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ABSTRACT 

In this paper we present a series of data-reduction methods for classifying an 
unknown object as one member of a large set of possible patterns. The first reduc-
tion method is a learning algorithm that reduces a gigantic set of training samples 
into a condensed set of templates, each represented in vector form. When used in a 
testing process, these templates hold target patterns within the nearest K templates 
for almost all unknown objects, where K is a small number. The second reduction 
method exploits the nature of templates and classification trees to form a fast 
tree-retrieval mechanism. Experiment results show that this retrieval mechanism is 
a lot more effective than the K-means clustering method in meeting the same ob-
jective. The third method is a disambiguation method that supplies a condensed set 
of confusing pairs. This method exploits an effective binary classification technique 
to re-evaluate all the confusing pairs that appear in the nearest K templates for each 
unknown object, and thus improves the accuracy rate of the final classification de-
cision. 

I. Introduction 

Nearest-neighbor methodology [4, 5, 7], that matches each unknown object with 

all training samples and picks out the nearest or K-nearest training samples as basis 

for classification, can be justified in both theory and applications. In theory, it has 

been proved that, as the number of training samples approaches infinity, the classifi-

cation error rate based on the nearest sample is at most twice the Bayes error rate [4]. 

In applications, it has been shown in a now-well-known example that this technique 

outstrips the performance of support vector machines for classifying handwritten nu-

merals [12, 16]. 

A drawback of nearest neighbor method is its computing cost. Matching an un-
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known vector with all possible training vectors requires a tremendous amount of 

computation. For example, in an application we have dealt with, there are approxi-

mately 400,000 samples, each represented as a 256-dimensional vector. The sheer 

vector-distance computation renders this method practically infeasible in such a 

large-scale task. 

In this paper, we propose a series of reduction methods that condenses computa-

tions from one process to another so that in the end we achieve a very high accuracy 

rate for pattern classification in a computationally effective fashion that allows us to 

make approximately 600 classification decisions per second when classifying a 

256-dimensional vector as one of 5,973 possible classes. 

We propose three data reduction methods that are sequentially applied for solv-

ing pattern recognition problems. The first method is a template construction method, 

whose purpose is to transform a training data set into a much more condensed set of 

standard models or templates. Templates do not have to be training samples but must 

reside in the same vector space as training samples. The number of templates can ex-

ceed, but never drop below, the number of possible class types. Keeping a small size 

of templates is an important objective in the template construction process. Another 

important objective is to hold, within K-nearest templates of each unknown object, a 

template that bears the same class type as the unknown object, whereas K is a small 

number (2 or 3 in our applications). 
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The number of templates is proportionally small compared to that of training 

samples (6~7% in our applications). However, they are still too many to match with 

each unknown object in a one-to-one fashion. The fast template-retrieval method, our 

second method, is thus required. This method combines templates with classification 

trees to form a tree-retrieval mechanism. This mechanism stores templates in certain 

binary trees. Since templates are “representatives” of certain training samples, the leaf 



that stores a template T is deemed to be associated with the leaves that store the sam-

ples represented by T. To retrieve templates of an unknown object from a binary tree, 

we not only retrieve the templates stored in one leaf, but also the templates stored in 

its associated leaves. It turns out that we can obtain extremely small amount of tem-

plates (less than 0.5% of all templates in our applications) through this retrieval 

mechanism at near-zero loss. 

Our third method is a disambiguation method used for resolving those pairs of 

class types that are easily confused with each other. This process works on a very 

small amount of confusing pairs (only 0.2% of all possible pairs in our applications) 

derived as byproducts of the template construction process. To differentiate between 

confusing pair requires an effective binary classification technique. For this purpose, 

we employ support vector machines to compute the optimal supporting hyperplane for 

the two groups of training samples that correspond to a given confusing pair. 

This paper is organized as follows. Section 2 contains the formulation for tem-

plate construction problem, proposed learning algorithms, application tasks, and 

training and testing results. In Section 3, we describe the storage device as well as 

training method for fast template retrieval, and also the testing and comparison results. 

Section 4 outlines the disambiguation process, its training method, and all related re-

sults. The summary of this article is given in Section 5. 

2. Template Construction 

2.1 The Problem 

Templates are derived from training samples. We assume that a set of samples is 

given and that their class types are also specified. Each sample is represented as a 

vector lying in the n-dimensional space. For any two vectors v = (v1, v2, …, vn) and w 

= (w1, w2, …, wn) in this space, their distance is defined as 
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For any collection T of templates and t∈T, the attraction domain DOM(t) of t is 

the collection of all training samples for which t is the nearest template, namely, 

( ) } and  allfor   ),dist(),dist( and samplea  is   :{ DOM utuustssst ≠∈<= T  

For a set of templates to serve as a solution for the template construction problem, 

we require that each sample belongs to a template’s attraction domain and, moreover, 

that each attraction domain is homogeneous, namely, that it contains samples of the 

same class type (Figure 1). This condition reflects the intuitive requirement that each 

template serves the representative of its neighboring samples. 

 

Figure 1. A set of templates. Each template is shown by a darkened square, while 
training samples of different types are shown as different shapes. 

2.2 Template Construction Algorithms 

We present two methods for template construction here. The first method is 

adopted from RCE algorithm [10, 11]. It is stated as follows. 

(1) Initiation: we randomly pick a sample out of each class type as a template. 

The type of each template is set to be the same as the selected sample. 

(2) Absorption: for each sample s, find the nearest template t to s. If s bears the 

same type as t, then s is said to be absorbed. Otherwise, it is unabsorbed. 

(3) Building new templates: if there are still unabsorbed samples, we randomly 

pick an unabsorbed type-C sample as a new type-C template. 
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(4) Stopping criterion: if there are still unabsorbed samples, go to step 2. Other-

wise, we stop the whole process. 

When the process is terminated, each attraction domain becomes homogeneous. 

Moreover, each sample belongs to the attraction domain of a certain template. In this 

method, once templates are constructed, they are unchanged. For this reason, this 

method is a static construction method. 

The second method dynamically alters the number of templates as well as their 

locations. For this reason, we call it a dynamic construction method. 

(A) Initiation: for each class type C, the number of templates K(C) is set to be 1. 

(B) Determining templates: if K(C) = 1, the only type-C template is set to be the 

statistical average of all type-C samples. If K(C) > 1, we apply the K-means 

clustering method to all type-C samples to form K(C) clusters, using ran-

domly picked K(C) samples as seeds. It is possible that certain clusters be-

come empty at the end of applying the K-means clustering method. In this 

case, we keep only non-empty clusters. The centers of these clusters are as-

signed as type-C templates. 

(C) Determining the number of templates: for each sample s, find the nearest 

template t to s. If s bears the same type as t, then s is said to be absorbed. 

Otherwise, it is unabsorbed. For each class type C, if there are still unab-

sorbed samples, we increase K(C) by 1. 

(D) Stopping criterion: same as in the static construction method. 
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The K-means clustering method, which is employed in step B of the dynamic 

construction method, groups samples according to the following procedure. To start 

with, it uses given seeds as initial cluster centers. It then assigns each sample to the 

cluster whose center is nearest. Once a new member joins a cluster, the cluster center 

is reset to be the statistical average of all the members in the cluster [5-7]. 



Both static and dynamic construction methods adopt the same stopping criterion 

to ensure that all samples are absorbed. In practice, we allow the construction process 

to stop as long as the number of absorbed samples decreases from one cycle to the 

next. When this occurs, we restore the set of templates obtained in the previous cycle. 

Prompt cessation of the template construction process avoids time wasted building 

ineffective templates. 

2.3 Testing Results 

The above two template construction algorithms are employed while building 

recognizers for multi-font printed characters. In this task, we collected 390,823 tradi-

tional Chinese (TC) character images, and 360,443 simplified Chinese (SC) images. 

These images are from two major sources: characters generated by computers, and 

articles in newspapers, magazines, or books. 

There are 5,973 class types in TC and 6,767 class types in SC. Each character 

image is normalized to a bitmap of 64×64 pixels and represented as a vector. Each 

component of the vector takes the number of black pixels found within a 4×4 cell as 

its value. Since there are 256 (=16×16) non-overlapping cells within a 64×64 bitmap, 

the dimension of each vector is 256 (Figure 2). For alternative character features and 

recognition methods, readers are referred to [7, 14, 15]. 

    

Figure 2. Left panel: the 64×64 bitmap of a character image. Middle panel: the 
16×16 vector representation of the image. Right panel: the nearest template. 

The training and testing results for the two template construction methods are 
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listed in Table 1. In both applications, the static construction method produces a lot 

more templates and yet maintains lower top-1 accuracy rates on testing data than the 

dynamic construction method, and demonstrates the advantage of the dynamic con-

struction method. 

Table 1. Training and testing results of static and dynamic construction methods 
for traditional Chinese (TC) and simplified Chinese (SC) applications. 

Applications TC SC 
Template Construction Methods Static Dynamic Static Dynamic 
Number of Templates 33,543 21,595 35,084 24,145 
Accuracy Rate (Top-1) 98.12% 98.60% 98.53% 99.28% 

Further performance results of the dynamic construction method in two applica-

tions are listed in Table 2. The results indicate that the large volume of training sam-

ples are condensed into a much smaller number of templates (at a reduction rate of 

5.5% in the TC application and 6.7% in the SC application), while the rate of holding 

target patterns to the nearest three (top-3) templates is 99.80% for TC and 99.78% for 

SC. Note, however, that there is a non-negligible gap between the top-1 and top-3 ac-

curacy rates in both applications. This is taken care in the disambiguation process, to 

be described in Section 4. 

Table 2. Performance results of dynamic construction method in both applica-
tions. 

Applications TC SC 
Number of Training Samples (S) 390,823 360,443 
Number of Templates (T) 21,595 24,145 
Reduction Rate (T/S) 5.5% 6.7% 

Number of Testing Samples 48,910 27,326 
Accuracy Rate (top-1) 98.60% 99.28% 
Accuracy Rate (top-2) 99.65% 99.72% 
Accuracy Rate (top-3) 99.80% 99.78% 

 7



3. Fast Template Retrieval 

3.1 Tree-Retrieval Technique 

A number of hierarchical decision mechanisms have been proposed [1, 8, 9, 13, 

17]. In this paper, we propose a fast template-retrieval method that employs template 

trees (Figure 3). Template trees bear the same structure as classification trees (Bre-

iman, Friedman, Olshen, and Stone [1]). Each tree is associated with a type of vector 

(x1, x2, …, xn). At the root level, the first component of each input vector is examined 

and assigned to one of two partitions. Extended from the root are two branches, each 

of which leads to a sub-tree. Each sub-tree has the same structure as a full tree. The 

leaves (i.e., nodes that have no branches) store templates to be retrieved for each input. 

We require a training process to determine the branch point at each node, the tem-

plates stored in the leaves, and a certain parameter that determines the templates to be 

retrieved. 

•••• ••••

•••• ••••

••••••••••

L
A
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ROOT

Assembly of Associated Leaves  

Figure 3. A template tree structure. Solid arrows indicate where the input actu-
ally migrates and dashed arrows where it can possibly migrate. 
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To retrieve templates from a single tree results in a large template set. Multiple 

trees, on the other hand, help to reduce the number of retrieved templates. So, instead 

of feeding a gigantic vector into a single tree, we subdivide the vector into several 



sub-vectors and feed each into its corresponding tree. For convenience, we still refer 

to each sub-vector as a vector. 

3.2 Growing Template Trees 

Each template vector v enters a tree through its root. At the root, v is assigned to 

one of two partitions according to the first component v1 of v. If v1 falls below the 

branch point, this vector migrates to the left branch. Otherwise, it migrates to the right 

branch. The rest of the operations obey the same rule. 

Following [1], we set the branch point for each node N to be the value s that 

maximizes ∆IN(t), namely, 

)(Imaxarg ts Nt ∆= . 

The value ∆IN(t) measures the decrease in impurity at node N when the branch point 

of N is set at t. Since templates passing N migrate to two braches, with a proportion pL 

moving into the left branch tL and a proportion pR moving into the right branch tR, the 

decrease of impurity is defined to be 

)t(I)t(II)(I RRLL NNNN ppt −−=∆ , 

where IN = measures impurity at node N, p)(plog)(p ii Ni N∑− N(i) is the proportion 

of type-i templates that pass N, IN(tL) measures impurity at branch tL, and IN(tR) impu-

rity at branch tR. 

The depth of a tree can be controlled in the following way. Whenever a template 

vector passes a node, we increase the node counter by 1. When the counter value ex-

ceeds a certain threshold, a sub-tree is allowed to grow from this node as long as the 

node does not sit on the deepest possible layer of the tree. The maximum depth of a 

tree is the same as the dimension of vectors that are input to the tree. 

At each leaf, we store the templates that take the leaf as their destination. 
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3.3 Template Retrieval 

Testing vectors are input to template trees and passed through trees in the same 

way as template vectors. When a testing vector reaches a leaf, we examine the tem-

plates stored in the assembly of that leaf (Figure 3). The assembly of each leaf con-

sists of that leaf and all its associated leaves. The templates to be retrieved are those 

that appear in at least V of such assemblies. The assembly of each leaf and the value 

of V are determined in a training process. 

To determine the assembly of each leaf, we consider each leaf L1 and each tem-

plate σ stored in L1. We feed in all the training samples that belong to the attraction 

domain of σ. If one such training sample reaches leaf L2, then L1 is an associated leaf 

of L2 and L1 is thus in the assembly of L2 (Figure 4). 

L1

σ

L2

L3

 

Figure 4. Leaves are separated by dotted lines. L1 is an associated leaf of L2 and 
L3, since the attraction domains of the two templates stored in L1 overlap with L2 
and L3. 

The next step is to determine the value V, based on a second set of training sam-

ples. For this purpose, we feed all these samples into template trees and calculate, for 

each possible value of V, the proportion P(V) of samples whose nearest templates fall 

in at least V assemblies. The optimal value of V is then set to be the smallest V such 

that P(V) exceeds 99.9%. 

Having determined the value of V, we can further feed the second set of training 
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samples into template trees (we cannot do so before the optimal V is determined). It 

has the effect of enhancing the performance of the retrieval scheme on testing data. 

3.4 Order Rearrangement 

Thus far, all vectors pass through a template tree according to the original order 

of their components. As an alternative, they can pass through the tree according to a 

rearranged order. That is, when a vector v enters at a node N, the cth component of v is 

examined at N, if c is the index registered at N. 

Order rearrangement helps to reduce the number of retrieved templates from 

template trees. The idea of order rearrangement is to re-order vector components ac-

cording a metric that evaluates the maximal decrease of impurity 

),|(I max  )(m ctc NtN ∆=  

where ∆IN(t | c) is defined similarly as ∆IN(t) except that the cth component of each 

vector is being examined at node N. 

The index registered at each node is determined layer by layer. The index regis-

tered at the root is We then go on to determine the index regis-

tered at each node N of the first layer. All indices except i are evaluated at node N. 

The index j attaining the highest value of m

).(m augmax root ki k=

).(k

N(•) is registered at N, that is, 

 We then proceed to the second layer of the tree. The order 

rearrangement naturally affects the size of assemblies. It also helps to reduce the av-

erage number of retrieved templates, as shown in Section 3.5. 

m augmax   j Nik ≠=

3.5 Testing and Comparison Results 

In character recognition tasks, we form 16 template trees. Recall that we obtain 

21,595 templates in TC application and 24,145 templates in SC application, each of 

which is a 256-dimensional vector. We evenly divide each vector into 16 sub-vectors, 

each of which consists of 16 components. These 16 sub-vectors are then used to grow 
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the 16 template trees. 

A comparison can be made between two different approaches. In the one ap-

proach, vectors pass template trees according to their original order. In the other, their 

orders are dynamically rearranged (cf. Subsection 3.4). Table 3 displays the results of 

applying these two approaches to the aforementioned testing samples, where the hit 

rate is defined as the proportion of samples whose retrieved templates contains their 

nearest templates. The results show that the rearranged order has certain advantage 

over the original order. The average number of retrieved templates, in both ap-

proaches, is a very small proportion of total number of templates. 

Table 3. Average number of templates retrieved from template trees. There are 
21,595 templates stored in the 16 trees. 

Order Assumptions of Template Trees Original Order Rearranged Order 
Applications TC SC  TC SC 

Num. Stored Templates (T) 21,595 24,145 21,595 24,145 
Hit Rate on Testing Samples 99.84% 99.92% 99.90% 99.94% 
Avg. Num. Retrieved Templates (R) 124 44 95 37 
Reduction Rate (R/T) 0.57% 0.18% 0.43% 0.15% 

It is also interesting to compare the performance of template trees with that of the 

K-means clustering method. To make a fair comparison, we apply the K-means clus-

tering method to the 21,595 templates, obtained in the TC application, to form a series 

of collections, each collection corresponding to a specified value of K (the number of 

clusters). To determine a retrieval scheme for each collection, we have to use the 

390,823 training samples to determine the smallest V such that the probability of 

finding the nearest template from the first V neighboring clusters exceeds 99.9%. The 

results are listed in Table 4. Thus, when K = 50, the optimal V is found to be 21 and 

the average number of templates is 9,854. 

As indicated by the last row of Tables 3 and 4, the template-trees method has a 
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clear advantage in the average number of retrieved templates. In addition, the tem-

plate-trees method takes much shorter time to compute than the K-means clustering 

method, since the retrieval operation of the K-means method consists of 256 assign-

ments of numerical values, which takes about the same time as computing the dis-

tance of an unknown object to one cluster center in the template-trees method. Thus, 

the ratio of one retrieval-cycle time is about 1:K between the two methods, where K is 

the number of clusters obtained by the K-means clustering method. 

Table 4. The results obtained by the K-means clustering method. 

Number of clusters (K) 50 100 150 200 250 
Vote (V) 21 28 39 43 43 
Hit Rate 99.9% 99.89% 99.9% 99.89% 99.9% 
Average Number of Templates 9,854 6,425 6,245 5,186 4,309 

4. Disambiguation 

Our experiment results show very high rates for maintaining target patterns 

within the first three nearest templates in both TC and SC applications. . There is, 

however, a non-negligible gap between top-3 and top-1 accuracy rates (1.2% for TC 

and 0.5% for SC, cf. table 2). Bridging this gap is the purpose of our second-stage 

procedure, the disambiguation procedure. 

A disambiguation procedure consists of working units to be used in both the off-

line and online process. The offline process determines which class types are easily 

mistaken for each other. These confusing types are always taken in pairs and are thus 

referred to as confusing pairs. For each pair, the offline process specifies a single re-

assessing scheme. The online process relies upon these schemes to reassess the can-

didates for unknown objects. 
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4.1 Confusing Pairs 

Let us first talk about the offline process. Recall that, in the template 

construction process, we determine the domain of attraction for each template and 

also the nearest template for each training sample x. At the end of the process, we also 

sort the templates in ascending order, according to their distance to x. In fact, we only 

require the first K of these templates be sorted, where K is a certain small integer (for 

example, 2 or 3). These templates will be referred to as candidates of x. We then col-

lect the pairs (C1, Cj), where Cj is the rank-j candidate of x for 1 < j ≤ K. 

When these pairs have been formed for all samples, we make a slight generaliza-

tion: When a pair consists of a type-A template and a type-B template, both pairs (A, B) 

and (B, A) are stored in a list. On the other hand, if the target pattern is outside the 

K-nearest templates, we do not include any of these pairs in the list. Next, for each 

confusing pair thus determined, we provide a reassessing scheme, based on the 

training samples of the relevant class types. 

4.2 Support Vector Machines 

We employ support vector machines (SVM) to set up reassessing schemes as fol-

lows. For each confusing pair and the training samples corresponding to the two class 

types associated with this pair, we use SVM to obtain key parameters (w, b) for each 

confusing pair. 

SVM is a powerful method for binary classification. The goal of SVM is to de-

rive a separating hyperplane with the largest margin out of labeled training samples 

{xi, yi}, yi∈{-1, 1}, i = 1, …, I, where xi is the vector, yi is the label (1 for one class 

type and –1 for another) of ith sample, and I is the total number of training samples. In 

the SVM problem, the labeled training samples satisfy the following constraints: 

.01)( ≥+−+⋅ iii ξby wx                       (1) 
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where ξi, i = 1, …, I, are positive slack variables, w is normal to the hyperplane, and 

w/b  is the perpendicular distance from the hyperplane to the origin. Note that 

w/2  is the margin between two groups of data. 

To introduce positive Lagrange multipliers , one for each inequality constraint 

(2), and parameters

iα

iµ , one for each , we are able to transform the SVM problem 

into the equivalent optimization constraint problem: 

iξ

}]1)([
2
1min{min 2

∑−+−+⋅∑−∑+= i iiiiii ii i byCL ξµξαξ wxw         (2) 

subject to 

0
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y
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α
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                             (3) 

where C is the penalty parameter and is a penalty term, whose duty is to re-

duce the number of training errors. The solution to the SVM problem is 

∑i iξC

∑=
=

sN

i
iii y

1
xw α                             (4) 

where Ns is the number of support vectors. SVM is detailed in [2, 16]. A set of useful 

tools, called LIBSVM, that provides SVM solutions for binary classification problems, 

can be found on a web site [3]. Our SVM-related experiments are based on this tool 

kit. 

4.3 Online Process 

Having determined the reassessing scheme for each confusing pair, we have 

completed the offline process. Let us now address the online process. Suppose that an 

unknown object U is given and its first K candidates are already found. We first apply 

the reassessing schemes to all the confusing pairs found within the K candidates of U. 

We then rearrange the order of all the candidates as follows. 

 15
If the reassessing scheme involves SVM and a confusing pair (A, B), we compute 



sgn(x·w+b) for each given testing sample x, where w is the optimal separating hyper-

plane associated with (A, B). If sgn(x·w+b) takes the same sign as the label of x, then 

the class type of x scores one unit; otherwise, the opposite class type scores one unit. 

When all the confusing pairs contained in the same candidate list are reassessed, 

we proceed to re-order the involved candidates: The candidate gaining the highest 

score is ranked first, the candidate gaining the second highest score is ranked second, 

etc. If two candidates receive the same score, their relative positions remain the same 

as before. We then rearrange the involved candidates according to their assigned rank. 

4.4 Testing Results 

Out of the training results, we take all the pairs (A, B) as confusing pairs, where 

A and B are picked from the top-2 candidates for certain training samples. There are 

33,445 pairs obtained by applying the training process to TC, and 40,665 pairs ob-

tained by applying the training process to SC (Table 5). The confusing pairs take only 

0.2% of all N(N-1)/2 possible pairs in both applications. 

Table 5. The proportion of confusing pairs out of all possible N(N-1)/2 pairs. 

Applications TC SC 
Number of Classes (N) 5,973 6,767 
Number of Confusing Pairs (C) 33,445 40,665 
Proportion: 2C/N(N-1) 0.2% 0.2% 

Having identified confusing pairs, we apply the SVM method to all relevant 

top-3 candidates for all unknown objects. The accuracy rates before and after the 

application of disambiguation methods are listed in Table 6. The testing data are the 

same as previously described. 

The ‘Ideal Disambiguation’ in Table 6 refers to the final outcome under the hy-

pothesis that all confusing pairs are correctly discriminated. It is thus the least upper 

bound for any binary classifier employed as a reassessing method. The last item 
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‘Top-3 Accuracy’, on the other hand, constitutes the least upper bound for the current 

setting of our disambiguation procedure. 

Table 6. Accuracy rates of the disambiguation method in two applications. 

Applications TC SC 
Before Disambiguation 98.60% 99.28% 
After Disambiguation 99.67% 99.70% 
Ideal Disambiguation 99.71% 99.74% 

Top-3 Accuracy 99.80% 99.78% 

5. Summary 

We have described a series of data reduction methods for pattern recognition 

tasks. The core of these methods is the template construction algorithm that is able to 

condense a large set of training samples into a small set of templates. This reduction 

rate, of course, varies from case to case. In our character recognition applications, we 

obtained 5.5% and 6.7% for the two testing cases, respectively (cf. Table 2). 

The template construction process lays down an important foundation for all the 

remaining work. In terms of the need of online process, the number of templates re-

mains significantly large for one-to-one matching with unknown objects. Further re-

duction work needs to be set in action. 

The process leading towards this reduction is to retrieve templates that are stored 

in template trees. When a vector v is input into a template tree, v will be assigned to 

one of the partitions according to the value of the designated component of v. When 

all sub-vectors of an unknown object are fed into their corresponding trees, we are 

able to retrieve templates from all leaves associated with the leaves reached by them. 

To determine the associated leaves for each given leaf requires a training process. 

The training process first builds trees by feeding all templates into the trees and stor-

ing them in the destined leaves. It then uses the training samples, from which tem-
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plates were actually derived, to determine the associated leaves as well as the value of 

a parameter that controls the range of templates to be retrieved from template trees. 

Test results show that the number of retrieved templates on average is 0.15~0.43% of 

the total number of templates stored in template trees, if rearranged orders of variables 

are used (cf. table 3). 

Testing results show that the template-trees method outperforms the K-means 

clustering method both in retrieval speed and in reducing retrieved templates. The ra-

tio of one retrieval-cycle time is approximately 1:K between the two methods, while 

the ratio of retrieved templates is 1:103 when K = 50, and 1:45 when K = 250 (cf. Ta-

ble 3 and 4). 

While template trees are effective in retrieving an extremely small amount of 

templates with near-zero loss, the disambiguation process is a way for improving 

recognition accuracy. In the disambiguation process, we re-evaluate top-K candidates 

to identify the best possible candidate. This requires N(N-1)/2 possible binary 

classifications, but only a very small proportion of these pairs (0.2% in our 

applications, cf. table 5) needs to be actually re-evaluated, based on the knowledge 

that acquired during the learning process. This means that we need to only solve an 

extremely small set of SVM problems. 

In the online process, since only the top-K candidates are involved in the sec-

ond-stage procedure, there are at most K(K-1)/2 binary decisions to be made. This is a 

small price to pay in terms of the substantial increase in the accuracy rate at a scale of 

0.4~1% in the applications with which we are dealing. (cf. table 6). 

Reference: 

[1] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone, Classification and 
Regression Trees, New York: Chapman and Hall, 1984. 

 18



[2] C. J. C. Burges, “A tutorial on support vector machines for pattern recognition,” 
Knowledge Discovery and Data Mining, 2(2), 1998. 

[3] C-C. Chang and C-J. Lin, “LIBSVM -- A Library for Support Vector Machines”, 
http://www.csie.ntu.edu.tw/~cjlin/libsvm/ 

[4] T. Cover and P. Hart, “Nearest neighbor pattern classification,” Proc. IEEE Trans. 
Information Theory, IT-11, pp. 21-27, 1967. 

[5] R. O. Duda, P. E. Hart and D. G. Stork, Pattern Classification, 2nd Edition, New 
York: John Wiley, 2001. 

[6] A. K. Jain and R. C. Dubes, Algorithms for Clustering Data, New Jersey: Prentice 
Hall, 1988. 

[7] A. K. Jain, P. W. Duin, and J. Mao, “Statistical Pattern Recognition: A Review,” 
IEEE Transactions on Pattern Analysis and Intelligence, vol. 22, no. 1, pp. 4-37, 
2000. 

[8] G. Karypis, E-H. Han, and V. Kumar, “Chameleon: A Hierarchical Clustering Al-
gorithm Using Dynamic Modeling,” IEEE Computer, vol. 32, pp. 68-75, 1999. 

[9] J. R. Quinlan, “Induction of Decision Tree,” Machine Learning, vol. 1, no. 1, pp. 
81-106, 1986. 

[10] D. L. Reilly and L. N. Cooper, “An Overview of Neural Networks: Early Models 
to Real World Systems,” An Introduction of Neural and Electronic Networks, New 
York, Academic Press, 1990. 

[11] D. L. Reilly, L. N. Cooper, and C. Elbaum, “A Neural Model for Category 
Learning,” Biological Cybernetics, vol. 45, 35-41, 1982. 

[12] P. Simard, Y. LeCun, and J. Denker, “Efficient pattern recognition using a new 
transformation distance,” Advances in Neural Information Processing Systems, 
Morgan Kaufman, San Masteo, Ca, pp. 50-58, 1993. 

[13] D. L. Swets and J. Weng, “Hierarchical Discriminant Analysis for Image Re-
trieval,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 21, 
no. 5, pp. 386-401, 1999. 

[14] Y. Y. Tang, L.-T. Tu, and Jiming Liu, “Offline Recognition of Chinese Handwrit-
ing by Multifeature and Multilevel Classification,” IEEE Transactions on Pattern 
Analysis and Machine Intelligence, vol. 20, no. 5, pp. 556-561, 1998. 

[15] Ø. D. Trier, A. K. Jain, and T. Taxt, “Feature Extraction Methods for Character 
 19

http://www.csie.ntu.edu.tw/~cjlin/libsvm/


 20

Recognition – A survey,” Pattern Recognition, vol. 29, no. 4, pp. 641-662, 1996. 

[16] V. Vapnik, The nature of Statistical Learning Theory, New York: Springer Verlag, 
1995. 

[17] Q. R. Wang and C. Y. Suen, “Analysis and Design of a Decision Tree Based on 
Entropy Reduction and Its Application to Large Character Set Recognition,” IEEE 
Transactions on Pattern Analysis and Machine Intelligence, vol. 6, No. 4, pp. 
406-417, 1984. 

http://iris.usc.edu/Vision-Notes/bibliography/keyword/k/journal/j/journal/pam.html
http://iris.usc.edu/Vision-Notes/bibliography/keyword/k/journal/j/journal/pam.html

