) } \ {(r*, ¢*), (Tnt1, Cms1) }- 1t can be verified that G U H' is
2-edge-connected. [

Example XIV The set {(r¢,c4), (71, ¢2), (r5,¢7)} is an example of a set of edges added for
Figure 2 without suppressing the table sum. This corresponds to Case 2 in the proof of
Theorem 19. In the proof, e = (r5,¢4). The corresponding protected table is shown in
Table 12.

Note that in Theorem 19, if H = {(¢;41, Tnt1) }, then it is trivial to prove that it takes at
least two edges to solve the minimum general cell suppression problem without suppressing
the table sum. It is also trivial to find these two edges.

6 Extensions

We further consider the following security requirements:

1. Row and Column Invariants. A linear invariant f of (T, X,Y) is semi-positive if
each regular cell has a nonnegative coefficient in f and each marginal cell has a non-
positive coefficient. Given a row or column Z in (T, X,Y'), let 5(Z) = 0 if the marginal
cell in Z is suppressed; otherwise, let 3(Z) be the suppressed marginal cell of Z. Let
I(Z) be the set of suppressed regular cells in Z. Let Z =Y ,crz = — B(Z).

We define the following three security requirements for protecting linear combinations
in (T, X,Y); see [Kao96] for motivations of these requirements.
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e For [evel 1 security of (T, X,Y), every suppressed cell in the table is protected
and for each row or column Z in the table, every linear invariant of suppressed
cells in Z is a multiple of Z.

e For [evel 2 security, given a constant positive integer k, every suppressed cell is

protected and for each set of k rows Zi,..., Z; or k columns, but not the mixed
case, every linear invariant of suppressed cells in Z1, ..., Z; is a linear combination
Of71, e ,7k.

e For [evel 3 security, every suppressed cell is protected and every semi-positive

invariant is a positive combination of Ry,..., Ry, C1,...,Cp, where R; and C;
range over the rows and columns in the table, respectively.

Given (T, X,Y), the query system problem of testing level i security is that of checking
whether level i security of (7, X,Y") is satisfied. Kao [Ka095, Ka0o96] and Hsu and
Kao [HK96] studied this query system problem for tables without suppressed marginal
cells.

2. Analytic Invariants. Let L C X UY. (T, X,Y) is totally protected on L if every
analytic function whose arguments are cells in L is not an invariant. Given L and
(T, X,Y), the query system problem of testing total protection on L is that of checking
whether (7, X,Y") is totally protected on L. Given L and (7, X,Y), the minimum
general cell protection problem for achieving total protection on L is that of finding
a set X' UY' of the smallest number of cells such that (7, X U X', Y UY") is totally
protected on L. Kao [Kao97b] studied this query system problem and its corresponding
minimum general cell protection problem for tables without suppressed marginal cells.

We can solve all these additional problems while permitting suppressed marginal cells with
the same running times as in [HK96, Kao95, Kao96, Kao97b| using techniques similar to
those used in this paper. We omit the details here.
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