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Abstract

Travel time estimation is a basic component in many applications of an intelligent
transportation system (ITS). We consider the travel time estimation of passing through
a congested road segment and present a novel travel time prediction algorithm. The
dynamic nature of our congestion model can be characterized by the propagation of
its head and tail boundaries, which are determined by shock wave equations. We show
that the propagation of the tail boundary can be effectively approximated if the inflow
to the congestion is given, while the head boundary can be approximated as a line in a
time-space diagram. We demonstrate the effectiveness of our algorithm by measuring
its performance using the Nagel-Schreckenberg (CA) model. Simulation results from

varying the probe car density are also given.



1 Introduction

Intelligent transportation systems (ITS) have attracted much interest. Hardware components
such as on-board computers, communication equipment, and automation have commonly
been included in an ITS. However, important software components for dynamic traffic choice
and network modeling; accident detection and management; and dynamic traffic control
are not commonly included in an ITS. Travel time estimation is one of the basic software
components for ITS [1, 2, 3, 5, 7, 14]. Usually, statistics of the previous travel time of a
road segment can yield a satisfactory reference for predicting the future travel time of that
same segment. This approach smoothes short term traffic variations, which gives a smooth
estimation of travel time [18, 16]. However, traffic variations incurred by congestion and
accidents may introduce a sharp change in traffic parameters, so they cannot be effectively
predicted by using smoothing techniques [11].

Congestion may cause serious delays and its effect on travel time should be incorporated
for reliable prediction. We study the travel time prediction for a vehicle passing through
a congested road segment. We assume that a probe car is on a one-lane highway and is
heading towards a road segment. With a flow detector placed before the congested segment,
and with all the probe cars reporting their positions to a center station, the travel time of the
car through the congested segment can be predicted. A framework of the proposed system
is shown in Figure 1. Because of the dynamic sensors and a small amount of bi-dimentional
information exchange between the probe car and the center station, our approach is ecomonic
and feasible for estimating the dynamic variations of congestion.

Our approach is based on extending the time-space pattern of the congestion beyond
the current time, with the help of the flow detector data, to obtain an extended time-space
diagram. From the extended diagram, we characterize two curves; one corresponds to the
shock wave at the head boundary of the congestion, and the other to the shock wave at
the tail boundary of the congestion. We show analytically that the travel time through
the congestion can be estimated from the two curves in the extended diagram, plus some
moderate assumptions about the traffic parameters, which are discussed in Section 2.2.

This scenario assumes that all the cars are probe cars, which is impractical. In practice,



probe cars would only be a percentage of all the cars. This percentage is measured by probe
car density, a number always between 0 and 1. We thus investigate the effect of probe
car density on the performance of our algorithm by a simulation, in which we assume that
probe cars are uniformly distributed among all cars. In our derivation, the purpose of the
flow detector is to provide the congestion inflow in order to estimate the propagation of the
tail curve. This flow detector can be replaced by any sensors, if they are able to provide
congestion inflow data.

Our notations and assumptions are given at the end of Section 2, in which we also review
the shock wave propagation equation and propose our model. Section 3 describes our method
to extend the time-space pattern of the congestion and characterizes the dynamics of the
congestion. Qur travel time estimation algorithm is given in Section 4. The performance
of our algorithm using a CA model is described in Section 5 [12]. Finally, in Section 6, we

present our conclusions.

2 The Formulation of the Problem

The important parameters of congestion in travel time estimation are the propagation of the
head and tail boundaries of the congestion. Because of the congestion, the traffic parameters
at the boundaries of the congestion are discontinuous, but propagation of that boundaries
can be modeled by a shock wave equation. Based on the shock wave propagation, we propose
our congestion model for travel time estimation. We review the shock wave equation first,

and then propose our congestion model.

2.1 Shock Wave Equation

A shock wave shows how the discontinuities of traffic parameters in a boundary are developed
into the propagation of the boundary [8, 10, 13, 17]. If there is congestion on a road segment,
both the head and tail of the congestion usually move backwards, as illustrated by the
dashed lines in Figure 2(a). An example of a time-space diagram of congestion by simulation
using a CA model is given in Figure 2(b), in which the head and tail of the congestion are

moving backwards. The boundary w in Figure 2(c) divides the road segment into distinct



homogeneous regions in density. When w is the head boundary, the segment to the left of
it is the congested region, but when w is the tail boundary, the segment to the right of it
is the congested region. Let p, and v; be the respective density and average velocity of the

region to the left of w; and p, and v, be the respective density and average velocity of the

dw

region to the right of w. Then, the velocity of the boundary is the shock wave %7, which is

propagating along the segment according to the flow conservation equation:

dw dw
pl(Ul - E) - pr(vr - E)

Thus, we have

dw _ pior— proy
dt PL— Pr

2.2 Congestion Model for Travel Time Estimation

The congestion pattern in the time-space diagram is enclosed by two curves corresponding to
the evolution of the head and tail boundaries of the congestion. Figure 2(b) gives a typical
time-space pattern of congestion. The time-space region of the congestion is enclosed by
the curves produced by shock waves corresponding to the congestion boundaries. There are
other time-space congestion patterns [6, 9, 15| that differ in details, but in general have a
common structure. Assume that our car is heading toward the congestion, but is not in it
yet. The amount of time our car will be in the congestion can be estimated if we know when
our car will encounter it, and when our car will exit from it.

In Figure 3, the point of entering the congestion corresponds to meeting the tail curve
(t,z(t)) at time t,, and the point of leaving it corresponds to meeting the head curve (¢, y(t)),
at time t,. If the complete curves were given, and some moderate assumptions about the
traffic parameters were made, then there is sufficient information to estimate the passing
time through the congestion. However, when there is a need to estimate the passing time of
the congestion, there is only a part of time-space diagram of the congestion pattern available.
Thus, an important component of the prediction of the travel time through congestion is
to solve the problem of extending the time-space boundaries of the congestion beyond the

current time.



The extension of the two curves is analytically possible. The tail curve can be extended
to the future ( ¢ > t.) with the help of the inflow to the congestion. Also, the head curve
can be effectively approximated by a line in the time-space diagram. Before proposing our
algorithm for curve extension, we introduce some notations and make assumptions to sim-

plify the subsequent analysis.

Notations and Assumptions
p(t) : the position of our car at time ¢
t.: the current time
f(t): flow measured by the loop detector at time ¢ (a slowly varying function)
v1: average velocity of traffic before entering the congestion (a constant)
vg: average velocity of cars in the congestion (a constant)
vs: average velocity of traffic after leaving the congestion (a constant)
z(t): distance from the flow detector to the tail of the congestion
y(t):

p1(t): average density of cars on the road segment before entering the congestion (a slowly

distance from the flow detector to the head of the congestion

varying function)
p2: average car density in the congestion (a constant)
p3: average density of cars on the road segment after leaving the congestion (a constant)
[(t): number of cars in the congestion at time ¢
w(t): the instant flow leaving the congestion

pp: Probe car density

3 Head and Tail Boundaries of the Congestion

We use the shock wave propagration equation to derive the propagation of the head and tail

congestion boundaries and extend them to the future in the time-space diagram.



3.1 Tail Shock Wave

From the tail boundary curve (¢, z(¢)) in the time-space diagram, we can estimate the travel
time of a car, which is not yet in the congestion, but is heading towards it. The top subfigure
in Figure 4 gives the schematic diagram for our estimation of the tail curve. The left region
of z(t), [z(t) — d,z(t)), in the subfigure is a non-congested segment, while the right region
(marked by gray dots) is a congested segment. According to the shock wave propagation

equation, the velocity of z(¢) can be measured by
dx(t) dx(t)
) (v, — ——) = (v — —%) po, 1
pt) - ) = (- S, (1)
where p;(t) is the average density at the space interval [z(t) — §,z(t)); v; is the average car
velocity in the interval; and v, and p, are respectively the average car velocity and average
car density within the congestion at time ¢. According to our assumptions, vy, v9, and pg

are constants. The first term to the left of Equation (1) is p;(¢)vy. If 6 is small, then this

term represents the instantaneous inflow of the congestion at z(t).

®)

We further assume that the flow measured by the flow detector at time ¢ — ”;U—l is equal

to the instantaneous inflow entering the tail of the congestion at time ¢. Therefore, if f(.) is

the flow of the flow detector, then

o(t)
flt===) = p(t)or.
U1
Substituting the simplified parameters into Equation (1) for p;(¢)v; and rearranging the

dx(t)

terms, we obtain the tail boundary velocity, ==, as follows:
dz(t x(t
p(t) dgf) =—f(t- : )) + pav2, (2)
(1

where p(t) = py — p1(t) is the difference between the densities in the congested and non-
congested regions divided by z(t). We have assumed that p;(¢) is a slowly time varying
function. By dividing the time into segements of interval 7" and assuming that within each
internal p; (¢) is a constant, we can derive a recursive estimation algorithm for x(t):

By integrating both sides of the above equation on a small time interval [t.+(n—1)T, t.+nT),

ctnl’ te+nT
/tt ! p(T)dx(T) dr = —/t ' f(r— m(T))dT + povoT.

et(n-1)T dr et+H(n—1)T U1

we have
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Furthermore, assuming that p(¢) in [t. + (n — 1)T,t. + nT) is constant and denoted as py,

we get
- te+nT l‘(T)
pulz(te + nT) —z(te + (n— 1)T)] = —/ f(r— )dT + povoT, (3)
te+(n—1)T U1
for n = 1,2,... ,N. The two terms z(t. + nT) and p, cannot be uniquely solved from

Equation (3). The right side of this equation can be obtained, provided that the flow of the
flow detector is measured and extrapolated. Because of the slow variation of p(t), we thus
use the previous value g, 1 to approximate p,. Substituting p, i for g, in Equation (3), we

obtain the following approximation for x(t. + nT):

slte +7) = e+ (0= V1) = = | S TR Co | PR I

Pr—1 c+H(n—1)T U1

where

c+H(n—1)T x(T
- ttc:(;_;))T f(r— %)dT ~+ pouT
Pt = e+ (n— 1) — 2(te + (n — 2)T)

(5)

We use the inflow to the congestion in time interval [t. + (n — 2)T,t. + (n — 1)T) for p,_1
estimation, and the inflow in the interval [t. + (n — 1)T,t. + nT), for an approximation of
the tail boundary z(t. +nT'). The tail boundary of the congestion can thus be estimated by

the following regressing algorithm.

1. Measuring the flow f(.) of the flow detector. If necessary, the flow can be obtained by

extrapolation.
2. n =0, we measure p; from Equation (5).

3. For n =1,2,---,N; We estimate z(t. + nT) using Equation (4) and then obtain g,

from Equation (5).

An interesting special case of the above derivation is the inflow to the congestion being
a constant flow. Because of the constant inflow to the congestion, we have

/ttc+(n1)Tf(T_ x(T))d'r _ /ttc+nT f('r ~ x(T))dT, (6)

ot(n-2)T U1 c+H(n—1)T U1




Then, substituting p,_1 in Equation (5) for that in Equation (4), and using Equation (6),

we obtain the constant tail boundary velocity:
z(te+nT) —z(te+ (n—1D)T)=xz(t.+ (n—1)T) — z(t. + (n — 2)T).

With constant inflow to the congestion, the tail shock wave has a constant velocity and the
tail boundary is a linear function of ¢. In the time-space diagram, the evolution of the tail

boundary corresponds to a line.

3.2 Head Shock Wave

Here, we derive the head boundary from the shock wave equation. From the head boundary
curve (¢,y(t)), the amount of time for a car in the congestion to pass out of it can be obtained.
The velocity of y(t) can be derived by a shock wave propagation equation. The schematic
diagram is given in the bottom subfigure of Figure 4. Let the mean density and velocity in
the non-congested segment be denoted as p3 and v3, respectively. We then select a relatively
large segment in the non-congested road segment such that we can assume both means are

constants. According to the shock wave equation, we have outflow p(t) of the congestion as

dy(t dy(t
(1) = pafoa — P0) = (0 - WD) 7
Rearranging the above equation, we attain the shock wave for y(t):
dy(t) _ pava — psvs ®)
dt p2—p3

Note that the head shock wave dl{d—(tﬂ is a constant velocity, irrespective of time. By integrating

Equation (8) from any reference time ¢,, we have the head curve
P2V2 — P3U3
P2 —pPs3
Thus, (t,y(t)) is a line in time-space. Substituting Equation (8) into Equation (7), we

y(t) = y(tr) + (t - tr)' (9)

conclude that the flow departing from the congestion p(t) = p is a constant.

4 Travel Time Estimation

The travel time of a car to its destination is composed of the time for the car to meet the

congestion, the time the car is in the congestion, and the time to reach its destination after
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it leaves the congestion. We estimate the travel time of each component as follows.

When Our Car Will Enter the Congestion
Assume that our car is not in the congestion, but is heading towards it. The time ¢, when
our car will meet the congestion can be obtained by solving

z(t) — p(te)

=t—t,

where p(t.) is the current car position. The predicted elapsed time At, for our car to meet

the congestion is
At, =t, — te. (10)

When Our Car Will Leave the Congestion
According to the constraint of a one-lane highway, our car can only leave the congestion
when all the cars in front of it have left. The number of cars in front of our car when we

enter the congestion at time %, is

[(ta) = [y(ta) — z(ta)]p2, (11)

where the length of the congestion at time ¢, is y(t,) — z(¢,). Let the time our car leaves

the congestion be t;,. Then, according to our first-in-first-out rule, we have

[ ()]t = 1(t,).

Since p(t) = p is a constant, we have the duration of time At,, that elapsed while our car

was in the congestion

Aty =ty — 1, = [(ta) (12)
)

Thus, our car will leave the congestion at time

ty = to + {ta) (13)

|

The point where our car will leave the congestion is y(#,). It can be obtained either from

calculating car velocity inside the congestion, x(t,) + va(ty — t,), or from y(tp).

9



The End of Congestion

Precisely identifying the beginning and end of congestion is not easy. Here, we present a
convenient definition of the end of congestion. We define the end of it as the time-space
point at which the head curve (¢, y(t)) crosses the tail curve (¢,z(t)) of the congestion. Let
the end time be t*, where is the solution of z(t) = y(¢). Knowing the end time aids in
estimating travel time. Even if there is congestion ahead of us, we may not encounter it, as

it may disappear before we reach its tail boundary. This is the condition when
t* < tq,

where t, is the time when our car will meet the congestion. In this case, our car will maintain
an approximately constant speed in traveling to its destination - as if the congestion had not

happened. The travel time At, will be
Aty =1t —t, =04 ¢ (14)

Within the Congestion
If our car is in the congestion, then we do not need z(t) for travel time prediction. The
head boundary of the congestion, y(t), can be obtained in a similar way as that described

previously. The number of cars jammed in front of us at current time, ¢, is

where p(t.) is the current position of our car, and ps is the average density in the congestion.
This result is derived from Equation (11) with ¢, being replaced by t.. In this case, traveling

from p(t.) to the destination z,q will take

10 | 2o 00) 5
Travel Time Prediction Algorithm

Summarizing these components, the total travel time through the congestion is estimated by
the aforementioned equations. Our algorithm is simple and straightforward. It is comprised

of the following steps:
Algorithm

10



1. Calculate z(t) and y(t) for t > t..
2. Determine whether our car is approaching, or within the congestion.
3. If our car is approaching the congestion, determine the time ¢, when our car will meet
the tail curve (¢,z(t)). Determine the end time ¢t* of the congestion.

3.1 If t* < t,, then our car will not encounter the congestion, as the congestion will
disappear before we reach it. The travel time is estimated by Equation (14).

3.2 If we will encounter the congestion, determine the amount of time up to meeting the

head curve, (¢,y(t)), and calculate the travel time using

end — t
Ata + Atab + Ly(b), (16)

U3
where At, and At,, are given in Equations (10) and (12), respectively. The last term in
the above equation is the time it takes for our car to reach its destination after leaving the
congestion.

4. If our car is in the congestion, use Equation (15) for travel time estimation.

5 Simulation and Performance Evaluation

We use a CA model to simulate the motion of cars on a circular single-lane road. A diagram
of a CA model with parameters is given in Figure 5. In the model, the road is segmented into
sites; each site is either empty, or occupied, by one car with velocity v(t), 0 < v(t) < Vmas-

At each time step, v(t) is updated by the following rules:
v(t + 1) = min{v(t) + a, Vmaz, gap},

where gap is the distance (number of empty sites) to the front car, and a is the acceleration of
the cars. Besides this updated rule for velocity, there is a probability of brake p;, to decrease

the v(t + 1) so that
v(t+1) =max{v(t+1) — 1,0}.
The position of a car at time step ¢ + 1 is

p(t+1)=p(t) +v(t+1).
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In general, the model can be used to simulate actual highway traffic situations with param-
eters Umae = 9, a = 1, and p, = 0.5. With these parameters, each cell corresponds to about
7.5m on a road. In our simulation, the circular road is comprised of 2,000 sites, and the
density of cars on the road is 0.2. Note that choosing a cell site of more than 2,000 can
effectively eliminate the circle boundary artifacts of our CA model [4].

Figure 6 illustrates an example of predicting the parameters in congestion. A flow detector
is deployed at cell site 740. In the figure, the locus of our car is marked by A. Figure 6(a)
shows the predicted head and tail curves from the time at 43 (present time) until the time
at 55 (the point at which our car enters the congestion). Figure 6(b) shows samples of pairs
of points that record the predicted time-space coordinates of when our car enters and leaves
the congestion. Figure 7 shows the comparison of the predicted travel time that we will be
in congestion to that of the actual travel time.

Figure 8 shows simulation results of estimating travel time through congestion using
various probe car densities. Our probe begins at cell 733 at time 43 and our destination is
cell 800. The actual travel time of this trip is 80, which is shown in the figure by a horizontal
dashed line. In our simulation, 4 = —0.45 is given after preprocessing. The vertical axis
gives the predicted travel time of the trip at each time instance. One can observe that when
the probe car density is 0.1 or 0.2, the mean of our predicted travel time at the beginning
of our trip is lower than the actual travel time. Figure 9 gives an example of a time-space
diagram for probe car density 0.2, which explains this under-estimated travel time. The
locus of our car is marked by A and our trip begins at time 43. Note that the length of the
congestion enclosed by the points ¢ and d at time 43 is smaller than the actual congestion
length at that time. Point c is extrapolated from point a, since a is in the closest trace of
a probe car leaving the congestion. It is clear that ¢ occurs earlier than the actual head of
the congestion. Similarly, point d is extrapolated from point b, as it is the closest trace of
a probe car entering the congestion. Because we under-estimate the congestion length, we
predict a shorter travel time to the destination. A better estimation of the congestion length
is obtained after time 48, when a probe car leaves the congestion and reports the correct head
location e of the congestion. After this occurs, the estimation error is corrected. In other

examples, extrapolating the tail of the congestion may be the cause of the error. Errors in
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estimating congestion length depend on probe car density and on the distance of the closest
probe cars from our car. The relative error at each time of varied p, is given in Figure 10.

The vertical axis gives the percentage of relative errors which is computed by

> (T () —T1)?
N x 100

t
where N is the number of simulated observations for a time instant, 7; is the true travel
time, and 7, (¢) is the predicted travel time at time ¢. Note that by increasing the probe car

density, the relative prediction error will be reduced.

Constant Flow Assumption

In this simulation, we demonstrate the effect of a constant inflow assumption on the
travel time estimation by our algorithm. To eliminate the effect of the lengths of the non-
congested road segments on the final result, we only compare our estimated time within the
congestion with varying inflows. We assume that the probe car density is 1 and the inflow to
the congestion is a constant. We then use this constant inflow in our algorithm to estimate
the duration of time within the congestion at any one instance. Since the inflow only affects
the travel time estimation of our algorithm at the period when a probe car is approaching
the tail of the congestion, our results are based on simulations during this period of time.
Figure 11(a) superimposes the various estimation results. From the results, we found that
all measurements yield similar curves, and that the estimated time within the congestion
varies with the inflow estimation in such a way that if the inflow is under-estimated, then
the passing time is under-estimated, and vice versa.

Figure 11(a) compares the variations of the instantaneous estimation, while Figure 11(b)
compares the average estimation error of “within-the-congestion time” to the inflow error.
The average estimation error, relative to the actual within-the-congestion time, increases as
the inflow error is more than 10%, relative to actual inflow to the congestion. Figure 11(b)

shows that our method can tolerate a relative inflow estimation error of about 10%.

Compare with Another Estimation Method

We compared our method with a scenario in which the most recent travel time of the road
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segment, is reported by a previous car, as illustrated in Figure 12. Let the most recent travel
time be t;; the length of the road segment is L. The current car in this scenario estimates
the travel time by summing up its own travel time to the current point p, t.(p), and the
estimated travel time of the previous car from the current position to the destimation. The
latter is %t;, which is a simple linear estimation. Thus, the estimated travel time of the

current car is

Figure 13 is the plot of this estimated time as a function of the current car position, p. From
the figure, the current car position is divided into three segments, [730, 765], [766, 770], and
[771,803]. The estimated time ¢, in each segment can be approximated as a line. The slopes

of these lines can be derived by taking the derivative of the above equation with respect to
p:

dte(p) _ dt.(p) U

dp dp L’

where X is a constant which is irrelevant to p; and is the inverse of the velocity of

dtc(p)
L d

the current car at p. The velocities of a car heading towards the congestion, within the
congestion, and leaving the congestion have different constants - corresponding to the car in
different segments. As shown in Figure 13, the proposed estimation method yields a better

travel time estimaiton.

6 Conclusion

The dynamic traffic parameters of a congested road segment can be characterized by the
boundaries of the congestion. The flow detector provides data about the congestion inflow.
We show that we can extrapolate the tail curve of the congestion from the inflow to the con-
gestion. We also show that the head curve of the congestion can be effectively approximated
as a line in a time-space diagram. Any sensor that can assess the inflow to the congestion is
effective for our algorithm. Our algorithm is straightforward and can be easily implemented

in a control station, or a probe car. The performance of the algorithm is measured using
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a CA simulation model with different probe car densities and its accuracy is demonstrated.
A probe car makes a trace in a time-space diagram. Whether there is a sampling theorem
relating the probe car density to a reliable travel time estimation is not known and is worth

further investigation.
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Figure 1: The framework of our travel time estimation system. The flow detector performs a

one-way communication, while each probe car performs a two-way communication. A probe
car sends its position to the central station, which then transmits to the car the estimated

travel time from its current positon to its destination.
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Figure 3: Our problem is to extrapolate the time-space of the congestion beyond the current
time .. The segment of time-space to the right of the dashed line at ¢, will be extrapolated.
x(t) is the curve of the tail boundary, and y(¢) is the head boundary of the congestion. t,

and t; predict when our car will meet and leave the congestion, respectively.
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Figure 4: The top subfigure is the diagram for estimating the tail curve z(¢), and the bottom

subfigure is the estimation of the head curve y(t).
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Figure 5: In a CA model, a car moves from one cell to the next, according to a given

maneuvering rule.
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Figure 6: (a) The predicted head and tail curves from time 43 (present time) up to time
55 (the point where our car enters the congestion). Note that many predicted points are
located at time 53. (b) A pair of points recording the predicted time-space coordinates of
entering and leaving the congestion. Note that many points are located at time 53. The

number beside X is the time when X is predicted.
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Predicted time in congestion at each time step
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—— predicted
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Figure 7: Comparison of predicted travel time to the actual travel time in congestion when
the probe car density is 1. The actual travel time is represented by the horizontal dashed
line. The vertical axis indicates the predicted travel time in the congestion. The horizontal

axis is the time when the prediction is made.
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Figure 8: The predicted travel time with different probe car densities. The trip begins at
time 43 and the true travel time is 80. The vertical bars in the top and middle subfigures
give the range of one standard deviation. (a) The probe car density is 0.1. (b) The probe
car density is 0.2. (c) The probe car density is 1. Increasing the probe car density gives a

better estimation of the travel time through the congestion.
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Figure 9: An example of the time-space diagram for probe car density 0.2. Our trip begins
at time 43. The traces of probe cars are represented by solid lines, and those of blind
cars by dashed lines. X represents the predicted head and tail of the congestion. Point
c is extrapolated from point a, and d is extrapolated from b. b and a are the respective
points of the closest probe cars entering and leaving the congestion. Congestion lengths are

under-estimated from time 43 to 48.
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Relative Error
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Figure 10: The percentage of the relative error of the predicted travel time with different
probe car densities with values 0.1, 0.2 and 1. The relative errors after time 65 for all
densities are the same, since our car has left the congestion. Any errors after time 65 arise

from the estimation of velocity vz after the congestion.
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Estimated time-in—congestion at each time index
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Figure 11: (a) From time 43 to 54, our simulation car is approaching the tail boundary of
the congestion. The vertical axis is the estimated time for the car within the congestion.
The parameter of the plots is the inflow to the congestion. In the legend, the number in each
set, of parentheses is the relative inflow error to the congestion between the time from 43 to
54. (b) The relative error of the within-the-congestion time is plotted against the relative
inflow error to the congestion. When the relative inflow error is above 10%, the relative error
of within-the-congestion time estimation increases as well. The circle on the vertical axis
corresponds to the measurement using the measured inflow, whereas the rest of the points

on the line are obtained by using the assumed constant inflow.
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Figure 12: The travel time of the most recent car (A) is used for car (B) to estimate its

travel time. The current position of car B is at p. The length of the road segment is L.
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Figure 13: Travel time estimation comparison. The curve with the larger variations (marked
by“x”) is obtained by using the scenario illustrated in Figure 12, while the other curve
with smaller variations (marked by “.”) is obtained by using our method. The curve of flat
travel time is the actual travel time of car B, which is a reference to compare with different
methods. At any time instance, our method has a better estimation time than the other

method.
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